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Normalized lowering and raising operators are constructed for the orthogonal group in the canonical

group chain O(n) > O(n — 1) > -+

> 0(2) with the aid of graphs which simplify their construction.

By successive application of such lowering operators for O(n), O(n — 1), - - - on the highest weight states
for each step of the chain, an explicit construction is given for the normalized basis vectors. To illustrate
the usefulness of the construction, a derivation is given of the Gel'fand—Zetlin matrix elements of the

infinitesimal generators of O(n).

1. INTRODUCTION

HE semisimple Lie groups have recently found
many new applications in physics. The unitary

groups in particular have received wide attention as a
result of this renewed importance, and the irreducible
representations of U(n) (arbitrary n), have been
studied in considerable detail.l-2 Although the orthog-
onal group O(n) has received less attention, it
recently also found some new applications to physical
problems. In particular, the groups O(5) and O(8)
have become of interest in nuclear spectroscopy in
connection with the quasi-spin formalism for neutron
and proton configurations.®* The group chain O(r) >
O(n — 1) > - -- has also been found of interest in
general many-body theory in the construction of
n-body states of definite permutational symmetry.®

The basis vectors of an arbitrary irreducible
representation of O(n) are completely characterized
by the chain of canonical subgroups O(n — 1) ©
O(n —2)>-:-0(@2). This canonical group chain
has been studied many years ago by Gel'fand and
Zetlin,® who give the matrix elements of the infinitesi-
mal operators of O(n), for arbitrary n, in this basis.”
Since the mathematically natural chain of subgroups,

* Supported by the U.S. Office of Naval Research, Contract
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such as O(n)> O(n — 1) > ---, often does not
include the subgroups of actual physical interest,4
the application to physical problems, in general,
involves a transformation from the mathematically
natural to a physically relevant scheme. To effect
such a transformation, it becomes important to have
an explicit construction of the basis vectors of an
arbitrary irreducible representation of the group.

It is the purpose of this paper to give an explicit
construction of the basis vectors of the irreducible
representations of O(n) in the Gel’fand scheme through
the successive application of lowering operators acting
on the highest weight state. The concept of lowering
(or raising) operators was employed by Nagel and
Moshinsky! to construct the full set of basis vectors
of U(n) in the canonical group chain U(n) =
Umn — 1) > ---. Although the present work has
set itself the analogous task for the group chain
O(m) > O(n — 1)+ -- and thus forms a parallel to
the work of Nagel and Moshinsky, the techniques
employed are somewhat different. In particular, since
the lowering (or raising) operators for O(n) are
complicated polynomial functions of the infinitesimal
generators of the group, a graphical technique has been
found useful in the construction of these operators.

In Sec. 2 a review is given of some of the properties
of the group O(n) and the canonical chain of subgroups
employed in the Gel'fand basis. In Sec. 3 the raising
and lowering operators are constructed with the aid
of graphs. Section 4 presents the calculation of the
normalization coefficients of the lowering operators.
These are the fundamental numbers of the construc-
tion since the successive application of lowering
operators must yield a normalized basis vector for
easy application in actual problems. Finally, in Sec.
5, a brief derivation is given of the Gel'fand and
Zetlin results for the matrix elements of the infini-
tesimal operators to illustrate the usefulness of the
present construction.

1233



1234

2. SOME PROPERTIES OF O(n)
A. Generators of O(n)

The natural infinitesimal generators of O(n) are
the set of skew-symmetric, Hermitian operators J;
with the commutation relations

[Jm;i’Jkl] = i(akan + 651Jmk
- 6}kJml - 6ml"ik)s

where m, j, k, and / run from 1 to n. The number of
independent generators of O(n) is therefore n(n — 1).

The infinitesimal generators of a Lie group are
best expressed in standard form® in which they are
organized into one set of ¥ commuting operators
(H type), where k is the rank of the group, and a set
of raising and lowering generators® (E type). In O(3),
for example, H, E,, E_, correspond to Jy, J13 + iy,
Jig — iJy3, respectively. For both O(2k + 1) and
O(2k) it is convenient to choose the £ commuting
operators as Jig, Jag, J5g, ¢ * * 5 Jop_1,2- It is useful to
further classify the raising and lowering generators
into two types, those which connect the group O(n)
to its subgroups, to be denoted by 0, and those which
operate within the space of the subgroups only, to
be denoted by p, so that there are three types of
operators in all. In O(7), for example, operators of
type Q are linear combinations of the J;, while
operators of type p involve only J;; with both i, j < 7.

The three types of operators are defined as follows:

(@) 02k + 1)
Type (1) H, =Jsq 1,0,, x=1,2,--4,k,
(2) Qo400 = Jou-1,9%41 £ Wy o011 »
=12,k (22

(3) Pap = [Q2k+1.a’ Q2k+1,ﬁ]’
“sﬂ= ::i:l,"’,:l:k, ﬁ# —a,

2.1

(b) 0(2k)
Type (1) H, = Jos 1,25
a=12-,k—1,
¥)] sz.k = Jzk—l.zlc (=Hk)’
QZk.:!:a = J2¢—1,2k + iJ2a.2k’
e=1,2,--",k—1,
3) Papg = [Qa.a» Qz::.p],
“,/3 = :l:ls :l:2" Ty :I:(k - 1)’k’
ﬂ 7 -,

2.3)

8 G, Racah, CERN reprint 61-8 (1961).

? The raising and lowering generators are not to be confused with
the raising and lowering operators which are the subject of this
paper. Except for O(3) the lowering and raising dperators are
complicated polynomial functions of the lowering and raising
generators.,
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(Note that H, is now included among the type 2
operators, and that p, _, is not of type 3 but, from
its definition, is merely equal to 2J,, ; 4,.) The basic
commutators of these operators are then

[Jﬂa—l.Za’ sz—l,zp] =0, 2.4)

[J2a—1.2a: Pﬂy] - (601# + 6ay - 6a.—ﬂ - 6«.—y)Pﬁy,

@.5)
[J2a—1.2u’ Qnﬁ] = (‘5ap - 5u,—ﬂ)Qnﬂ, (2-6)
[paﬂ’ Qny] = 2(6ﬁ,—ana - 6a,~7Qnﬂ)’ (27)

[Puﬁa pyd] = 2(a¢.—-apﬂ1 + 6ﬁ-—7pa"
— OcyPps — Op—sPey). (2.8)

The p,; can also be represented as Q-type operators
of the subgroups of O(n)

Paﬁ = i[Q2ﬂ-—1,a + iQ2ﬁ,a]9
Pa—p = i[Q2p1,0 — iQ2p.0l, 0< < B,
P—a,ﬂ = i[Q2ﬂ—1,—a - inﬁ.——a], 2ﬂ < n,

Pv—p = i[Q2p 1, + iQ2p, ]

(2.9)

B. The Gel’fand Basis

Gel'fand and Zetlin® have provided a way to com-
pletely specify the basis vectors of the irreducible
representations of O(n) according to the canonical

chain of subgroups O(n) > O(n — 1) = - - - 2 0(2).
For the case n = 2k + 1
Mogr1,1 Mopya,2 Mopr1,e—1 Mogy1x
Mag,1 Mog,2 Mog k-1 Mg,k
Mor_1,1 Mag_y,2 Moy_1,x-1
Mop_9,k—1
|‘M’np> =
L Mg
my, mysy
Mgy
my,
(2.10)
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For the case n = 2k

Mag,1 Moy, 2 Mg, k1 Moo
Mop1,1 Magg—1,2 Moy 1,51
Map—2,1 Mayg2,2
|(/K)"u> =
my LT
mgy
Mgy
2.11)

The k numbers in the top row characterize the
irreducible representations of O(n). The numbers in
the next row characterize one of the possible irreduc-
ible representations of O(n — 1) contained in the
specific irreducible representation of O(n), and so
forth for successive subgroups of the chain. The
numbers in each row thus characterize one of the
possible irreducible representations of a specific
subgroup. The numbers mg, , mg,, my,, for example,
characterize one of the irreducible representations of
0(6).1

The Gel’fand basis vectors are not eigenvectors of
the & commuting operators J,,_, »,. The basis differs
in this respect from the corresponding Gel'fand-
Zetlin basis for the unitary groups.! Although the
full set of m,; are thus not simply related to the com-
ponents of the weights, they are nevertheless related
to the highest weights of the irreducible representa-
tions, since the highest weight state of O(n) is an
eigenvector of the set of J,, ; »,. The significance of
the m,, ; is therefore the following:

(a) Forn=2k + 1,

Myi1,1 IS the maximum possible eigenvalue of J;, in
o2k + 1),

Mgy11,5 18 the maximum possible eigenvalue of J;, when
the eigenvalue of Jy, is my,, ; in 02k + 1),

10 A slight change has been made in the Gel’fand-Zetlin notation.
The first index has been shifted up by one unit so that m,,, m,,, - - -
characterize the irreducible representation of O(). The chain of
numbers thus ends with my, [irreducible representation of 0(2)],
rather than with m,, .
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Myy.1,; is the maximum possible eigenvalue of Jy;_; »;
when the eigenvalues of J, are equal to my, ,
forall « < iin Ok + 1),

a—1,2a

Mg, is the maximum possible eigenvalue of Jy,_; 4
when the eigenvalues of J,,_, ., are equal to my,,, ,
for all « < k in O(Q2k + 1);

(b) For n = 2k,

my, , is the maximum possible eigenvalue of Jy, in
0(2k),

My, ; is the maximum possible eigenvalue of Jy;_; 5,
when the eigenvalues of J,, , ,, are equal to m,, ,
for all « < iin O(2k),

My 1 is the maximum possible eigenvalue of Jy;_3 9;_»
when the eigenvalues of Jy,_; ,, are equal to my, .
for all « < k¥ — 1 in O(2k),

mgy, ;. is the eigenvalue of Jy, ; o When the eigenvalues
of Jau_1,9, are equal to my, , for all « <k — 1 in
O(2k).

The irreducible representations of the subgroups in
the chain are characterized in the same way.

The numbers m;; are simultaneously either integral
or half integral with restrictions which have been
given by Gel'fand and Zetlin®:

Mopir,s = Myp s 2 Mypis s ((=1,2,-++,p),

My 2 May 3,5 2 Map iy

(i=1,2,"',P—1),

Mapir,p 2 (Mol (2.12)
These properties are clear once the lowering and
raising operators are derived in this paper.
Since the type-1 operators Jy,_; o, are not diagonal
in the general Gel'fand basis, it is convenient to
define a whole hierarchy of subbases of decreasing
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complexity:
[Moga] = [Hop,),
[‘M’sns;l] = ['M’nu; Mg = mBl];

[*MJ;‘;Z] = [Mop,; My = Mg = my],

Mg = My = My = My,
(8] = [mc,,,.; :
Mge = Myo

(2.13)

"

[‘M’ilz‘.)] = ["K’mt; m2i,¢ = mﬂa

o=1,2,---,1i T
f=2a20+1,---,2i
[H2] = [Jcn“; Massre = Mge
a=1,2-,i 7
B=2¢20+1,--,2i

The base vectors of [M{0] withg = 2i org = 2i + 1
have the special property that they .are eigenvectors
of the set of commuting operators J,, ; 4, With
«=1,---,i Any vector of [M!2] is specified by
(n — g + 1) rows of numbers.

The particular subbasis [A{% "], made up of the
base vectors of highest weight in the immediate sub-
group O(n — 1) of O(n), is of greatest importance in
the present discussion. Its states are specified by only
two rows of numbers and it has the following special
properties.

(1) All of the type-1 operators, Jy, ; 5, (With o« =
l,---,kforn=2k+1,anda=1,---,k —1 for
n = 2k), are diagonal in this basis.

(2) All of the type-3 raising generators p,s, p, 4
(0 < a < p) give zero when operating on any vector
of the basis [.M,;"‘f”]. This condition is necessary and
sufficient to define the basis [{%1]. (Note that the
generators pjs, py,_2, P13s P1,-3> P23 P23, " are
naturally considered as raising generators, whereas

P—2,3 pP—g,-3,° " are

P-1,25 P-1,-2> P-1,35 P-1,-3>
lowering generators.)

The raising and lowering operators which are the
subject of this paper are best defined in terms of the
subbasis [A{:]. They are the operators which raise
or lower by one integer one of the quantum numbers
m,_; , of the second row without leaving the subbasis
[A{n~D], that is the space of base vectors of highest
weight in the immediate subgroup. In particular, the
full set of states of [AG{"] can be constructed by
repeated operation with the various lowering opera-
tors of O(n) on the highest weight state of a specific
irreducible representation, namely [A(*']. The set of

states of [A0{""#"] can then be constructed by successive
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operation with lowering operators of O(n — 1) on the
states of [AL{»"1)] which are highest weight states of
irreducible representations of O(n — 1), and so forth,
until the full set of Gel’fand states has been reached
by successive stepdown operations with the lowering
operators of O(n), O(n — 1), -+ -, O(3).

3. THE RAISING AND LOWERING
OPERATORS AND THEIR GRAPHS

In O(3) the raising (and lowering) generators
Jia & iJys = Q5 ., are themselves raising (and lower-
ing) operators; that is, Q, ., operating on a state
|1, m) converts it into a state |/, m + 1). In O(n), with
n > 3, the raising and lowering generators Q, ; have
matrix elements connecting very many different states
of the general Gel’fand basis, and when operating on
a state of [A{»"1] do not give states belonging solely
to [M{e1)],

By forming polynomial functions of the raising
and lowering generators, it is possible to construct
raising and lowering operators, to be denoted by
O,..i, which have the simple property that they
raise (or lower) by one integer one of the quantum
numbers m,_,; of the subbasis [M{7] without
leaving this subbasis, that is, the space of base vectors of
highest weight in the immediate subgroup O(n — 1).1*
Specifically O, is defined by

0 m'nl mye et mm‘ mnk>
n,xtt
Mp_1,1 Mpy_1,2 My 1,4 :
— NI mnl mys ot mni mnk
b
My 11 My g2 My 4+ 1 :

3.1
where N’ is a normalization factor and | ) denotes a
normalized state. To save writing, only the column
that suffers change is indicated:

m. . m. .
O » ni —_ Nl ne
e mn—l,i> m, ;% 1>’
i=12--,k, n=2%+1,
{i=l,2,"-,k—1, n = 2k. (3.2)

For n = 2k it is also convenient to introduce the
zero-step operator, Oy,

Ouir Mok,1 Moy ¢ Mo, k—1 m2k.k>
Mop—1,1 Mog_1,: Moy 1,51
=N Mag,1 Mop,; Moy k-1 m2k.k>
Mg 1,1 Mog—1,1 Moy 3,51

(3.3)

11 For the specific cases n =5 and 6 explicit expressions for
raising and lowering operators have been given previously. J.
Flores, E. Chacon, P. A. Mello, and M. de Llano, Nucl. Phys. 72,
352 (1965), and (n = 5) K. T. Hecht, ibid. 63, 177 (1965).
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or
Moy, ¢ s |Mgx,¢
o =N . (4
ek mak—l.i> m2k—l.n'> )
Since
mg; > and my; > e [J‘.:i::;—l) ,
My m,1:+1
0, .; and Oy, , must satisfy
(1) [Jh—l.zu Oni] = 6“'0"“
[Jh—l.&v On—i] = —6¢i0n.—i ’
[Vor1,20: Ol =0, 0<a <k, (3.5)
My
@ o, Onsd [ S =0,
m,,;
[Pcb | " > =0,
mn—l.'
" (3.6)
[parps Ond [ >=o,
Pa,—p +i Moy
mm‘
[Pe~p> Oz.x) > =0, 0<a<ifl
mn—l.i

Equations (3.5) and (3.6) are necessary and sufficient
conditions that O, .; be raising (lowering) operators.
Equations (3.6) apply to all of the raising generators
of the subgroup O(n — 1) and ensure that the state
0, .ilmy, m, ;) is a highest weight state of the
subgroup O(n — 1) since the state |m,,, m,_; ;) has
this property. Since the raising and lowering opera-
tors are complicated functions of the generators they
are best described in terms of graphs, and manipula-
tions involving these operators are also best performed
with the aid of these graphs.

A. Raising Operators and Their Associated Graphs
Contents of R; graphs

Graphs associated with the raising operator O, ;
are to be denoted by R;; these graphs consist of the
following (see Table I).

(1) A single row of i ordered points numbered
from 1 to i with order increasing from right to left.

(2) A connected chain of arrows always pointing
from right to left, with (a) any point 1 < j < i as
starting point, to be indicated by a circle, (b) end
point always at i, (c) the arrows which form the links
of the connected chain may connect some (possibly
all) of the points between the starting point j and the
end point i but may skip around others (possibly none).

Operator Representations of the R; Graphs

Each of the many possible graphs of type R,
represents one of the terms of the raising operator
0,
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TasLE I. The graphs of R,, for any n > 8.

GRAPHS OPERATOR REPRESENTATION OF THE GRAPHS
4 3 2 |
o ¢ o o Onq 93-4 02-4 %4
“o o o Cra-3} O3 02-4 014
o . Crg-21%2 93-4 9-4
o0 o Upg3)iPy.2) Qpp 9
o oo Upg) O 3.4 92-4
st 231025} Oy 92-4
-0 (-’4’2, (-’Z'I) Q) 03-4
—tt—se—O (‘p4_3)('p3_2) Cag ) Q)
9 = 9-9; u.IZ(Jz._,_z.ﬂ-a)
n=2k or 2k+I

(1) The circle around the starting point j represents
the operator Q,, ;.

(2) An arrow link of the chain connecting points
« and 8, with a < B, represents the operator (—pg__,).
[Note that the operator (—pg,_,) = p_, 5 With a < f
is a lowering generator of one of the subgroups of
O(n).]

(3) A free point, not connected by one of the arrow
links of the chain, is associated in the operator
representation of the graph by a; _, = a;, — q,, a, =
2(Jyy—1,24 + k — o) for n = 2k or n = 2k + 1. (Note
that a; _;,=a_,,, and the vectors of [M{%™"] are
eigenvectors of a,.)

(4) The full operator represented by one of the
R; graphs is the product of all the factors of type
(—pp.—o) and Q,, ; implied by the various links of the
graph. The order of the Q and p operators in the prod-
uct reading from right to left is the same as the order
of the links of the chain again reading from right to
left, with —p; _, on the extreme left and @, ; on the
right followed on the right by all the commuting
operator functions a_; ;.

The Raising Operators

Theorem: O, is equal to the sum of the operators
represented by all possible graphs R,;.

Proof: Since all raising generators p,;, p.—g
(0 < a < |Bl) can be expressed in terms of commuta-
tors of generators of the type p; ., and p; (1), Egs.
(3.5) and (3.6) follow from

[JZa—l.Za’ Om'] = 6aiom‘ 4 (3'7)

m. .
(Ma N g, 3.8
P3,i+10n; m”_“> (3.8
j=1,2, k= 1),

m. .
™ =0. 3.9
P}.—(:ﬁ+1)0m mn—l,i> ( )
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Equation (3.7) follows at once from the commutators
of Jy, 4.0, With the p’s and Q’s [Eqs (2.4)-(2.6)].
Equation (3.8) follows from the fact that a p with two
positive indices, when commuted through to the right
of all factors ps_, and Q; of O,,;, leaves one p with
two positive indices (which in turn has one such
surviving term when commuted to the right), and a p
with two positive indices gives zero when operating
on a state of [A{7"]. Equation (3.9) follows since
all the p; _(;,1) commute through to the right side of
all factors p and Q of O, ; except for the types which
involve the indices j and j + 1, and p;, _(;,,, operating
on terms including these satisfy the relations written in
terms of graphs:

, N
00 e A
t ™ e . " (20
el
-
*’@T r\@’m +1@‘\I:I r—@ 20 )
; v
L
‘o—————a"
Wi

+ +l@a\‘/—.\@m Pi-en :’

(3.10)
And also
b ) (O e
Py { O~ :’““> =L@ o) g :. >=0.
T D o ta gy
3.11)
Special examples
0(6)
Os1 = Qe,1
Og2 = Qg,2012 + (—p2-1)Qs.1
© o 4+ 0
o)
011= 0

02 = Q7901 2 + (—pa_1)07.1
0,5 = Qr,501 30 3 + (—p3_2) Q7,901 3
+ ("‘Pa—1)Q7.1az—s + (_Par-z)(‘_Pz—l)Q7,1

O ¢ s+se—0Q * 4+ ¢ TP 4 ee—ee—0
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B. Lowering Operators and Their Associated Graphs

The graphs for the raising operators O,, are
identical for all £ > i. The graphs for the lowering
operators O,, _;, however, are not only dependent on
the specific value of » but have a slightly different
character for the odd- and even-dimensional rotation
groups, n = 2k + 1 and n = 2k, so that the two cases
must be discussed separately. Graphs associated with
the lowering operators Oy, _; are to be denoted by
£2k+l.i

(1) Lopp1,; Graphs

The £,,,,, graphs consist of the following (see

Table II).

(a) Two rows of ordered points, kK points in the
bottom row numbered from 1 to k with order in-
creasing from right to left, and k — i 4+ 1 points in

TasLE II. The graphs of £,,5.

GRAPHS OPERATOR REPRESENTATION OF THE GRAPHS
*3 02
o3 62 ol 9, 2 92.3 %3 %2 92

(-p_ 3) Q

7-3 %23 %22 %2
) a

2

r_3.3) 973 %3 %22 2

Crop3t(03.3) 075 053 0y

AN

Urp318p5.5) Ogp 0.3 93

Ceay) 9

) %2-3 %23 %22

P Crp3?23-) Oy 023 0y
<o Copg)Pany) Oy 053 9p,
o g3 0h.35)0005)) Oy 033
o Cpog-3) Py ) 0ry ) Oy 0y

07040, 0.2 0;-0;

) I ) )

9 ® 2“21-l.2a+3.°)

the top row with order decreasing from left to right
starting with k at the left and ending with i so that
the point, j (i < j < k), in the top row sits above the
point j of the bottom row.

(b) A connected chain of arrows forming a clock-
wise path, the arrows always pointing from right to
left in the bottom row and from left to right in the
top row, with (i) any point of either the top or bottom
row as starting point, to be indicated by a circle, (ii)
end point always at i of the top row, (iii) no vertical
arrows (that is, no connections from point / in the
bottom row to point / in the top row), (iv) no arrows
pointing downward [that is, no arrows with starting
points (tails) in the top row and end points (arrow-
heads) in the bottom row], (v) the arrows which form
the links of the connected chain may then be directed
from point « in the botton row to point 8 in the
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bottom row with (8 > «), from point x in the top
row to point » in the top row with (v < u), or from
point « in the bottom row to any point ¢ in the top
row ¢ $ «, but o # a.

(2) Operator Representations of the Loy, ; Graphs

(a) The circle around the starting point, say j,
represents the operator Qg4 ; when it is in the bottom
row and Q. _; when in the top row.

(b) An arrow link of the chain connecting point
« to point B represents the operator

@) (—pp,—) Wwhen « < B, both points in
bottom row,
(i) (—p_p) When a > f,bothpointsintop row,

« in the bottom row, f in
top row.

(c) A free point not connected by one of the arrow
links of the chain is represented by the operator
function a; _, = a; — a, when « is in the top row and
a,, = a; + a, when « is in the bottom row, where
a, = 2(Jy, 1.0 + k — ), as before.

(d) The full operator, represented by one of the
graphs £, ;, is again the product of all factors of
type p and Q implied by the links of the graph. The
order of the Q and p operators in the product reading
from right to left is the same as the order of the links
of the chain starting with the encircled point and ending
at point i of the top row, with Q followed on the right
by all the factors a,,, implied by the free points of the
graph.

(i) (—p_y) Wwith

(3) Lo.; Graphs

Graphs associated with the lowering operators
Oy, of the orthogonal group in an even number
of dimensions are to be denoted by £, , (see Table III).
The graphs £, ; have the same structure as the graphs
L2141, With the exception that the two points k are
replaced by a single point to be placed halfway
between the top and bottom rows but to the left of the
two points (k — 1). The rules for the construction of
the operators represented by the graphs £, ; are the
same as those for the graphs £y, ; except for the
following.

(2) A free point, not connected by one of the arrow
links of the chains and if placed in the ath position
of the bottom row, is to be denoted by b,, = a,, — 2.
If the kth point is a free point it is to be denoted by
¢; = ¥(a; — 2). (Free points of the top row are
associated with a, _,, as for £4;,, ;.)

(b) For the special case i =k, required for the
zero-step operator, the free points of the bottom row
(say in position ) are now to be denoted merely by
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Taste III. The graphs of €,,,.

GRAPHS OPERATOR REPRESENTATION OF THE GRAPHS
o o f Qg-1 9-2 ¢ b by

.« T (-p-12) Qg-2 & P12 By

o Cr3) %3 92 b by

el Urip)le-3) Og.3 bip by

o Leg-2) % a2 &1 bir

4‘2 oz r3p) Qg 9-p by
T Crp P p3)e3.2) G2 By

. :'_\“0 Coyp) byt Qg ¢ By

~% Cegdrg) % 9z B2
% Cpo ) Crpz)Ce-3-) Qg b2

¢ e Crg-p! CPa-t Qg1 912

< )32 301 Cpat) gy 91y
<% T N LY
%igj " G20 bij=aij-2 ¢j=l/200;-5)
9,3 %%;,3 P Pa 3 0,2 22g- (2430

a, . (The points of the top row play no role whatsoever
in this special case.)

Theorem: Oy q,_;, Oy _; is equal to the sum of the
operators represented by all the possible graphs of
L9511, and £, ; respectively.

PI‘OOf.’ (a) [J2a—1,2aa On,—i] = _On.—iaai
This again follows at once from the commutators of
Eqgs. (2.4)~2.6).

(b) For the relation

mm‘ > _ 0
- b
My 1,

the proof is essentially the same as that for the raising
operator except that there are two sets of terms like
those of Eqgs. (3.10)—(3.11). One set arises when j and
j + 1 are both in the bottom row, the other when j
and j + 1 are both in the top row. Both sets of terms
sum to zero independently of each other. [The points
m and / of Eqs. (3.10)~(3.11) can now be in either top
or bottom row.]
The proof of the relation

Pi—+1) O —i

mni > . O
My_1,i

is much more complicated since more summations of
graphs are involved. However, the method is identical'*
to that illustrated by Eqs. (3.10)-(3.11).

Ps.i+10n,—;

12§, C. Pang, University of Michigan dissertation (to be pub-
lished).
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(4) Special Examples of Lowering Operators'®

0 (e)
O L4l AT AT e S

A REAN

* +/’

O, +7,  +4

A

t
0‘;.- -+\ o+ .‘-\o+.\o—o :

N S g O

07"?.. o o + :\' - + o\o + .\--..

Not all the graphs give independent operators.
In 0, _,, for example, only 15 out of the 21 graphs are
independent. The remaining six give operators which
can be written as linear combinations of the 15
independent ones. Terms 16 and 18, for example, are
related by

. +ve e} 0.0 o ot . 8 e

() KOs (0 R (s
It is most convenient, however, to treat all graphs on
an equal footing to preserve both the over-all symmetry
of the expression for O, _; and the uniform and
simple factoring of the operators associated with an
individual graph. The operator representations of the
various graphs all have the same structure, differing
only in the number of factors of type p and a. The total
number of operator factors for each graph of £,; is
equal to n — i

15T Note that Ogy is an example of a neutral or zero-step operator
of type Ogy, -

S. C. PANG AND K. T. HECHT

C. Some Properties of the Raising and
Lowering Operators

The raising and lowering operators which have been
constructed have meaning only when they operate on
the basis [M{7~V]. It is interesting to note that the
operators O, ., together with the J,,_; ,, form a Lie
algebra with respect to [A{>"']. The raising and lower-
ing operators have not yet been normalized. However,
the unnormalized operators O, , have the simple
property

[Opis Oy IMEY =0, P52 —j.  (3.12)
With respect to the basis [M.{%'], the set of operators
Ores On_as J2a1,2. thus commutes with any other
set Opp, On_p, Jop-1,98 (B 7% @), so that the Lie
algebras mentioned above breaks up into a set of k,
(k — 1), commuting algebras of order three for
dimension n = 2k + 1 (n = 2k), respectively. Equa-
tion (3.12) can be verified by direct computation or
obtained from the following considerations.

From the uniqueness of the base vector

K Mys >

My 1, + 1 My .4 + 1
the states 0,0, |ME), 0,,0,, |A) can differ
by at most a constant:

000y |G = €4,0,,0 | M), (3.13)

The constant ¢, can be shown to be unity by comparing
the coefficients of the terms with the largest number
of factors of type p on each side of Eq. (3.13). The
term with the largest number of factors p for a single
operator O, arises from a single graph and has the
coefficient unity in all cases except i < 0, n = 2k + 1.
In the latter case it arises from two graphs (e.g.,
graphs Nos. 9 and 10 of Table II) whose summed
coefficient (on the right) is equal to a;;. This has the
same eigenvalue when operating on the state [ A1)
oron O, |M{=1). Thus c;; = 1.

4. THE NORMALIZATION

The raising and lowering operators O, ; do not
yield normalized basis vectors. It is therefore impor-
tant to define normalized raising and lowering opera-
tors, to be denoted by U, ;, which differ from the
0,,; merely by a normalization factor. The calculation
of these normalization factors is presented in this
section. ‘

The results for the even- and odd-dimensional orthog-
onal group are somewhat different. For n = 2k + 1
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the normalized raising and lowering operators are'¢

1241

i—1 k
Ugeyr = Gia a; —p%:p 2 2
2%+1, (E (@a + 2)(0(_2'? Doy 2)a,,°)( I:L a(2k+1)(a(2k+l) )) (2k+1) (aiz.k—t” +2) Opi1,is 4.1
1] 2 2 1 @i +2) k 1 i
U L= 0 - —ia
W1, Betl, al G (@B 4 9yasi g (o 4 2)g Y pmiia 4, a1pa(2k+1)(a(2k+1) )| ,» (42)
where
. i h . . .
Grpe = 2Wnirs + K — ) & 20nnan + K — ) eigenvalue of the corresponding J,,_, ,, is to take its

@.3)

with eigenvalue 2(mg, + k — i) & 2(my, + k — @)
in the restricted basis [AZX), |]. The superscript zero
on a subscript of g;, has the following meaning: the

highest possible value in O(2k + 1). For example, the
eigenvalue of a{%+? is
2(ma; + k — i) + 2(Myyr,, + k — ).
For n = 2k the normalized raising and lowering
operators are

U lb“C |& ( bza )( k= l~—ﬁbiﬂ ) 2 2 2 2 i
2ki = T ey {am - i s
=1 (a(—zlk,io + D@+ 2)p28 ) \s=ita (a(zm _ 2)b(2k) b (a:Zk_)' +2) (a(zk)0 — 2) by 2ki
(4.4)
111 2 2 2 2 it (a_;y + 2) k=1 1 3
U, = Oei— | — ) (zk) ) T (2%) = e (2) (2K
21byc; by (a; 50 — 2) (a9, + 2) byd” #=1(a g0 + 2)bypb;,0 B=i+1a; _gh,g(a; ~ g0 — 2)bypo.
(4.5)
where a,_, a2% are defined as before, and b,, = a,, — 2, ¢; = ¥(a; — 2).

The general basis vector for the orthogonal group can then be generated by successive applications of

these operators. Taking the case n =

2k + 1 as an example,

k
—
(2k) 2k+1,1~M3k, 17 T Mak+1,2—M2k,8 , . . T M2k+1,k—Mak,k (2k+1)\ __ Mgki1,d— Mo (2k+1)
l‘A(’Zk+lﬂ> = U2k+l— U2k+l,—2 U2k+1,— I'M)zk‘f'l,ll) - H U2k+1.-a l"M’zk'f'l,n ’
(2k—1) Mgk, 1-M3k—1,17 7 M2k, a—M2k—1,2 | _ , yMek.k-1—"M2k—1,k—1 (2%) Mgk, g—Mak—1,8 (2k)
I‘M’2k+l,p> = ng U 2k,—2 Uzk,-—(k—-l) I"M’)zk+1,u> - H U2k —ﬂ I‘M’2k+1,u>’

(3) Mm3z1—MmeL (3)
|‘M’2k+1, ) = Usji |‘/Kj2k+1 u)

Therefore
2+1 [i—1]
T TT 7 miamiena) g (2EFD)
[Moggi1,n) = H 11 UlZamve Mogeitw)s (4.7)
= j=
where
tmn — 1), nodd,
[n] =
in, n even.

The symbol ﬁ with an arrow means that terms
are to be arranged in increasing order from left to
right. Note that the eigenvalues of the a;, depend
upon the exact position of these factors in the ordered
product.

A. Normalization Factor for the Case n = 2k + 1

Since the lowering operators Og.,,—, form a
commuting set of operators in the restricted basis

14 The superscript (2k + 1) will be omitted whenever it is obvious.

(4.6)

(MG, ), it is sufficient to consider the special vector
|#) in the calculation of the normalization factor associ-
ated with Oy, _;, where |i) is defined by

1) = Mo, ]s Mo = Myeyae for o). (4.8)

Before calculating the normalization factors, a
number of preparatory steps are taken.
(1) The Quadratic Casimir Invariant

It is well known that 324! J2 is a quadratic invari-
ant of 02k + 1),

2k+1

sz ?j |‘/K"i.(’7c)+1,u> = Copq1 I‘M’;‘;c)-i—l,p> foralla. (4.9)
i<

Expressing J;, in terms of the @ operators of both
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Eqgs. (2.2) and (2.3) the invariant takes the form

2k+1 9 k k
z Jti 21Q2k+1,—iQ2k+1,11 + z Q2J’,—iQ21,i
i=

i<j

+ 2 Q2]~1 —1Q2.1—1 i + z Jzz——l 27

0<z<7

+ Z 2k —2i + DJgi1,2-
i=1
By applying (4.10) to

(4.10)

lv./KJ(2k+1,>

2%+1, 4

and using the fact that the raising generators Q, give
zero when operating on the highest-weight state, the
invariant can be evaluated:

k k
Corp1 = Zlm§k+l,a + 21(216 — 20+ Dmy 4, (4.11)
(2) Some Preparatory Lemmas
Lemma 1:
Q,;l=0 for 0<j<i, 4.12)

where the vector [i) is defined by Eq. (4.8).
Proof:

a

2 aﬂ(P)Qnﬂ >

oﬂd

Qup = glhaﬁ(P)onﬂ’
since
Oupl) =0 B#EI (Myp=my,,, B#i),
it follows that
Q,;1)=0 0<j<i

Lemma 2;

k
il jZ.sz+1,—jQ2k+l,f i)
= (i] (Mags1,6 — J2ic1,20)
X (Mapi1, + Jaines + 2k — 2i + 1) |i).  (4.13)

This is a consequence of Lemma 1 and Egs. (4.10)
and (4.11).

Lemma 3:
-1
2 E.Qn,—lgnl
<i| Qn,—lin ll) = <’I e |l>
i—1
L, 2 B a;_,+ 2 .
={|— [I =—0,-0.1D,
A;_ja=itl a; ,

I>i (414

This follows from the relations .
(1) (ll Qn.—ﬂonﬂ [l>=01 i < ﬂ’
(i) <l p_,, =0, 0< e< |4,

S. C. PANG AND K. T. HECHT

and a process of mathematical induction. Note that
(i) follows from (i| p_c; = (—pe,_; i)1 and the fact
that —p._, with 0 < € < |4 is a raising generator
of a subgroup of O(n). Set § = i + 1 in relation (i).
As a consequence of Lemma 1 only two terms of
O, (corresponding to the first two graphs of Table
I) survive. Commuting Q, _(;,.1) through the factor
Pis1,—; and using relation (ii), the term arising through
the second graph reduces to

i—1
—2(@| Qp—iQun Haa.-—(i+1) [8).
a=1

Together with the first term this leads to the special
case of Eq. (4.14), with / =i + 1. By similar tech-
niques the case with arbitrary / can be related to that
with / — 1.

Lemma 4.
(l' Q2k+l —1Q2k+1 i ll>

= Joi 13
@l —I;I—I(a,_z+2) 2i-1,20)

X (Moppa,s + Joi1,e: + 2k — 2i + 1) [i).  (4.15)

(m2k+1 i

This is a direct consequence of Lemma 3 and Lemma 2.

(3) Evaluation of (i| Ogpy1,{O041,—¢ 1)

All terms in the raising operator Og,, ;, except
the one term containing Q,..;,,, have at least one
factor p_.; (0 < € < |4]) on the left-hand side. Since
{i] p—e; = 0, the basic matrix element reduces to

(ll 02k+1,i02k+1,—i Il>
i—1

= (i] Qar41,i00k41,—: 1) :!1;(" (@i + 2)1i). (4.16)
The matrix element (i| Qgyq,,0241,—; i) is evaluated
by commuting all of the factors p_., of Oy,
through to the left-hand side where they give zero
when operating on (i|. After this process only matrix
elements of the type (il Quey1,—;Qara.; 10), (j 2 i),
survive. Their coefficients are evaluated in Appendix
A by a process of summing of graphs. The matrix
elements themselves are given by Lemmas 3 and 4.
Combining these results (Appendix A), the basic
matrix element is

<il 02k+l 02k+1 —% |i>
-1
= (il (H 010 TT @4y = 2) Tl oy + 2))

a=1 y=1i+1
X (Maygya,s + J2i—1,2i + 2k — 2i) [i).
(m2k+1.i ~J 2i-1,2¢ T 1) 4.17)
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In the state |{) all J,,_; o, except that with o = i yield
their highest-weight value

(il Jagm1,2¢ |8) = Magey1 05

(i Jgi1,0: 10) = Mog,i+

(i)  (4.18)

Thus

(i Osxt1,i00141,4 |1
<-/K>2k+1 ul (m2k+l i— Jaine + 2k — 2i) M(ch]i)lu}

(2%) (2k+1)
X %("M’2k+l ul H 1—_[

y=i+1

+ 2) | Mogon,)- (4.19)

(2k+1)

X ( —zﬁ

(

Yy (
B=1

The superscript zero on a subscript of a,, has been

defined in connection with Eq. (4.19). For example,

(2k) (2k+1) (2k)

(M1, @ p— | Mogres, W = 2(May,; — Mg,y +y - i).

(4.20)
B. Normalization Factor for the Case n = 2k

(1) The Quadratic Casimir Invariant

EJ B 1MED Y = Cop |M52 )y for all .

i<j

(4.21)

Expressing the J;; in terms of Q operators as before

2k k—1 k—1
ZjJ ?j = lezk,—inki + Z Q2i.—iQ2:ii
i< i=

k
+ z Qza—l —zQ2J—1 i + z J21.—1 24
0<z<J
—1

+ 2(2k - 2i)“’2’i—1,2i' (4.22)
i=1
3 #-1
Co= 2 mgk,——i + 3 2k — 2i)my,,.  (4.23)
i=1 i=1

As before, it is convenient to define the special vector
; (2k—1).
[1) = (Moo s Magq = Mg 1,4

w# i) (4.24)

Since the raising operators for O(2k) and O(2k + 1)
have the same form, Eqs. (4.12) and (4.14) hold, and

k-1 k=1 (g, +2
Gl .;sz,—ink:i liy = (i |¢El(al a+ )Q2k,~zQ2k i D).

(4.25)

Putting this relation back into the expression for the
quadratic Casimir invariant gives

k-1 (g 9
Gl [ il ("—““—t—)]gzk,_igzk,i +

a=i+1 ;o
+ Jgi—l,zi + (2k - 2i)J2i-1,2i ll>

= my,; + 2k — 2i)my, ; + mgk,k° (4.26)
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Unlike the corresponding equation for the case of the
odd-dimensional orthogonal group, this relation is
not sufficient to evaluate the matrix element
(| Qa,—;Qor.: 1), since the matrix element

(ll J2k—1.2kJ2k——1,2k |l>

is not known. However, there is now one more invariant
at our disposal.

(2) The Quadratic Invariant in the Restricted
Basis [M@E1]

Since the (zero-step) neutral operator O, , com-
mutes with all raising and lowering operators when
applied to the basis [AE¥ 1], it is an invariant in this
restricted basis. To get a relation between the matrix
elements of the quadratic factors JZ2 and

2k—1,2%
Qox,—iQsx,; consider (if Oy ;,Ogy 1), Where

k-1

Ql 01,1021 x [i) = il 1:_! anZk—l,ZkOZk,k [i)

x—1
= (il I_]; a, | 21,060,111 (4.27)

through the relation (| p_;c =0, 0 <j < |e¢|. Sum-
ming up of the matrix elements from all the possible
graphs in Oy, with techniques similar to those
illustrated in Appendix A leads to

(il O, Osp e |1)
k-1
= (il [T az 19)

a=1
. k1 (ai—az + 2) .
x (] J:k—l,zk - HIT_ Qore,—iOQsr,: i), (4.28)

On the other hand, since Q,, ; is an invariant

(i 02k k02k % |iy = <‘M’(221ck:4| 02k k02k x | (2213) (4-29)
Also
(i} a2]i) = (MogD] al | Mogeay  fora i, (4.30)

By applying (4.28), (4.29), and (4.30), the quartic
invariant leads to the relation

1 (0, +2)

a=it+1 a

Q2k,—iQ2k,i |l>

P 2
(| Jop-1,268; — Gy

+ k — iy
(3) Evaluation of (il 0,0_; i)

Since we have two equations and two unknowns

we candetermine both (il Quy_; Qg ;1Y and (i|JZ,_; 5. 10).

The technique for the summing up of the graphs is
similar to the case of O(2k + 1)illustrated in Appendix

(4.31)

2
= 4m2k,k(m2k,i
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A (and Sec. 4A3.) and leads to
(i} Ogy, Oz, Ii>
= HAET TT @ -

a=i41

2) }"I (a%p + 2)
=1

b
X b(zk) (2%—1) .M)(Zk—l) Vil
H Mgy N Mogie | —— b,
The superscript zero on a subscript of a;, has the same
meaning as before. For example,
<‘M);:I’c;1)| b(zk) IJ(’;:’,‘;D>
= 2(m3k_1,, + mzk,.’ + 2k - i - y - 1). (4.33)
C. The Normalization Coefficients
Let the normalized lowering (raising) operators be
denoted by U, ,;. If the state | M%) is normalized
<.M)('n—1)’ n—l,tl UmU n,—1 I‘M’("—l)a n—l i>
= (J();r;‘—l)’ -1 I ..M:("_l), My

(Zk—l)
I 2k, >

(4.32)

—1)=1
(4.34)

n—l,i

But

(MEDm, o o— 1] = (M m, (U, iy

(4.35)

The normalized lowering (raising) operators should
thus have the property

Upi = (U, )" (4.36)
The lowering (raising) operators of type O, ., do

not satisfy this relation. However, if O,,; is a lowering
(raising) operator of [AC{»], so is

fnz(J129J34’ )00,
where f,; is a function of J,,_; g, only (x =1, -,k
forn=2k+1,a=1---,k —1 for n = 2k), and
where f,, ,; can be chosen such that

fm’om' = (On,—ifn,—i)T- (437)
Since any arbitrary function g(Q, p,J)p,s, With
0 < a<1|gl, is a null operator when acting on
[M(1] and can be added to a raising or lowering
operator without changing its raising or lowering
property, the functions f,;, f,,_; must be evaluated by
comparing the p independent terms on each side of
Eq. (4.37). This leads to

Jorsr,e = H ;g H g, (4.38)
a=i+1

i—-1

Joerr—i = I_Il (a_sy +2), (4.39)
y=
i—1

f2k,——i = 1;]1.' (a—i,a + 2), (440)

i—1 k—1
f2k,| = biz I_Il. bzﬁ ].-1 a:,-—a ta* (441)
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Thus
Um = (f'ni/Nni)oni’ (442)
Un,—-i = Oﬂ‘—l(fn.--i/Nm')a (443)
where N, is a factor which is defined to be real. With
(Mo Uy Uy [ M) = 1,
(n—l)l fmomo ——1fn »—1 I‘M’(n—l)> = Nfﬂ"
Note that the U,,, unlike the O,;, do not form a
commuting set of lowering (raising) operators,
[Una> Ungl # 0, since [ [, O,5] # 0. However,
[Om'on.—i ’fna] =0, for any o.
Therefore,

an' (n—l)l fmf'n,—z M(’("_I)Xil Om'ofn,—t’ |l>’ (446)
With Eqs. (4.19), (4.32), and (4.38)—(4.41)

(2k+1)
1—_[ az,—aataaia
a=i+1

(4.44)

(4.45)

2k+1
(2%+1) g _ gy

Nop1,s = a3 di—a

-1

. 1—_1 a(a_,p + 2)a (2% ';1’ + 2)ay; (2k+1)

, (447)

(2k)

e 30089, + 2% — 2t |

111
b
4

NZk,i = l

—1

x| aa + 2)b,,bid (a%hhe + 2)

n—1
(2k) (2k)
X TT a:-pbis(as=p> — 2)byg0

p=i+1

¥
. (4.48)

5. MATRIX ELEMENTS OF J,_, ,

In the evaluation of the matrix elements of the
infinitesimal generators, the matrix elements of J,_,
play the fundamental role since the matrix elements of
all other J;; can be simply related to these. Matrix
elements of J,_, , have been given by Gel’fand and
Zetlin.®7 A derivation of the Gel’fand—Zetlin result
is given here to illustrate the usefulness of the lowering
(raising) operators

Since J,,_; , commutes with all J;; with both 7, j <

-1, Jn_lm is a scalar operator with respect to
O(n — 2). The matrix elements of J, ; , are thus
diagonal in m,,_, , and independent of m, ,,» < n — 3.
With respect to O(n), J,,_, , transforms according to
the regular representation [11000 - --]. With respect
to O(n — 1) its irreducible tensor character is that of
the vector representation [1000 - - -]. It thus connects
states in which any one of the m,_, , differ by +1
only. (For n — 1 odd, it also has a diagonal matrix
element.)

(Momul T, [ Mon) = (M=) Ty [ G

m,; my;
= <m;z—1,¢" 'In—ln Imn—l,i>' (51)

My2,i My a,{
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For convenience, only the relevant m,; in the one col-
umn subject to change are written out. The matrix ele-
ments in the [A{"~?] basis could be evaluated through
a construction involving successive application of
lowering operators of type U, ; followed by U, _, ;.
It is more convenient to factor the matrix element of
Jp-1,n into two parts by using the Wigner—Eckart
theorem. The reduced matrix element, independent
of the m,_,,, can be chosen as the matrix element
of J,_;,, in the restricted basis [M{% ], while the
m,_, .dependent factor can be expressed as the
matrix element of a vector operator in (n — 1)-

dimensional space
LN
Mp1,¢

my

m

‘M);‘“i Jﬂ‘l.‘n |‘M’np> = <m,

ni

n—1,{ Jn—l,n

my 1,

x <m;—1,¢

My_2¢

where ¥ has irreducible tensor character [1000 - - ]

with respect to O(r — 1) and [000 - - -] with respect

to O(n — 2), and its matrix element is normalized to

unity when m,_,;,=m,_; ; (all ). The first factor

imposes the restriction mﬂ_1 ;=m,_, . However,

the matrix element with m,, i =m, ., — 1 can be

obtained from that with m,,_, , = m,_, , + 1 through
the Hermiticity of J, ;..

my 14
mn—-a.

vV

» (5.2)

Mp;

My
A. Evaluation of ( m,_; A J,_1i 0 |may
n—1,1 My_1,i
() n=2k

O, . is a linear combination of Jy, ; o and @y ,.
Re-expressing Oy, instead as a linear combination
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of Jo_1,3¢ and Oy,

w1
{OZk.k = I:Jzk—l.zk 1:[1 "

k-1 m .
+> ozk.l.-.ozk.,h.-]} ’ > =0, (53)
a=1 Moy 1,5

where h, are functions of Jy,_, »,, (i < k), which are
to be determined from the conditions required for

Oy 1
(@) {Ps1s Os el m,,',> =0,
mn—l,f
0<j<I<k—1, (54
(b) [Q2k-1,15 Oga] Mmd > =0. (5.5)
m,_1,;

Condition (a) is automatically satisfied. In order to
satisfy condition (b):

= (2k)
{[sz——l,i » Jap—1,2x] 1'! a, *
a=

k-1 m
+ E[sz—l.n Oak—l.—ulozkaha} s > =0. (5.6)
a=1 My 1,1

From the coefficients of @y, ;, however, the A, follow
directly

-1 a'2e) k-1 (ﬁk) 1
P . )
] (g (a(zm 2)0-(—21’2: pH*—l a(jzf)p(a(zk) ) (Ik)

(5.7)

My > - 1 ﬁ a;%k) Mok, s > (5.8)
My, 2ix Mak-1,;
Re-expressing the Oy, ;,_, and Oy, of Eq. (5.3) in

terms of Uy._; _, and U, ,, the matrix element of
Jai_1.2¢ can be read off from Eq. (5.3):

Also

02k,k

mgk j mzk i (2k) k (2k)
J Mo, s a,c a,o Mar,s 59
Mop_1,5| Jar—1,9% [Mar—1,5 o , 5.9
Moy 1.5 My 5 Moy1,5 °‘=1 a; " |Mgp_q;
Moy, i Moy, 5
Map—1,5 + 1) Jox—1,26 [Mai—1,;
Mop_1,5 Mop1,5
, @) (2k) ) GRG0 G0 @ (00
Mapy | =20 ﬁa 135" X1 a;”goa;ge 00 Ay ayd |F M, >
Ma1,i| ¥ (a; + 1)* =1 a%a®® =ii1 aFlalie 2 2 2 2 Mor,5
(j=1,2, s k—1) (5.10)

(2) Then = 2k + 1 Case
The procedure is similar to that for n = 2k. First, since Jy o,; has no diagonal matrix elements, in

place of the neutral operator there is now the relation

1
{J 2%,2%+1 — [zlozlc,—aozk+l,aha + Ogpvxhz + 02k+1,—kh—k:|}

(5.11)

m2k+1;i> =0
=0,
Moy,;
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where the h, are evaluated as before through From the coefficients of Qy.y 5,
Q') g
- hy = [2(1;‘*"’ + 4)( sr )

[ uss Jawsers = 2 Out-sOnesshe = Ominihy
a=1 ],
x T aa 1 aihaly) . 619
Mapiri \ o B=ir1
. ‘> 0. (312) Similarly, e-expressm g the O operators in terms of U.
2k,4 operators, the matrix element of Jy or4; can be read

off from Eq. (5.11).
M1, @R£D) (2D (2k+1) |3
m i Mopiy,s] —118-5° (@0 + 2)a; m2k+1,i>
2k,
’ Mog,s Mag,s

(2k+1)(a(2k+1} + 2)

- O2k+1,~kk—k]

-1

Jz}'c 2k+1
i~k

Makt1,5
Mgz s+ 1

Moy, ;
1| ,(2kt+1) <2k+1) Y (2k+1) (2k+l)
xc (M T7 | o 2 11 |2l +2)fH o, j=1,2,k (514
, s . .
Myp 5 | a2t a(2k+1)( (2k+1) + 2)| g2 a‘ff‘,;"”(a(z"“) +2)| Ima,;
LA, My,
B. Evaluation of< T pte-D ¢
. . Mpg.i LR
Y1) has the transformation properties of
10.--
00 --
and is to be normalized such that
LY ? - . LI I
My 11 My1e Mpygs My1,s My 1,401 yin-D M, a1 Myge my_ 1, >= 1.
My 31 Mpaa Muyaa "0 My My g0 00 Mya1 My, °°° My a,y "7

(5.15)

It is convenient to introduce the following shorthand notation. Change m,; —> o; M,_3 ;—> i My g ;> 7: <
f; and define

B;>___ B Ba -t Bia Bi Bir Bire >, (5.16)
Vi Bi Bttt By Vi Vi1 Vi )

g+ 1 B > 1B B o B+l B Bae ot Bix B Ba B '>, (5.17)
B; Vi fr B2 - B; Bivn Birs =0 Bea Vi Vi Virz T

lﬂi Bi+1 > _ B B 0 Bia B Bin rr Bia B+l B '>, (5.18)

Vi Vi By Ba t Ba Vi Ve Tt Vi Vs Vier "7

1 1006 -

{0> =b oo - > (5.19)

(1) The n = 2k Case

where the I';; are generalized Wigner coefficients for

Define coefficients I';; by the relation the Kronecker product [100---] X [Byafs - -] of
ﬂ B\ B 1 B O(2k — 1). Note that I'y,, the coefficient with all

I > > g ‘) i D y: < B, starting with y, , is equal to the matrix element
' ‘8 s v LBy v of V@1 provided I',_,;, the coefficient with al/

+ ZF B B\ 1B B+ 1> y: = B, satisfies the normalization condition I',_,; =

£ "(% y,-) Ve, 1 required by Eq. (5.15). The coefficients I, can be

1 B related to the coefficients I';,,; by recursion tech-

+3T; (ﬂ 0 A ) b B 1> niques, leading after repeated recursion to a relation

=t Vi Vs Vi Vi between I'y; and I'_, ;. Since the recursion is to be

r. (P .-> | ) (5.20) established through the raising generator Q,, it is
€0 % ’ ) necessary to define further coefficients, €,;, by the
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relation N

S R
+§%@i)£uﬁﬁ“
+29 "(ﬂ: ﬁ) y,f-l l>
oyl
+30) gfj:i " e

The operators A(p) of the last term of the equation,
when acting on states (5.16), create states outside the
basis [AC$2)]. These are orthogonal to the states of
present interest so that the last term of Eq. (5.21)
plays no further role in the discussion.

Applying Qg , ; again to Eq. (5.21), a set of recur-
sion relations is established for the coefficients Q;;

oy 2 af;)

= , (5.22)
Q”(Vﬁl ﬁ:) qi(%-liil ﬂj; 1)
Qo(g) = (g) , (5.23)
Q'°( +1) qi(yiil)
where
ClonslD-afly o

Applying Q. , ; also to Eq. (5.20), another set of
recursion relations is established,

el ")

il 2, 2 vl ) e

1247

Ca((i)a5) =ao)ral, 1) + 0o(3)
(5.26)

The recursion process for I';; can be started if the
coefficients I';;, Q,; can be related for a particular
value of ;. The cases I';; and I';, are somewhat
different.

a. The Case I';;. From Eqgs. (4.1)

i D) == et ot 2 =21

g, (a0 +2)
- ’ 5.27
xlgl (a;,2 + 2)(a;,-; + 2) (27
Form;=§,—j+i+1
g B;+1 Bi
0=gq, # g, 5.28
1 (mi Vi ) 4 (mi) ( )
and Eq. (5.25) reduces to
) :Bi . Ba ﬁj B ﬂi ﬂi =0 529
q'(m,.) } (m : %) (m %_) . (529

With this starting relation and the recursion relations

(5.22) and (5.25),
) -
Vi Bi—Bi+i—i—1

r,(*
Vi
B:
P2 % (Vi + ;li)

x 11 4
NG

where I';; has been related to

o [= ()]

In the same way the relationship I'y; — I'y; —
Iy;~— - -+ —T';; can be established, leading to

Yz_131+]_l—1

bi ﬁ’) (5.30)

Ty (131 Be B; 5k—1) — (131 Be B B Bira - )
Y1 Ve Vi Ve P Br Pe Bi Vi Vise ’
|l bt —i= Dok B2k —imj= DI gy
’l(ﬁz_ﬂj J—l'—l)(ﬂ1+ﬂa+2k—l—1_1)

So far the recursive chain stops at i = j since Egs.
plete the recursive chain, the relationship I'y; —» T, —---

(5.22) and (5.25) are valid only if i < j. To com-
—I'y_,,; must be established. For this
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purpose consider
1> B ﬁ',+i>
Bs Vin

2/

(@

B, + 1 131+1>+ e, (532)
B; Vi+

Bin >
®) ' > B; Vint+1 . o
- Bs B \|Bi+1 B +
y“(ﬁ; Vi + 1) B; Vit + 1>

(5.33)

[The omitted states are similar to those of Eq. (5.21).
They are orthogonal to the states of present interest.]

Operating with Qg ; ;0on (b),and with Qg3 ;,.1Qae-1.5
on (a) and comparing the two equations

Tl )
(g ; ijljzl' 1)

sy )’ )
P Pt )

(5.34)

S. C. PANG AND K. T. HECHT

Then

Cunify 7)

= T (B ﬂm)"’(ﬂj )

B; B

Birr Vi (ﬂ; +1 195+1)

B; Vi1

qﬂ_l(ﬁi Bis1 )

Ao tiar—1 B; Vint A

(5.35)
Aj41=0 q (ﬂ,+1

" ﬂ i+1 )
Bi+1 yia+ A
By repeated application of Eq. (5.35), finally

O R
R P R )

O RGN

(5.36)
Combining Eqs. (5.31) and (5.36) with the restriction

Plo—-l.j =1,

B B, Bi+1 Bra Bia ﬂk—1’ pae-n [fr Bs By B ﬁk~:>
i Y2 T Vs Yitn Vi+a Vi1 V1 V2 Vi Vit Vi~
HG =t =i+ DB+ v+ 2% —i—j— D]
11 (5.37)
=1 = fi+i—j+ DB+ B +2%—i—j—1)
b. The Case I';,. From (5.23) and (5.26)
Appendix B) as
( p: ) 8
r(f) - (g) + =7 ————‘3'}9 G Tog) = —Gek=i-D
2 € 4, i
(ﬁ,- - 1) x Qp f" B\, (5.40)
ﬂ' ﬂz -1
In order to start the recursion process, the relation 1
B: B: B: r, (’3 1) = ”"—+—’—‘L’—:—1 r (ﬂ"—l) (5.41)
between Iy, (ﬂ.) and Q, ( 8, — l)/q,.(ﬂi - 1) must \,, gt k—i—1 g )
be known. The technique used for the case I';; cannot  so that
be applied here. However, by applying the quadratic
invariant to both sides of <ﬁ1 Po - B Bra
Y1 Y2 Vi Ve
{Q%_lﬂ. 1>} Pi > = Qio( Bi ) ’E> + e, x k-1 fr B2 - B ﬂk-—:>
0/} 16 —1 B — 17 1; 539) nove Vi
= H ks =1 4

the desired relation is obtained (details are given in

_15+k""1—1



ORTHOGONAL GROUP 1249

(@) The Casen =2k + 1

The procedure is exactly the same, except that the term I';, does not exist (¥*® has no diagonal matrix
element). The result is

B ﬂz ﬂ5~1 5;"*‘1 iB:i+1 B ﬂk
Yi Y2 T Vi Vi Vi1 V-1

V(zk)

Br B - B B+l B o B 51:>

Y1 Ve Vi1 Vi Vier "7 Ve

=|’°~‘(ﬂ,—y,~+i—j+1)(ﬂ,+y,-+2k—i—j)*
=1, — B+ i—j+ DB+ B +2k—i—)

. My ; 5
C. Evaluation of { m;_, , M, 1.4
LA

n—2.5
Combining the results of subsections A and B above, Egs. (5.2), (5.9), (5.10), (5.14), (5.37), (5.42), and
(5.43), the Gel’fand-Zetlin matrix elements are obtained. With

(5.43)

Jn—-l.n

lzk,a = Moy, + k — a,
by 10=My 3, +k—a

k-1 k 3
Mgy, ; Moy, ; 11 (lgk—Z,a - l:k—l,i) 11 (l:k,ﬂ - lgk—-l,;‘)
<m2k—-1,1 + 1 Jopa,0 mzk—m> = —i = = ,
Mae2,i Mae-2,{ I, (Al 1,; — 1) I;I_(lgk—l,a = B, Mai,a = 1) = s,
a¥Fy
(5.49)
k-1
Mok, Moy, s n; Lyp—2,0 H log,p
<m2k—l,j Jok-1,9% |Mop-1,5 ) = k«:r_ s (5.45)
Mae-2,5 Ma-2,i IT berellair,e — 1)
a=1
Mar+1,5 Mg+,
<m2k,i + 1} Jax,on41 Mo, s >
Mo-1,5 Map 1,
E-1 3
H (aemr,a = oy — Dllaea,e + Iz, s) H (Tarrrp = s — Dlarrnp + o)
= — | =t . (5.46)
2
].;.[_ (lzka - ngi)[lgku - (lzkf + 1)2]
aFy
APPENDIX A. EVALUATION OF
; Ounr il
G| Q2k+1.a' akit—i | D Z {_.1, (—p_y, ,) H Giys
There are many graphs in Oy, ;. For some types I=it
of calculation certain ways of grouping them are {—i, I} = {], —-j}=1
more convenient than others. The following example i, »-1
demonstrates one way. B, =,,§1{J’ —P}0ei1,0 g Qiv s
A o k (A2)
. C; =y£{laa,
% %
O ’ A =3 {—i, }Qusrs TT iy
€ i F=i y=i+1
3 k k
Oge1,~i =?.‘,1 21 E;F {—1i, }(—p_1,-)J> —P}Caks10 = H Qiy» )
= =
k
k ’
Oy s =2A,B,C; + A'B; A3
?1:[ ; 7},11;1""" H a,, 2041, 21 BiC; + (A3)

+
where {—a, 8} means summation of all possible
{=1 /) Qa1 H iy, H i (A} graphs, which have a chain away from the |8|th point
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on the top when § is positive and on the bottom when
B is negative; and a chain ending at the |«|th point
on the top when « is positive and on the bottom when «
is negative.

Example:
{—1, 5} includes the following graphs in the top row:

.

(With one arrow link of the chain and three points.)

+ =N

(All the possible distinct graphs generated by re-
moving any one free point from the first graph, with
the appropriate chains.)

e e T - u/:_-\.—au

o e o e e +

=y -

e Te—a—une

o e

(All the possible distinct graphs generated by
removing any two free points from the first graph,
with the appropriate chains.)

+ B e gt el

(All the possible distinct graphs generated by
removing three free points from the first graph.)

Since the distribution of free points uniquely
determines the graph, it is sometimes more convenient
to define the graph by its free points.

With

Gl Q2k+1,a(”"P—¢p) = (i (_2)Q2k+1,ﬁ 0<a< |ﬁ|

(A4)

each chain contraction gives a factor (—2), and

il Q2k+1 z{—i l}

S. C. PANG AND K. T. HECHT

The second term in the parenthesis comes from
the removal of one free point from the first graph
which is

-1

(—p_i) H Qi —a>

a=i+1

and the last term in the parenthesis comes from the
removal of all free points from the first graph. A
similar removal of free points gives the intermediate
terms. By summing up all the terms,

1-1

di Q2k+l,i{_i7 l} — 2| Q2k+1 1]1 (a i—a T
(Aé)
Sirnilarly
k
(1] Quesradd; = il (——2)st+1,“,[ 1 @iy = 2)
+210 @y =) I a _,] (A7)
y=i+1 y=7+1

The first term is the summation of the contribution
of all possible graphs with any number of free points
from i 4+ 1 to k in the 4;; but it has included the
graphs

k
{—1,i}(—=p-i-) II ia>
a=j+1
which should be zero, since p_; ; = 0. The second

term is therefore needed to take away the improper
contribution of

x
{—i’ f}(‘P—3,~1) H Aipa+
a=j+1

-1 -1 Similarly
= =2l @ a1+ 3> — . L
et la—z p=i+ld; i—B (ll Q2k+1,—ij = (l' Z ("2)Q2k+1,—pQ2k+1,ﬂ
-1 1 i 1 -1 =1
+ (—2)2 z + o (_2)1 ! -1 " X H (au 2) H Ay + Q2k+1 -jQ2k+1 i H azu
Bay=it1a; _gl; o a=p+1 ’
B#y ’ ’ H Aipa i
A . 9y
(AS) With Eq. (4.12) and Eq. (A2)
i1 -1
2 q Qin IIlata Hl(ai —~% + 2)
(il Qarsr,~iB 18 = il Qupyr,— Qo ——— - 7 =t 2 (A9)
H ai —a
a=i41
By combining with (A7), (A2), and (A9)
-1 x
2 x Qorr1,-iQoesni H (@i, —4) H a«.[H @.—2)+21] “e,-«]
0l Quers,i 2 ABLC; i) = 3 — 4l = = =) (A10)

@y H L

a={-+1
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Similarly, with Eq. (4.12), Eq. (A2) and Eq. (A6)
(i| Qag41,:A'B’ |i) = z — Kil Jaj_1,25 H @« —2) H a; g H Ay )

j=1i a=i+ a==j+1
-1
H(a —1_4)Ha—a]._[aza (All)

+ 2 — & Qop1,—Qarra, = p— 1.

J=i 1—[ i s
a=i+1

By summing up Eq. (A10) and (A11), finally

a=]1 a=i+1

k k
(il Qort1,i0241,—4 |1 = (il [H a, I1 (@, — 2)i|(m2k+l,i — Jair,2 + D(Magpa,s + Joi1,0 + 2k — 20) |i).

A similar process works for O(2k), and gives

(A12)

Gl sz,iozk,—i [i) = il (mZk,i + Jaize t+ 2k — 2i — 1)(m2k,'i ~ Joi 1,2 + 1)

APPENDIX B. DERIVATION OF EQ. (5.40)
To derive Eq. (5.40),

)=t

X Q(ﬂﬂ—l)/ {5, 1) 60

the quadratic Casimir invariant C,,_; is applied to
Eq. (5.39). In order to simplify the evaluation of these

terms, the following points are useful:

1) Q,,-ﬂ">=0 i>0, a<2k—1 (B1)
Vi

§’> belongs to [ 2]

1 , ,
(2a. Qoir1,/Q2x1,i 0> =0, i# —j.

The net result of the two Q operations in succession
would either have to change one of the m,, ,, by
two or two of the my,_, , by one each. Both cases are
impossible since my;,_; , is [1000 - - -].

1 1
b. — —1,4 =2 s
sz—l, Q2k 1, 0> 0>

a direct consequence of Eq. (4.14) and Eq. (4.15).

since

(B2)

(B3)

2k—1

B) Cy= z Jzzy

i<j3

k-1
= ZQ2k——1,—jQ2k—1,i + Z QZz,—jQZa,J’
=1 i<es<ik—1

x (i H(a i—a

a=i+1

— D T] buliXil bi liy. (Al13)

(1)

+ z QZa—l JQ2a—1 ki + 2']21—1 2a

i<a<k—1
k-1

+ 2.2k = 200 — 1)Jze 1,8, (B4
Proof: Operating on Eq. (5.39):
AN >= B E>+,,,
{Qz"‘“ o>} fi—1 (/3 ) p:
(5.39)

with Cy,_, in the form of Eq. (B4), bearing in mind

(B1), (B2), L
(1>>}{Q“’°’1”' B: 2 1>

[N
é>}[292k—1 Lo+ 2
)
|

+ 2k — 2i + 26, — 2){9%_1,,- .
ﬁ’> (BS
8, )

The second term on the left-hand side cancels the
term on the right-hand side, and with Eqgs. (B3), (5.20),
and (5.24) the derivation of Eq. (5.40) is attained.

+ {Qz,,_l,i

k—1
+3Qk — 22 — 1)120,_1,24
a=1




