Linear stability analysis of multilayer plane Poiseuille flow
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A linear stability analysis of n-layer plane Poiseuille flow is performed. Asymptotic solutions
are constructed at very small and very large wavenumbers. A numerical analysis is carried out
by means of a compound matrix method to identify linearly unstable conditions for
wavenumbers of O(1). The governing equations and the boundary conditions are conveniently
formulated for #-layer flow. Neutral stability curves are plotted over a broad range of
parameters for three-layer flows. The investigated parameters include the viscosity ratios, the
flow rate ratios, the density ratios, the interfacial tensions, and the Stokes and Reynolds

numbers.

I. INTRODUCTION

Muitilayer flows of immiscible liquids are involved in
several engineering applications such as in multilayer extru-
sion of plastic films,' in multilayer coating,” in lubricated
squeezing flows,” and in the transportation of oil.* At certain
processing conditions, wavy interfaces are observed in these
multilayer flows-—a phenomenon known as interfacial insta-
bility. In extreme cases, this instability can also cause inter-
mixing of layers.

The interfacial instability in Poiseuille and Couette
flows was first investigated by Yih® using a linear stability
analysis of two-dimensional long-wavelength disturbances.
His analytical expressions indicated that the viscosity strati-
fication can induce the interfacial instability at vanishingly
small Reynolds numbers. Yiantsios and Higgins® extended
the analysis to include the effect of an arbitrary wavelength
on the stability of two-layer plane Poiseuille flow. The effects
of gravity, of interfacial tensions, and of the viscosity, den-
sity, and thickness ratios on the stability were studied. In a
recent paper, Hooper’ identified two mechanisms for insta-
bility in two-layer plane Poiseuille flow—one mechanism is
associated with the presence of the interface, and the other
with the presence of the boundary walls. The second type of
mechanism is more closely related to shear mode instability
of one or more layers and has been addressed in Ref. 6 as
well.

Besides the studies on plane Poiseuille flows, linear sta-
bility analyses of two-layer axisymmetric Poiseuille flows
and Couette flows have been carried out by several research-
ers.*'* A linear stability analysis of multilayer flow on an
inclined plane was also carried out'*'® and results were pre-
sented for three-layer and five-layer flows. A theoretical ex-
planation based on the linear stability analysis of axisymmet-
ric multilayer flows is proposed by Hickox'” and Joseph et
al.? for the experimentally observed phenomenon'®'® of en-
capsulation of viscous liquid by the liquid of low viscosity in
long pipes. They found that the flow must be linearly unsta-
ble for the encapsulation to occur and that the volume ratio
is a crucial factor along with the viscosities. Since an ar-

) Correspondence concerning this paper should be addressed to T. C. Pa-
panastasiou.
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rangement of a thin layer of less viscous liquid at the wall is
experimentally favored, Hooper'® and Renardy'? particu-
larly studied the effects of a thin layer near the wall on the
stability. They also observed that a flow with a thin layer of
the more viscous liquid at the walls is always linearly unsta-
ble, whereas the stability of a flow with a thin layer of the less
viscous liquid at the walls depends on the wavelength of the
disturbance. These results agreed with the earlier resuits of
Wang et al.'® The above results are encouraging for practical
applications of the thin layers in the transportation of oil and
in the lubricated squeezing flows.

While there is a large amount of literature on the stabil-
ity of multilayer flows, the works on plane Poiseuille flows
are limited. Besides, when more than two layers are in-
volved, the role of additional layers on the stability of the
flow is not clear. Several engineering applications of multi-
layer flows, such as multilayer extrusion and multilayer
coating, involve more than two layers, and the stability of
such flows is of practical interest.' In this paper, we formu-
late the linear stability analysis of n-layer plane Poiseuille
flow of Newtonian liquids, where n is arbitrary (Sec. II).
Asymptotic solutions are constructed for disturbances of
very short and very long wavelengths in Sec. III. However,
the dominant mode of instability can be due to a disturbance
of a wavelength of order O(1). Therefore, the numerical
solution of the corresponding eigenvalue problem at an arbi-
trary wavelength is also constructed, thereby identifying the
neutral stability curves over a wide spectrum of wavelengths
(Sec. 1V). The neutral stability curves are plotted in the
parametric space of the viscosity, density, and flow rate ra-
tios; of interfacial tensions; and of the Reynolds and the
Stokes numbers. Although the formulation of the equations
is for n-layer flow, we restrict the numerical results to three-
layer flow because of the large number of parameters in-
volved in the analysis.

1. GOVERNING EQUATIONS

The flow geometry is shown in Fig. 1 together with a
coordinate transformation that simplifies the governing
equations. The following dimensionless variables are used:

© 1990 American Institute of Physics 530



4
n g ——> ha Layer n
f - 3
Zi i ——» h; Layer i
I
2t 4
t z q ——> hy Layer 1

FIG. 1. Geometry of multilayer, plane Poiseuille flow and transformation
of the coordinates.

x*=x/H, z}=2z/H,
ur=uw/V, v¥=v/V, j=12,..n, (H
p*=p/(uV/H), t*=t/(H/V).

The subscriptjdenotes the jth layer and the asterisk, which is
hereafter suppressed, denotes the normalized variables. The
variables u and v are the velocity components along the x and
the z directions, respectively, ¢ is the time, and p is the pres-
sure. The variables are normalized by the total average ve-
locity ¥, and by the total thickness H of the channel. The
primary flow is a channel flow of parabolic velocity profiles:

u,=A;+ Bz +Cz, 0<z<h, j=12,..n (2)

J fAd
where 4; and B, are constants, C; = (1/2m;) (dp/9z) is the
parameter involving the pressure gradient and the viscosity
ratio m; = u;/u,, and 4; is the thickness of the jth layer. The
flow rates in terms of (2) yield (3n+ 1) equations for
(37 + 1) unknowns 4;, 4;, and B; for each layer, and the
pressure p, the common pressure in all the layers. The result-
ing set of equations consists of the integral continuity equa-
tion

g =Ah; + B;(h}/2) + C;(h}/3), j=12,..n (3a)
the no-slip boundary conditions
A,=0, (3b)
A, +h, B, +C hr: =0 (3¢c)

the continuity of velocity and shear stress at the interfaces,
A +h B +Ch?—4,,, =0, j=12.,n—1, (3d)
BI +2th — (mj+1/mj)Bj+| =O, j: 1,2,...,”"_ 1;

(3e)
and the total thickness of the channel,

n

> h=1 (3f)
i=1
Note also that 2/_, ¢; = 1, where g; is the dimensionless
flow rate in the jth layer. When the thicknesses are specified,
the same equations can be solved with the flow rates as the
unknowns. However, since the flow rates rather than the
thicknesses are the easily measurable quantities under ex-
perimental or processing conditions, the equations and the
results are presented in terms of flow rates.
Linear stability analysis of two-layer flow is discussed
by Yih.’ We will extend the analysis to #-layer flow, shown
in Fig. 1. For two-dimensional disturbances, when primary
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and secondary flows are decomposed, the disturbed veloc-
ities can be represented in the form of streamfunctions
¥;(x,z;,) which satisfy the continuity equation of disturbed
velocities automatically. The customary representation of
the streamfunctions and the disturbed pressures in the linear
stability analysis has an exponential form:

(2:¥) =(f(z)),4,(z)))explia(x —ct) ], (4)
where a is the real wavenumber, ¢ = ¢z + ic, is the complex
velocity of the disturbances, and f(z;) and ¢;(z;) are the
amplitudes of the disturbances. When c; > 0, the equations
are temporally unstable and when ¢, <0, they are stable.
Neutral stability corresponds to ¢, = 0. The Orr—Sommer-
feld equations are obtained for each layer by substituting (4)
into the linearized momentum equations and then eliminat-
ing the pressure. The resulting equations are

m, ()" —2a°¢7 + a’¢;)
=iaRe;[( 4] — ) (u; — ) —u ¢,],
Jj=12,.n, (5)

where u; and its derivatives correspond to the primary flow
and Re; = p, VH /u, are the Reynolds numbers, which can
also be expressed as Re; = Re, d;, where d; = p;/p, is the
density ratio. The form of the Orr—Sommerfeld equation
does not change from layer to layer except that its deriva-
tives, denoted by primes, are evaluated with respect toz;, the
coordinate associated with the respective layer. This general
form of the equation for n layers is entirely due to the coordi-
nate transformation (Fig. 1).

The interfacial boundary conditions need to be evaluat-
ed at the disturbed locations of the interfaces, which can be
expressed in terms of ¢;(4;) by means of the kinematic
boundary conditions. The no-slip boundary condition at the
walls and the Taylor series expansion of the interfacial
boundary conditions about the steady-state interfacial loca-
tions give rise to the following equations:
no-slip at the walls,

#,(0) =47(0) =0, (6a)

¢, (h,) =¢,(h,) =0 (6b)
continuity of u,

¢ +du/C =\ + & U 1/, (6¢)
continuity of v;,

¢j = ¢j+ 15 (6d)
continuity of shear stress,

mf(¢;' q'—a2¢j y=m; (¢;l+ 1+ a2¢j+ 1); (6e)

continuity of normal stress,
iaRe; (¢, 1671 + 1)

+m; (85 — 3278, 1)

— ia Re; (4] + u)¢;) — m; ()" — 3a?$])

= [ia*/Ca, + ia St(d,, , —d;)]($,/¢)); (60)
where ¢; =c—u;, and the dimensionless groups St
= (Hgp,)/(Vu,) and Ca, = Vu,/0, are the Stokes num-

ber (proportional to gravity g) and the capillary number
(inversely proportional to interfacial tension g ), respective-
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ly. In (6¢)-(6f), the variables with subscript j are evaluated
atz; = h, and the variables with subscript + 1 areevaluated
atz;,, =0, wherej=12,.,n—1

Equations (5) and (6) form an eigenvalue problem with
complex velocity of disturbance ¢ (the eigenvalue) and am-
plitudes of disturbance ¢,(z;) (the eigenfunctions). The
eigenvalue depends on the parameters a, m;, g;, d;, Re;, St,
and Ca,. Although in this paper only plane Poiseuille flow is
considered, the primary and the secondary flow equations
can be used for plane Couette flow and for the combinations
of the two by modifying (3b) and (3c) appropriately.

Hl. ASYMPTOTIC ANALYSIS

A. Long-wavelength analysis (a—0)

The eigenfunctions and the eigenvalue are expanded as a
regular perturbation series of a:

¢j =¢j,0 + O.’¢j., + 0((12), j= 1,2,...,”,
7N
c=cy + ac, + 0(a?).

Equation (7) is substituted in (5) and (6) and terms of the
same order of a are collected. The resulting equations are
solved sequentially for the coefficients of each order of ¢;
and c. Since the procedure is standard, only the final form of
the equations is listed here.

The zeroth-order solution for the eigenfunctions is

b0 =Djo + Ejpz; + I"j.ozf -+ Gj.oz;} ’
0<zj<hj, j == 172’"""! (8)

where D, E,;, F;,, and G, are constants. By substituting
(8) in the zeroth-order boundary conditions, 47 equations
with 4n unknowns, D;, E;,, F;,, and G;, are obtained:

D,y =0, (9a)
Ep =0, (9b)
Diy + Ejoh; + Figh} + Gjoh} — D;, 1o =0, (9¢)
G0 (Ejo + 2Fjoh; + 3Goh})

+u4j (1)) (Do + Ejoh; + Fiohj + Gjoh )

—Z'j+l.oEj+1,o ’—Dj+|.ij+n =0, (9d)
m;(2F,, +6G,oh;) —2m; F;, o =0, (%)
mG, —m; G 0=0, j=12,.,n—1, (9)
D,y + E,oh, + F,oh} + G,oh; =0, (9g)
E,o +2F,oh, + 3G,,.0hf, =0, (%h)

where &, = ¢, — u;(h;). One of the eigenfunctions is conve-
niently normalized such that ¢, , (#,) = 1, and therefore

Dn,o +Ex,ohx +Fs.0h;1! + Gn.oh'; =1 (10)

Equations (9) and (10) are solved simultaneously to evalu-
ate the unknown coefficients in (8) and the zeroth-order
eigenvalue ¢, Gravity appears in the first-order equations,
and interfacial tensions in the third-order equations. The
solution of {9) and (10) is real, implying that ¢;, = 0. Thus
multilayer plane Poiseuille flow is always neutrally stable to
the disturbances of infinitely long wavelengths.
The solution of (5) at O(a) is expressed as
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¢j,x =D, +E,z + Fj‘zf + G/'.lz? +x(z)),

0<z;<h;, j=12,..n, (11
where
U, U U, U,
2.} == zf A1 25 Ji2 25 53 ?,
NE =24 10 d Y 3607t 30 7

Uio = (2iRe;/m;)( — coFjp + A;F;5 — C;Dyy),

U, = (2 Re/m)( — 3eGjo + 34,Gjo + B)F)s — GE),),
U, = 6iRe,B,G,o/m,,

Uy, = 4iRe,C,G,o/m,.

By substituting the boundary conditions (6) of O(a) in
{(11), 4n equations are obtained:

D, =0, (12a)

E, =0, (12b)

Dy +E, by + Fj b} + Gjyh} + () — Dy, =0,
(12c)

Gio[Ejy + 2F; by + 3G h ] + xj (k) ]

+ U (h) [Dyy + Ep by + Fyhj+ Gk +x, (k)]

+ (B + 2F,oh, + 3G,oh2)

~Ci10Eiin — DBy — B 10=0, (12d)
m,2F,, +6G,,h, + x(h)) = 2m,, \F,,, =0. (12e)
6mj+lGj+ Lt 6ijj.! - mj)(;m(hj)

+iRe, (¢ 10E 410 +Djrr0Bis1)

— i Re; &0 (Ejo + 2Fjoh; + 3Gjoh )

—iSt(d;,  —d;)$;0/Cj0

— iRe; uj(h;)(Dyo + Ejoh; + Fioh} + Gioh}) =0,

(12)
D,, +E, h,+F, h2+G, k) +x,(h,)=0, (12g)
E,, +2F, h, + 3G,,,,h,2, +xn(h,) =0, (12h)

wherej = 1,2,..., n — 1. The normalization of the eigenfunc-
tion ¢, (h,) gives

D\, +E  h+F h} + G b} +x,(h)=0. (13)

Equations (12) and (13) provide the necessary equations
for evaluating the unknown coefficients of (11) and the first-
order eigenvalue c;. Since the zeroth-order solution is real,
the first-order solution is purely imaginary. Therefore, the
eigenvalue ¢, is useful in finding the stable and the unstable
conditions.

The actual procedure of finding ¢, is first to solve the
nonlinear simultaneous equations (3a)--(3f) to obtain the
primary flow, then to solve (9) and (10) simultaneously to
get the zeroth-order solution, and finally to solve (12) and
(13) to get the first-order solution, including ¢,. For two-
layer flow, analytical expressions have been obtained.>S
However, because of the unwieldy algebra involved in deriv-
ing analytical expressions for flows with three or more lay-
ers, they can best be solved by standard numerical tech-
niques. We used the software package MINPACK, which
implements Newton’s iteration, to solve the system of non-
linear equations.
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The eigenvalue is proportional to the Reynolds number.
Therefore, although a nonzero Reynolds number is essential
for an unstable flow to exist, the neutral stability curves do
not depend on the Reynolds number. In the absence of gravi-
ty, the stability results are not altered when the first and the
third layers are interchanged by interchanging the viscosity
ratios and the flow rate ratios.

The results of the asymptotic analysis of three-layer
flow are shown in Figs. 2 and 3 in the form of neutral stability
curves in the plane of the viscosity ratio m, and the flow rate
ratio ¢,/q,. The effects of the flow rate ratio ¢;/¢q, and the
viscosity ratio m, of the third layer on the neutral stability
curves of three-layer flow are studied in Fig. 2, whereas the
effects of gravity on the neutral stability curves of three-layer
flow are studied in Fig. 3. As mentioned earlier, the results
are presented in terms of the flow rates rather than the thick-
nesses, because the flow rates are easily measurable quanti-
ties under experimental and processing conditions.

The same liquid in layers 1 and 3 (m; = 1.0) is consid-
ered for the case illustrated in Fig. 2(a) and the effect of the
variation in g,/q, on the stability of the flow is studied. This
configuration with the same liquid in the outer layers and the
high flow rate in the middle layer has applications in lubri-
cated squeezing flows and in the transportation of oil. The

neutrally stable conditions are at ym, = ¢,/q, for two-layer
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FIG. 2. Neutral stability curves for three-layer flow in the m,-¢./g, plane at
vanishingly small a: (a) for various flow rate ratios g,/g, at viscosity ratio
my = 1.0, and (b) for various viscosity ratios m; at flow rate ratio g,/
¢, = 0.3. The other parameters are the density ratios d; = 1.0, Re; = 5.0,
and St = 0.0.
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q/a

FIG. 3. Effect of gravity on the neutral stability curves for three-layer flow
in the m,-¢./q, plane at vanishingly small a: (a) destabilizing effect when
the density ratios are d, = 1.5 and d, = 1.0, and (b) stabilizing effect when
the density ratios are d» = 0.8 and d; = 0.6. The other parameters are the
viscosity ratio m; = 1.0, the flow rate ratio g,/¢, = 0.3, and Re, = 5.0. Sta-
ble and unstable regions are denoted by S and U, respectively.

flow (g5/¢, = 0.0). Since it can be shown that ¢,/q, = h,/h,

at\m, = ¢,/q,, our results agree with the results reported by
Yiantsios and Higgins® for two-layer flow. For each ¢,/g,,
there are fwo neutral stability curves that separate the stable
regions from the unstable regions. The neutral stability
curve corresponding to m, = 1.0 remains the same for var-
ious ¢,/q,, whereas the other neutral stability curve is
strongly affected by the variation in ¢,/g,. The increasing
flow rate in the third layer from ¢,/g, = 0 to 1 is stabilizing
when a more viscous liquid is in the second layer (m,> 1)
and is destabilizing when a less viscous liquid is in the second
layer (m, < 1), whereas, when liquids in all layers have the
same viscosity (m, = 1), the flow is neutrally stable. At ¢,/
q, = 1, the system is always stable for m, > 1 and is always
unstable for m, < 1 for long wave disturbances. These results
appear to agree with the encapsulation observed in experi-
ments.'*'® A theoretical explanation based on linear stabil-
ity analyses of axisymmetric flows®™'” suggested that the flow
must be linearly unstable for the encapsulation to occur and
that the volume ratio is a crucial factor along with the viscos-
ities. Although the two-dimensional plane Poiseuille flow is
considered here, the results are similar to Joseph et al.® At
low flow rate ratios ¢,/q,, the flow is unstable for m,> 1
when ¢,/¢q, is small. In fact, in plane Poiseuille flow, the flow
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rate of each individual layer (rather than their summation
g, + ¢5) contributes in determining the stability of the flow.
In Fig. 2(b), the neutral stability curves are plotted for
various values of m, in an nonsymmetric flow configuration
of ¢,/q, = 0.3. This configuration is encountered when recy-
cled plastic scrap is introduced only in one of the outer layers
in the food-packaging industry, thereby creating nonsym-
metric flow with different viscosities in the outer layers
(m;7#1.0). As m; increases, the neutral stability curve ap-
proaches the curve for g;/q, = 0, because as m;— w0, the
third layer acts as a rigid wall. However, as m;—0, A;— 1
and the flow becomes a free surface flow in the presence of
very thin first and second layers. In this situation, the flow is
always unstable for m, < 1 and is always stable for m, > 1.
The gravitational force can have a stabilizing or a desta-
bilizing effect, depending on the density ratios, as shown in
Fig. 3. When the layers are arranged in such a way that the
liquids with higher densities occupy lower layers, the gravi-
tational force stabilizes the flow [Fig. 3(b) ], whereas in oth-
er configurations, the gravitational force destabilizes the
flow [e.g., in Fig. 3(a)]. Note that (12f) is singular at ¢,
= 0. In our calculations, this singularity is encountered at
m, =1, and the eigenvalues cannot be evaluated at these
singular points. However, the eigenvalues at m, = 1 are not
essential in calculating neutral stability curves. In the neigh-
borhood of the singular points, the eigenvalues can be esti-
mated without loss of accuracy because of substantially large
values of ¢, , at these points [for example, at m, =099, ¢,
= 0(107%) atg,/q, = 0.3,d, = 1,and Re, = 5]. Computa-
tions with single and double precision matched up to four
decimal points, further confirming the accuracy of the calcu-
lations.

B. Short-wavelength analysis (c— «)

The asymptotic analysis for disturbances with short
wavelengths is carried out following Hooper and Boyd.® To
analyze the stability locally near the interface, the flow co-
ordinates (x,z;) are stretched by the scale of the wavelength
such that the rescaled coordinates (X,Z;) are

(14)
The rescaled form of the Orr-Sommerfeld equations along
with the interfacial boundary conditions form the eigenvalue

problems for each interface separately, and provide the solu-
tions valid at the scale of the wavelength but uniformly valid

X=ax, and Z; =az.

inz;.
Asymptotic expansions of the form
¢j =(¢j,o +“j'l—+‘?£22—+é%+ <+ ) exp( "Zj+|)1
a a a

a? a’

éih =(¢j+1,o + ¢j~;1,l + B2 + P13 + )

Xexp(Z;, 1),

i €2

— ¢ G ..
¢ =+ 2+ L (15)
a a

2 a3

o j=12,n—1,

where ¢; is the eigenvalue at the jth interface, are appropri-
ate. The exponential terms are not necessary but convenient.
The coordinate transformation is carried out for each ¢;,
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such that the new coordinate is located at the jth interface.
Since the base velocity was linear in Ref. 8, the expansion
was in even powers of the inverse of the wavenumber. In this
analysis, however, all the powers of the inverse of the wave-
number are needed because of the parabolic velocity pro-
files.®% 14

When the gravitational force and interfacial tensions are
neglected, the expression for the eigenvalue is

5iRe; B? d;

2 j'+12 2( gl mf—m}H)
2(mj+mj+l) m; j
X(m;—m;, a4+ 0(@™), (16)

wherej = 1,2,..., n — 1. The above expression shows that the
system is unstable to short-wave disturbances for nonzero
Re; and nonzero B, , unless (d;, ,/d;) > (m;, ,/m;)*>1
or (d;.,/d;) <(m;, ,/m;)*<1. Unlike the long-wave-
length asymptotic analysis, the density ratios play a major
role in the stability analysis, even for negligible gravitational
force. The disturbances are localized only at the interfaces,
and, for complete stability, each of the interfaces should be
stable.

For various orders of magnitudes of interfacial tensions
and the gravitational force, the perturbation solution for the
eigenvalues is

a St(dj+| —dj)

=41+

- =0 1 .
Ca; a (D
[ Ca, S d_ . ,—d
¢ =4, — i[(a/Ca;) + (St/a)(d;,, —d))] o
2im; +m; )
—2
St(d,, , —d,;
_I_Z_L/i_‘z_i)_zo(l);
Ca; a
o= B [1/Ca; + (St/az)(dH, —d;)]
4 S 2(mj+mj+l)
+ O(a™ ).

The stabilizing effect of the interfacial tension enters at the
lowest possible order of the inverse of a, indicating the
strong influence of the interfacial tension compared to the
effects of the other terms. The destabilizing effect of gravity,
however, competes with the stabilizing effect of the interfa-
cial tension whend, > d; _ ,. The Stokes number must be two
order of magnitudes larger than the inverse of the capillary
number Ca; for the gravitational term to become as impor-
tant as the interfacial tension, when (d; | —d;) = O(1).
When d; <d, , ,, the gravitational force stabilizes the flow.

IV. NUMERICAL ANALYSIS

The asymptotic analysis fails to predict the neutral sta-
bility curves when the wavelength of a disturbance is of
0(1). However, the dominant mode of the instability can be
of a wavelength of O(1). Therefore, to obtain the stability
results over a wide range of wavelengths, a numerical solu-
tion of the Orr—Sommerfeld equations and boundary condi-
tions is undertaken. Several methods are available to deter-
mine the eigenvalue ¢ in terms of the parameter space of a,
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q;/9., Re;, d;, m;, Ca;, and St. For small wavenumbers and
Reynolds numbers (@ < 5.0, Re; < 200), most of these meth-
ods are accurate. However, at large wavenumbers and large
Reynolds numbers, the eigenvalue problem of (5) and (6)
becomes numerically stiff. The compound matrix meth-
od,?*?! which is accurate for stiff systems,?> was implemen-
ted. However, it had to be modified to accommodate several
interfacial boundary conditions for n-layer flow.

The compound matrix method can only compute one
eigenvalue for a given set of parameters and the solution
depends on the initial guess provided for the eigenvalue.
Therefore, for the method to converge to the most dominant
mode, the asymptotic solutions are used for obtaining the
initial guess. The eigenvalues in the complete domain of the
parameter space are then obtained by first-order continu-
ation to provide the initial guess. The asymptotic solutions at
a—0 are compared with the numerical results in Tables I
and II, for St = 0 and Sts#0, respectively. For a set of repre-
sentative values of parameters, the wave speeds calculated
by these two methods agree well for @ = 0.001 for various
values of ¢,/q,, and deviate marginally as  increases from
0.001 to 0.1.

The asymptotic analysis reveals that the multilayer flow
can be unstable to the interfacial disturbances at small Reyn-
olds numbers. In this paper, we investigate this interfacial
instability and carry out all our calculations at Re; < 10,
which is typical for industrial processes of multilayer flows
such as coating and coextrusion. As a result of the large
number of parameters involved in the analysis, results will be
presented only for two- and three-layer flows. However, the
algorithm can be used for any number of layers.

All the numerical results are presented in the form of
neutral stability curves in the a-¢,/¢, plane. Although the
effect of the viscosity ratio m, on the neutral stability curves
of two-layer flow is studied in Fig. 4, all other results are
related to the stability of three-layer flows. The neutral sta-
bility curves are considerably affected by the presence of the
third layer. In Fig. 5, the effect of the variation in the flow
rate ratio g,/q, is investigated for m; = 1.0, whereas in Fig.
6, the effect of the variation in the viscosity ratio m; is inves-

tigated for ¢,/q, = 0.2. Similar to the asymptotic analysis,
the studies of the above two cases are motivated by their
industrial applications in lubricated squeezing flows and in
the transportation of oil (Fig. 5), and in the use of the recy-
cled plastic scrap in only one of the outer layers for the food-
packaging industry (Fig. 6). The effect of the Stokes number
is studied in Figs. 7 and 8, and the effect of the capillary
number is studied in Fig. 10 for representative cases. When
the Stokes number and the capillary number stabilize the
flow, the stable regions at a// o are identified, and the critical
parameters defining these stable regions are plotted in Figs. 9
and 11, respectively.

The neutral stability curves for two-layer flow are
shown in Fig. 4 in the a-¢,/q, plane for the more viscous
liquid in the second layer, such that m, = 5.0 in Fig. 4(a)
and m, = 20.0 in Fig. 4(b). Interfacial tension and gravity
are neglected (Ca,; = o and d, = 1.0). For each viscosity
ratio m,, there are two neutral stability curves. The neutral
stability curve in the form of a straight line of constant ¢,/¢,
at all a corresponds exactly to the asymptotic solution (g,/
q1).s at a—0 [see Fig. 2(a)]. From Sec. III A, the long-
wavelength asymptotic solution for two-layer flow is (g,/
d1)as = /m,. For g,/q, >m,, the flow is unstable for large
a and stable for small a. The wavenumber at which this
demarcation occurs decreases with increasing m,. For ¢,/
g, <«/m,, the flow is unstable for long waves (small @). In
addition, there is a region in the form of an envelope at large
« in which the flow is stable. A flow rate ratio, (¢,/¢,).,
associated with each envelope, below which the flow is un-
stable to all wavenumbers, increases with increasing m,. The
extent of the stable region decreases for very large a, such
that at a» 1, the flow is unstable everywhere except at ¢,/
g, =m,. When d, = 1, gravity does not influence the sta-
bility. Therefore, the neutral stability curves are not altered
by inverting m, and ¢,/¢, simultaneously. The results in Fig.
4 are similar to the results in Refs. 6 and 7.

For two-layer flow, the effects of a thin layer near the
wall are analyzed in Couette and axisymmetric Poiseuille
flow.>!%13 It is observed that a flow with a thin layer of the

TABLE I. Comparison between the asymptotic solutions at @—0 and the numerical solutions at small a at various g./¢,, for Re; = 5.0, Ca, = o, g3/

¢, =0.2, my =20.0, my = 1.0,d, = 1.0, and St = 0.0.

q./q, 0.5 1.0
Asymptotic
solution 1.499 906 56 + 0.941 602 76 X 10~ *ai 1.433 202 03 + 0.557 991 32X 10 i

a =0.001 1.499 906 58 + 0.941 602 76 X 10~5/ 1.433 201 99 + 0.557 991 32X 10~/
a =0.01 1.499 888 10 + 0.941 372 63 X 10~ 1.433 191 81 + 0.557 889 03 10~
a=0.1 1.498 053 37 + 0.918 662 56 X 10~ 1.432 180 33 + 0.547 764 12 10~}
9:/9, 2.0 4.0
Asymptotic
solution 1.255 362 21 4 0,160 287 51 X 10~ *ai 1.032 401 54 — 0.183 024 45 10~ %ai
a = 0.001 1.255 362 19 4+ 0.160 287 49 x 10~ 1.032 401 57 — 0.183 024 46 X 10~ %
a=0.01 1.255361 93 + 0.160 272 64 10~% 1.032 404 00 — 0.183 018 60X 10—
a=0.1 1.255 336 07 + 0.158 795 19 10~ 1.032 63537 — 0.182434 13X 10~ %
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TABLE II. Comparison between the asymptotic solutions at 2—0 and the numerical solutions at small  at various ¢,/q, for Re; = 5.0, Ca, = «, g2/

¢, =02, my =200, my=10,d,=1.5,d, = 1.0, and St = 1.0.

2/q, 0.5 1.0
Asymptotic
solution 1.499 906 56 + 0.129 303 15X 10~ ‘i 1.433 202 03 + 0.812 593 12X 10 ai

a = 0.001 1.499 906 57 + 0.129 203 20X 10+ 1.433 201 99 + 0.812 592 34 X105
a=0.01 1.499 888 06 + 0.129 175 67 10~ % 1.433 19179 4 0.812469 37 104
a=0.1 1.498 048 71 + 0.126 457 94 X 107 % 1.432 17793 + 0.800 292 02 10~ %
g./q, 2.0 4.0

Asymptotic

solution 1.255 362 21 + 0.143 858 93 X 10~ *ai 1.032 401 54 — 0.118 395 73X 10 *ai
a = 0.001 1.255 362 19 + 0.143 858 71 X 10™% 1.032 401 57 — 0.118 39546 X 10~ %
a =0.01 1.255 36192 4+ 0.143 853 45 1075 1.032 403 89 — 0.118 390 31 X 10~%;
a=0.1 1.255 335 56 + 0.143 330 60X 10~ 1.032 63527 — 0.117 87591 X 10~ %

more viscous liquid is always linearly unstable, whereas a
flow with a thin layer of the less viscous liquid depends on
the wavenumber a. Our calculations on plane Poiseuille flow
are similar to their observations and are relevant to the in-
dustrial applications mentioned above.

The neutral stability curves are considerably influenced
by the presence of the third layer. In Fig. 5, the neutral stabil-
ity curves for various flow rate ratios ¢,/¢, are plotted in the

qZ/ S

FIG. 4. The neutral stability curves for two-layer flow in the a-¢,/¢, plane
for (a) m, = 5.0, and (b) m, = 20.0. The other parameters are the density
ratio d, = 1.0, Re, = 5.0, and St = 0.0. The hatched regions are unstable
and the unhatched regions are stable.
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a-g,/q, plane for m, = 20.0 and m, = 1.0. Interfacial ten-
sions and gravity are neglected. Similar to Fig. 4, there are
two neutral stability curves for each g,/g,. The neutral sta-
bility curve in the form of a straight line of constant ¢,/q, at
all a corresponds exactly to the asymptotic solution
(92/9,).s at a—0, and its value decreases with increasing
q5/9,. When q,/q, > (9,/9,) s, the flow is unstable for large
a and stable for small a. The wavenumber at the transition
from the stable region to the unstable region decreases with
increasing ¢,/g, and finally approaches a constant value for
9:/4,:>0.3. Atq,/q, < (g./4,),,, the envelope separating the
stable region from the unstable region expands and (¢,/¢,).
of each envelope decreases as g;/q, increases. As shown in
Fig. 5(b), an additional stable region is also observed at
small ¢,/q, and large a, for ¢,/g, = 0.1. At a> 1, the stable
regions degenerate to the lines ¢,/¢, =0.0 and ¢,/q,
= (g,/4,) ., respectively, and the flow is unstable every-
where except at ¢,/q, = Oand at ¢,/q, = (¢,/¢,) .- The sta-
ble region at low ¢,/q, and large o expands as g,/q, in-
creases, and as shown in Fig. 5(d), both the stable regions
merge together at ¢,/g, = 0.17. Similar merging of the stable
regions is also observed at various other conditions as shown
in Figs. 6-8 and 10. For g;/¢, > 0.17, the “combined” stable
region expands with increasing ¢,/¢,.

For ¢;/¢,>0.2 [see Figs. 5(e)-5(g)], a new feature of
the neutral stability curve is observed. A separate unstable
region within the stable region is identified. This unstable
region decreases as ¢,/q, increases. OQur calculations show
that, as ¢g,/g, increases beyond 0.3, the unstable region with-
in the stable region vanishes and the stable region itself ex-
pands at the expense of the unstable region at large a and
small ¢,/q,. The change in the neutral stability curve for ¢,/
g,>0.3 at low «a or at low ¢,/q, is minimal. Thus, in the
presence of the third layer, the stable region expands at low
g./q,, whereas at high ¢,/¢, the change in the stable and
unstable regions is minimal.

In the absence of gravity, the same neutral stability
curves are recovered by interchanging the flow rate ratios
and the viscosity ratios of layers 1 and 3. Therefore, for a
given m,, it is sufficient to find the neutral stability curves
from ¢;/9, =0 up to ¢;/q, = 1.0 at m, = 1.0.
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G/ 9/

FIG. 5. The neutral stability curves for three-layer flow in the a-¢,/¢, plane for various flow rate ratios g,/7,. From (a) to (f), the flow rate ratio 4,/¢, is
gradually increased from 0.0 t0 0.3. In (g), {(d}~(F) are stretched along the direction of ¢,/4,. The other parameters are the density ratio d; = 1.0, viscosity
ratios m, = 20.0 and m; = 1.0, St = 0.0, Re, = 5.0, and €3, = oo. The hatched regions are unstable and the unhatched regions are stable, also denoted by U
and 8, respectively.
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At g,/q, €1, the instability prevails at m, = 20.0. How-
ever, as ¢,/q, increases, the region of instability at ¢,/¢, €1
shrinks. Thus a very thin middle layer of more viscous liquid
is always stable when m, = 1.0. Note that, at ¢,/q, = 0, the
flow is neutrally stable. These results are similar to the re-
sults obtained by Joseph et al.® for axisymmetric two-layer
Poiseuille flow.

The neutral stability curves for various m, at g,/
q, = 0.2 are shown in Fig. 6. For negligible interfacial ten-
sions and gravity, the change in the neutral stability curves
due to increasing m, is found to be qualitatively similar to

5 (d)
Mz
07
o
qZ,/ g =02
—————— m, = 20.0
i
S
L T N
0.10 0.5 0.20

QZ/ G

FIG. 6. The neutral stability curves for three-layer flow in the a-¢,/¢g, plane
for various viscosity ratios m,. In (d), Figs. 6(b) and 6(c) are stretched
along the direction of the flow rate ratio ¢,/g,. The other parameters are the
density ratio d; = 1.0, the viscosity ratio m, = 20.0, the flow rate ratio ¢,/
g, =0.2,5t = 0.0, Re, = 5.0, and Ca; = o. The hatched regions are unsta-
ble and the unhatched regions are stable, also denoted by U and S, respec-
tively.
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the change in the neutral stability curves due to increasing
q3/4,, which is discussed in the previous paragraphs.

Until now, we have not considered the effect of the

Reynolds number on the neutral stability curves. At Re;
= 0.0, the flow is always neutrally stable. At low Re;, the
wave speed ¢ is proportional to Re, for d; = 1.0. Therefore,
although the Reynolds numbers do not contribute to the
parameter space where the neutral stability curves are de-
fined, nonzero Reynolds numbers are essential for the inter-
facial instability to exist in multilayer flow. It was found
that, for all Re; < 10, the wave speed is proportional to Re; at
all @, and therefore the neutral stability curves are not appre-
ciably altered, whereas, for Re; > 10, the proportionality no
longer exists and the flow is more unstable at high Reynolds
numbers than at low Reynolds numbers. The effect of the
Reynolds number and the transition from the interfacial to
the shear modes were systematically investigated by
Hooper.” Our analysis in this paper is, however, for Reyn-
olds numbers below 10, which are common with highly vis-
cous liquids.

To investigate the effect of gravity, we have computed
the neutral stability curves for various Stokes numbers (see
Figs. 7 and 8). In Fig. 7, the destabilizing effect of gravity is
shown for d, = 1.5 and d, = 1.0, whereas in Fig. 8, the stabi-
lizing effect of gravity is shown for d, = 0.8 and d; = 0.6. In
both cases, the other parameters are Re, = 5.0, Ca;, = o,
my = 20.0, m; = 1.0, and ¢,/q, = 0.2. From Sec. III A, at
a -0, gravity influences the stability through O(a) terms.

St=0.0

T

Unstable

St

}//0.1

Unstable

Unstable
]

FIG. 7. The destabilizing effect of gravity on the neutral stability curves in
three-layer flow in the a-¢,/q, plane. The density ratios are d, = 1.5 and
dy=1.0. The other parameters are the viscosity ratios m, = 20.0 and
m; = 1.0, the flow rate ratio ¢,/q, =0.2, Re, = 5.0, and Ca; = «. The
hatched regions are unstable and the unhatched regions are stable.

qZ/Q1
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FIG. 8. The stabilizing effect of gravity on the neutral stability curves in
three-layer flow in the a-¢./¢, plane. The density ratios are d, = 0.8 and
d, = 0.6. The other parameters are the viscosity ratios m, = 20.0 and
m, = 1.0, the flow rate ratio ¢;/q, = 0.2, Re, = 5.0, and Ca; = «. The
hatched regions are unstable and the unhatched regions are stable.

Numerically, the same influence is observed at small a. The
effect of gravity is stabilizing (Fig. 8) or destabilizing (Fig.
7) as a—0, depending on the density ratios of the layers, as
in the long-wavelength asymptotic analysis.

In addition, when « is of O(1), the unstable regions
grow at the expense of the stable regions, when the density
ratios are unfavorable for stability, as shown in Fig. 7. At
small o and small ¢,/q,, the effect of St is negligible. How-
ever, at large o and small g,/g,, the unstable regions grow to
the extent that, at St = 1.0, they separate the stable region
into two parts: one part is at large & and small ¢,/¢,, and the
other is in the form of a closed region. Recall that the stable
region at large « and small ¢,/q, is similar to the one ob-
served at lower g;/q, in the absence of gravity [see Fig.
5(b)].

Figure 8 shows the stabilizing effect of gravity at
a =0(1). The effect of St is negligible for small ¢,/q,. There
are two critical flow rate ratios ¢,/q, for each St, within
which the system is stable for all a; and, as St increases, the
distance between the two critical flow rate ratios increases.
Note also that the lower critical flow rate ratio corresponds
to the long-wavelength asymptotic solution. These critical
flow rate ratios ¢,/q, are plotted against the Stokes number
in Fig. 9 to identify the stable regions at a// a. A similar
stabilizing effect of St is also observed for various other val-
ues of g;/q,.

The effect of interfacial tensions is illustrated in Fig. 10

539 Phys. Fluids A, Vol. 2, No. 4, April 1990

2
@2/AWerit

FIG. 9. Diagram of stable conditions at al/ a for three-layer flow in the St-
g,/q, plane. The critical values of ¢,/q, for a given St are obtained from Fig.
8. The other parameters are the viscosity ratios 7, = 20.0and m; = 1.0, the
density ratios d, =0.8 and d; =0.6, the flow rate ratio ¢,/q, =0.2,
Ca; = o0, and Re; = 5.0. The hatched regions are unstable and the un-
hatched regions are stable.

for Re, = 5.0, ¢:/q, = 0.2, m, = 20.0, m; = 1.0, d; = 1.0,
and St = 0.0. The same liquid is in layers 1 and 3. Interfacial
tensions are significant at the small wavenumber asymptotic
analysis only through terms of O(a?). In Fig. 10, at a0,
the neutral stability curves remain unaltered for various val-
ues of interfacial tensions, thus confirming the results of the
long-wavelength asymptotic analysis. The asymptotic anal-
ysis for large wavenumbers indicates that interfacial tensions
play a major role in stabilizing the flow at large a. Figure 10
confirms this observation. In addition, interfacial tensions
are also stabilizing for a = O(1); at large flow rate ratios ¢,/
q,, the effect of interfacial tensions is dramatic. Similar to
Fig. 8, there are two critical flow rate ratios ¢,/q, for each set
of values of the capillary numbers Ca, and Ca, within which
the system is stable for all a. Although the lower critical
value of ¢,/q,, obtained by the asymptotic analysis at small
wavenumbers, remains unaltered with decreasing Ca, and
Ca,, the upper critical value of ¢,/¢, increases rapidly. The
critical flow rate ratios ¢,/q, are plotted against 1/Ca; (pro-
portional to interfacial tensions) in Fig. 11 for various values
of g;/q,. The stabilizing effect of interfacial tensions is maxi-
mum at ¢,/q, = 0.0 and, with increasing g¢,/q,, this effect
gradually decreases.

V. SUMMARY

A linear stability analysis of multilayer channel flow of
Newtonian liquids to two-dimensional disturbances has
been conducted. The governing equations and the boundary
conditions for n-layer flow have been simplified by means of
a convenient coordinate transformation that enhances alge-
braic simplicity. The asymptotic solutions are constructed
for the long and short wavelengths and the numerical solu-
tions are computed for the wavelengths of O(1).

The long-wavelength asymptotic analysis suggests that
nonsymmetric arrangements, with the thinner material in
the outer layers and the thicker material in the middle layer,
tend to be more unstable than symmetric arrangements of
the same materials. Gravity is found to be always destabiliz-
ing, except when the densities are increasing along the direc-
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FIG. 10. The stabilizing effect of interfacial tensions on the neutral stability curves in three-layer flow in the a-¢,/¢, plane. The material properties are the
same for layers 1 and 3. The other parameters are the viscosity ratios m, = 20.0 and m, = 1.0, the flow rate ratio g,/g, = 0.2, the density ratios 4; = 1.0,
Re, = 5.0, and St = 0.0. The hatched regions are unstable and the unhatched regions are stable.

tion of gravity. Interfacial tensions do not play a significant
role at long-wavelength disturbances. For disturbances of
small wavelengths, however, interfacial tensions stabilize
the flow (in some cases, even when the density ratios are
unfavorable).

Several new features of the neutral stability curves over
a wide range of wavelengths emerge as a result of the pres-
ence of the third layer. The flow with the more viscous liquid

0.05 : K ; ~
0.04 - Lol ’/
. Y )%
[
0.03 :s’l! s/l s // S
3 H /
1/Ca: /
/ % : I’ | ,-/ /I CL’,/CH
0.02 Vo / -
: (] l / / 0'1
0.01 " | / N
" wivl/ vl v el
U Ui ] 0.3_
0.00 —1 'v \/ —T T T
0 1 2 3 4 5 6 7 8
A/

FIG. 11. Diagrams of stable conditions at a// « for three-layer flow in the 1/
Ca;-¢./q, plane for various ¢,/¢,. The other parameters are the viscosity
ratios m, = 20.0 and m; = 1.0, the density ratios d;, = 1.0, St = 0.0, and
Re, = 5.0. The stable and unstable regions are denoted by S and U, respec-
tively.
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in the middle layer tends to be stable when ¢,/q, is small; at
large ¢,/q,, it can be stable or unstable, depending on the
wavenumber «. The effects of interfacial tensions and of
gravity at a ~O(1) agree with the results of the asymptotic
analysis at a — 0. For stable conditions to exist at all &, non-
zero interfacial tensions and/or gravity are essential, and the
density ratios need to favor the stability.
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