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Abstract

A conjugate gradient FFT formulation and implementation of the scattering by planar
material plates is presented. The plates considered are of arbitrary material composition and
periphery. A substantial part of this investigation concentrated on the development of efficient
and higher accuracy FFT algorithms. This resulted in the generation of a scattering code 3 to
4 times faster than the traditional and, in addition, a higher convergence was achieved with

the incorporation of basic functions for the representation of the plate's current density.
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CHAPTER I

INTRODUCTION

1.1 Motivation

The material plate scattering problem is one of the most commonly occurring
scattering phenonena which does not have a known analytic solution. Many prac-
tical electrically thin structures have edges and corners which provide a significant
contribution to the scattered fields. For electrically large surfaces the scattering
contributions due to edges and corners are fairly localized so that computation of
the surface currents and scattered fields from plates will give much insight on the
scattering behavior of more arbitrary shapes.

One on the prime reasons for studying the scattering characteristics of material
plates is to understand how the material distribution effects the scattered fields.
Not only is it important to know the scattered fields but it is also desirable to
know how to change the material composition of a scatterer to achieve a certain

scattering characteristic.

1.2 Literature Review

At the present time efficiency is still a prime concern for numerical solution of

scattering by material plates with above resonant dimensions. This efficiency is
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2
measured in terms of minimizing computational factors such as time, storage and
cost. The purpose of this study is to develop a method which has the potential to
solve a wide class of scattering problems in an efficient manner. Newman et al [1]
and Naor et al [2] treat rectangular material plates, however, the basis functions
are inappropriate for curved perimeters and the boundary conditions employed
are not valid at edge on incidence with H-polarization. Good results have been
obtained for perfectly conducting plates by Glisson et al [3] and Rao et al [4]
using triangular cells and linear basis functions. Unfortunately, these methods
rely on matrix solutions which may become restrictive for a body of above resonant
dimensions. Studies on perfectly conducting wire and plate scatterers by Sarkar
et al [5] and work by Christodoulou et al [6] on meshes combine the method of
conjugate gradients [7]-[10] with the FFT [11]-[12] to solve operator equations

directly without storing a large matrix.

1.3 Objectives

The major goal of this study is to develop an efficient numerical modeling
technique to solve for the induced current and the scattered field from a material
plate illuminated by a plane wave. The technique involves combining a conjugate
gradient (CG) method with a fast Fourier transform (FFT) to solve a set of coupled
convolution integral equations.

Achieving an efficient algorithm requires a good understanding of both a con-
jugate gradient method and the computation of the FFT. Chapter II gives a com-
plete derivation of a conjugate gradient method. Chapter III derives the discrete
Fourier transform (DFT) from the continous Fourier transform and describes how
computation may be accomplished using various integration formulas combined
with the FFT. Chapter IV describes the single material plate which includes the

zero thickness perfectly conducting plate, the electrically thin dielectric plate, and



3
the combination dielectric and magnetic plate. Chapter V gives some preliminary
numerical results and chapter VI describes some future work which will be an

extension of this study.



CHAPTER II

DERIVATION OF A CONJUGATE GRADIENT
METHOD

Introduction

The conjugate gradient method seeks the solution to the operator equation
Az=1b (2.1)

where A is an operator which is assumed to be non-singular. In order to derive
the solution technique the concept of an inner product must be discussed. Let
(f,g) denote the inner product of the two functions f = f, + j f; and g = g, + jg;.
If the functions are continuous, then given a region s € R? and real functions

fri»gri € R? a suitable inner product could be given as

(1,9) = [[£@0)9 @ v)wia,y)ds (22)

where * denotes the complex conjugate and w(z,y) is a real weight function. It is

most common to define w(z,y) as

1 for differential operators
w(z,y) ={ N-1M-1 (2.3)
6(z — mAz,y —nlAy) for integral operators
g

n=0 m=0

4
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If the functions are discrete n x 1 vectors such that f = [fo f1 f2 ... fv_1]7 and

g =1[9 91 92 --- gn-1]T a suitable inner product could be given as

(f,9) = }:jgiifn- (2.4)

n=0
Closely related to the inner product is the Euclidean norm of a function defined

by

flz = (£, /). (2.5)

Another concept that must be introduced is the adjoint operator of A denoted by

A® which satisfies the relation

(Ap,q) = (p,A%) (2.6)

for any p and q.
Derivati

With an understanding of these concepts, the following observation may be
made. The solution of (2.1) will yield the same solution as the minimum of some

quadratic functional. That functional may be written as

I(z2) = (b= Azb— Az)
= (Az, Az) — (b, Az) — (Az,b) + (b, b)
= (Az, Az) — (Az,b)" — (Az,b) + (b,b)
= 2 [%(Az,Az) — Re(Az,b) + %(b, b)]

_ 9 [%(z, A®Az) — Re(z, A°b) + %(b, 8] (2.7)

The method of conjugate gradients [7-10] is a general solution technique for min-

imizing I. Making the substitutions B = A%°A, h = A%y and noting that the
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solution is independent of the multiplicative factor 2 and the constant (b,b) the

solution z = A~'b = B~'h also minimizes the function F(z) given by

_1

F(z) =5

(Bz,z) — Re(h, z2).
If A is non-singular then B will have the following properties [13].

1. Hermitian B = B*
2. positive definite (Bz,z) > 0 z#0
3. eigenvalues are positive and real and

eigenvectors are orthogonal

The solution is assumed to have the recursive form

Zk41 = 2k + Qi Pk

(2.8)

(2.9)

where a4 is a real positive constant and py is called the search vector. This yields

an expression for the residual 744, defined by

Thk+1 = h — Bzpy
= h— B(z + axp)

= T - a,,Bpk.
Substituting (2.9) into (2.8)
1,
F(zp41) = F(zx) + é‘ak(BPk,Pk) — arRe(ry, pi).

To minimize this function with respect to ay set

1,
B—a;F =0
and solve for
_ Re(ry, pi)

ap = .
¢ (Bpk,Pk)

(2.10)

(2.11)

(2.12)

(2.13)



Substituting (2.13) into (2.11)

1 (Re(ry, pi))?
2 (Bpx,pr)

The function decreases at each step if Re(ri,px) # 0 and B is positive definite.

F(zs1) = Flzx) — (2.14)

However, ||b — Az||; may not decrease at each step since it is not the function
to be minimized. This local minimization does not guarantee that the solution is
obtained in a finite number of steps. The crux of the conjugate gradient method is
that global minimization in a finite number of steps may be achieved if the search
vectors p; are chosen correctly. In order to choose p; it is informative to view
the minimization from a geometric point of view. The vector pj is a direction in
n-space. The residual vector ri,, is proportional to the difference between the

exact solution and the k + 1 approximation. Thus

Th41 = h— Bz,
= B(Z - Zk+1) (215)
where z is the true solution
T
z = [zl 22 22, ,z"] . (2.16)

If px is chosen such that (Tk+1,Px) = 0 then the minimization occurs in an n-

dimensional plane and since

(resr,pe) = 0

= (re — ok Bpr, pk)

Re(ry, pe) )
= ——8B
(rk (BPk,Pk) P

= (rx,px) — Re(rk, px) (2.17)

the inner product (ry,py) is real. Thus (ri41,px) is recognized as the equation of

an n-dimensional plane given by

(B(z = 2k41),px) = 0 (2.18)



which may be rewritten as
Nzt + 1+l 4.+t = 4 (2.19)

which establishes the relationship between a linear equation and an n-dimensional
plane. This idea may be extended to a system of equations by noting that the
solution of a system of m < n equations in n unknowns is the same as finding the
intersection of m n-dimensional planes. With this in mind it can be surmised that
if the search directions were generated such that (ri41,p,) =0fors =1,...,k then
at the kth iterative step the function would be minimized over the intersection of
k planes. Another interpretation is that at each iteration a least squares solution
is found to a system of m equations in n unknowns. The iterative nature of the
solution stems from the fact that at each step the order of the leasts squares
solution is increased and a more accurate solution is obtained. Criteria for chosing
pr, may be found by expanding the product of the residual and all previous search

directions.

(Tk+1,P=1) = ("%, Ph—1) — ak{Bpx, Pk-1)

(rke1,Pk—2) = (Tk-1,Pk-2) — Ck—1{BPk-1,Pk-2) — k(BDPk, Pr-2)

(rks1,Pk-3) = (Tk-2,Pr-3) — ar—2(Bpr-2,Pk-3) — Qk—1(Bpr-1,Pk-3) — ax(Bpk, pk-3)
n-1

(Tk+1apk—n) = - Z ak—a(Bpk—a’pk-n) (220)
3=0

Observation of (2.20) indicates that if the method is to reach an exact solution in

n iterations, the condition
(Bpk,ps) =0 s=0,...,k—1 (2.21)

must be enforced. Equation (2.21) is recognized as the condition for the vectors

pr to be “B-orthogonal” or “mutually conjugate”. Vectors with this property may
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be generated by the Gram-Schmidt process. Given a set of linearly independent

vectors vy, ..., v, a set of “B-orthogonal” vectors may be generated as
hh = U
P2 = vy—bup

D3 = U3— b21P1 - bzzpz

k
Prs1 = Vg1 — ) BraDs (2.22)
s=1
where
<ka+1,ps)
Bis = et 2.23
¢ (Bps, ps) (2.23)

Note that this method requires £ matrix vector products for the kth iteration so
it is inherently very inefficient for large k. However, if the vectors vy are chosen
to be the residuals 74 then all B¢, = 0 for s = 1,...,k — 1 which leaves only
one matrix vector product per iteration. To show this, the relationship between
residuals must be established. Taking the adjoint of (2.22) and multiplying by the

residual r, yields
k
(Tcypk+1) = (rca 7'k+1) - Eﬁks(rc,pa)- (224)
s=1
When ¢ = k+1 the products {r., p,) = 0 for s < ¢ by virtue of (2.21) which implies
(Pkt1s Pr+1) = (Tha1, Thet) (2.25)
and forc=k+2,...,n
(re,Prs1) = (re,mhsn) = 0. (2.26)
Therefore, the residual vectors are orthogonal such that for £ # s
(rsyTk) = 0. (2.27)

With (2.27) established take the inner product of r¢41 with (2.10) and observe that

1
- a—("k+1,7‘s+1 —15) = (B°rk41,Ps) = (Bri1,ps) =0 (2.28)

s
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fors=1,...,k—1and

Tht1,T
- Lliﬂcrﬂl—)' = (Brk+1,Pk) (2-29)

for s=k. Thus B, =0fors=1,...,k—1.
The computations will be minimized if the search directions p; are normalized
with respect to (rk,r%). The algorithm, which will be referred to by this author as

the “nested operator” algorithm, is expressed below.

initialize
r = h — BIEI (230)
1
= 2.31
o= T (231
p1 = Bon (2.32)
fork=1,...,n
o = (2.33)
¢ (Bpx, pr) '
Tky1 = Tk + Px (2.34)
Tk+1 = Tk — axBpr (2.35)
1
= —_— 2.36
P (Th15 Th41) ( )
Pey1 = Pr+ BTk (2.37)

The algorithm is terminated at k = n or when

||7"k+1 | lz

1]z < tolerance. (2.38)

Excluding the initialization, this algorithm requires one matrix vector product per
iteration. The number of multiplications and divisions per iteration is n? + 5n + 2.
However, the matrix B may or may not be explicitly known. In this case the
residual expressed in (2.10) must be replaced by A®r with r = b — Az. The

modified algorithm referred to by this author as the “split operator” algorithm is
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initialize
ro= y— Az (2.39)
1
Bo TAory, Arry) (2.40)
= BoA’n (2.41)
fork=1,...,n
G = e (2.42)
* 7 (Ap, Aps) '
Tky1 = Tk + Qipk (2.43)
Tke1 = Tk — okApg (2.44)
1
= 2.45
ﬂk (A“Tk+1,A“7'k+1) ( )
Pk+1 = Pr+ BrA’rin (2.46)

The algorithm is terminated at k¥ = n or when

H"k+1“2
|yll2

In this case the magnitude of the residual will decrease at each step since it rep-

< tolerance. (2.47)

resents the actual function being minimized. Excluding the initialization, this
algorithm requires two matrix vector products per iteration. The number of mul-

tiplications and divisions per iteration is 2n? + 5n + 2.

Typical operator equations

-~ The most common operators will be of integral or differential type, or a matrix
derived from one or the other. If the operator A is composed of Fredholm equations

of the second kind

Efea0) + [[Uele', 0 (0,20, 0) + £(@ Y Woale, 0,0 S = hal,)

Eflan) + [ ys(,2,0,8) + F(a' sy Wa(e, 0y ds = hyfe,y)
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then the adjoint operator A®f would be defined by the relations

Gt:(e,0) + [[ (W20 + (YW 5yl = ha(a,)
(2.50)

E5,(e) + [[ 1503 2,0, 0) + £ YW 2,0 )l ds' = hy(a,)
(2.51)

If the operator A is composed of first and second order differential operators

0? %) 9*

[5;34'515;] fz(x,y)+mfy(w,y) = hy(z,y) (2.52)
& & .0 _ 053
axayf”(‘”’y” 8y2+€26y Jle:y) = hy(z,y) (2.53)

then the adjoint operator A®f would be defined by the relations

? 0 0?

[5;;2' - 6;-6—3—)] fz(x,y) + m.fy(x,y) = h,,(.’l),y) (254)
0? 0? ]

6x_8yf’”(w’y) + [6_312 - f%'a—y] fu(z,y) = hy(z,y). (2.55)

If the operator A is a general complex n X n matrix then the adjoint is the complex

conjugate of the transpose defined by

A® = (A7) (2.56)



CHAPTER III

DERIVATION AND COMPUTATION OF A
DISCRETE FOURIER TRANSFORM USING HIGHER
ORDER INTEGRATION AND PRIME
FACTORIZATION

3.1 Introduction

The discrete Fourier transform (DFT) has been studied extensively by mathe-
maticians, engineers and scientists for many years. The bibliography by Heideman
et al [12] contains over 2000 reference papers concerning computation and applica-
tion of the DFT. Most of the work has been concerned with increasing the speed
of the computation. The purpose of this study is to develop a algorithm which is

not only fast but also more accurate.

3.2 Derivation of a DF'T

The DFT and inverse DFT are approximate representations of the continuous

transform pair

z(z)e i dg (3.1)

a
>
Il
—

8

8

3(f)ei?I=df. (3.2)

=
&
I
—
g 8

13



14

The transform pair is assumed to be valid. The interested reader may consult
Champency [14] for a discussion of the sufficient and necessary conditions for
transformability. Assume that z(z) is a complex function of bounded support

such that
Z,.(.'L‘) +]Z,($) fOI‘ Trmin S T S Trmaz
2(z) = (3.3)
0 otherwise.
Under this restriction it may be shown that there exists fiin, fmazr and 6 such that
IZ(f)] < 8 for f > fmer and f < fumin- In a more practical sense Z(f) may be
defined by
~ ET(f)+]Et(f) fOI' fmin S.fomaz
#(f) = (3.4)
0 otherwise.

Let the spatial and spectral domains be segmented into N uniform cells of

widths

Tmaz =~ Tmin
Az = —1\7-— (3.5)

Af — fmaz}'\}fmin (36)

Since the sample points are equally spaced, the cell width Az implies a resolution
limit on |frnez — fmin| and Af implies a resolution limit on |Zmez — Tmin|, These

limits may be found by finding the lowest order interpolation sinusoid which passes

through all the sample points.
m A

PALF A

Figure 3.1. Interpolation sinusoids for spatial or spectral domain.
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Observation of figure 3.1 indicates that for curves A, B, and C there is no
ambiguity in terms of differenciating each curve given the set of sample values.
However, curves C' and D are indistinguishible based on the sample values and
furthermore, there exist an infinite number of higher order interpolation sinusoids
which pass through all the sample points. Curve C denotes the highest order inter-
polation sinusoid which may be distinguished from any other lower order sinusoid.

The resolution limits are then determined by the spatial or spectral frequency of

curve C as
e = fmin = 5= (.7
mazx mn - Az .
Tmazr — Tmin = Aif (38)

which combined with (3.5) and (3.6) may be used to define a quantity called the

space-bandwidth product defined by

AsAf = ]-1\7 (3.9)

Note that the spatial sample interval Az and the spectral sample interval Af are
dependent in a reciprocal manner. This is undesirable since the error in the forward
and inverse Fourier transforms will be dependent on Ar and Af respectively.
Assume that the error in the forward and inverse DFT is considered minimial if
Az < 6, and Af < §, Making Az smaller will increase N and make the forward
Fourier transform more accurate but Af remains constant. In order to increase
the accuracy of the inverse Fourier transform, extra cells must be appended in the
spatial domain in order to increase N without decreasing Az. This is commonly
refered to as 'padding’ and in general if the number of non-zero samples is M then
the total length N of the data set should satisfy N > 2M.

It is convienient to make the integration formula independent of the location

of the spatial data along the = axis so making the change of variables z = u + z
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and defining the quantities

s(u) = z(u+zo) (3.10)
5(f) = #f)ernIe (3.11)

allows the transform integrals to be written as

Umaz

3(f) = /um s(u)e=i2m dy (3.12)

stw) = [ () df = [/ffm“?(f)e'ﬂ“fdf INERT)

Assuming an even number of cells the spatial domain may be segmented as where

the variables are discretized as

u, = pAu p=0,.,N-1 (3.14)
N N
fv = vAf v=_3+1’""3 (315)
AN s(u)l
o - - s o o ol o 1 o 1 o 1 o 1 o | o | AN
@ v hd hd v - v =T o1 v T 7
Uo : UpM-1 UN-1 U

Figure 3.2. Space limited function with N cells

and similiarly, the spectral domain may be segmented as

A 13U

AT

)

otz
Vv

<

fo
Figure 3.3. Band limited function with N cells
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The integrals are approximated using an open quadrature rule of the form

Umaz . N-1
/u s(u)e™ T vdu =3(v) = Y s(p)ay(v)W* (3.16)

min p=0

[ /f’"'“ ?(f)e‘””f"df]* = s(p)

min

[ 3 ?(v)ﬂv(p)W””} (3.17)

=—E+1
2
where W = e=i%. If the indices of the sequences in (3.18) and (3.19) are inter-

preted as storage locations the vectors s and § would appear in memory as

5(0) s(1) s(2) .. s(&) .. s(N-=1)

2

(BN .o§(-2) 3(-1) 3(0) (1) 32) .. Y

2

(3.18)

In order to directly overwrite s onto 3 the negative index § elements may be shifted
N elements to the right which yields

5(0) s(1) o(2) o o) sE+1) . s(N-1) 519
30) 31) 3(2) .. &) s(-&¥+1) .. 3(-1)

This shift has no effect on the complex exponential since WP(4~N) = W A

generalized non-reciprocal DFT pair may then be defined by

N-1
Sule) = 3 su(@aplg) WP (3.20)

p=0

s(p) = [iﬁ(q)ﬂq(P)W”q] (3.21)

g=0

If midpoint integration is used, a,(¢) = Az and B,(q) = Af yielding the conven-

tional reciprocal DFT pair

N-1

5(q) = ;)S(P)W”" (3.22)
1 [ )

s(p) = N[X_% ?(q)W”q} (3.23)

Although the forward and inverse transform may be generalized as above, in many
cases it is sufficient to generalize only the forward transform. A common illustra-
tion of this is the evaluation of a convolution. The inverse transform of a convolu-
tion will in many cases be much smoother than any of its functional components.

transformed
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3.3 Higher Order Integration

The midpoint integration used to derive the conventional DFT pair implies that
the entire integrand is constant over each cell. However, the cell width is chosen
based on the function to be transformed not the integrand in the transform. Even
if the function is constant over the cell width, the product of the function and the
complex exponential becomes quite oscillatory with increasing frequency. Midpoint
integration applied to a single cell yields

4 . .
/_ ' 2(2)edn & ha(zo)e M, (3.24)
2

The assumption on the integrand is that over the cell
[2:(2) 4 jzi(x)]e™*™® = 2,4+ jzio = constant. (3.25)
The system of equations

z.(z) cos(2r fz) — z;(z)sin(2r fz) = 2z, (3.26)

z,(z)sin(2m fr) — zi(z) cos(2r fz) = —=zp (3.27)
may be formed and solved for the unknown real and imaginary parts of z(z) as

z(z) = zgcos(2wfz) — zypsin(27 fz) (3.28)

z(2) = 2zw0sin(27fz) + 2 cos(27 fz). (3.29)

As these equations indicate, the implied basis functions are dependent on the

frequency. Thus, the approximation that the integrand is constant becomes less

valid as the frequency increases. To illustrate this, let h = % such that fi.e =

-;Z =10 and z = 1.0 4+ ;1.0.
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Figure 3.4. Real part of z(z) assumed at each f.
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3.3.1 Weighted Open Newton-Coates Integration

The simple integration used to obtain (3.24) and (3.25) does not exploit the fact
that part of the integrand of (3.12) and (3.13) is known. The following formulas
were derived in a manner analogous to the open Newton-Coats forms[15]. The
formulas are derived for equally spaced nodes and are of the weighted open Newton-
Coates (WONC) type. The weights are complex functions of f defined as a(f) =
o (f) + jo'(f). The nodes are defined by

rr=zo+kh k=0,.,n-1 (3.30)

where
To=a+ -;—}h (3.31)

where
enlf) = &t [ L(u)e I (3.32)

and L,(t) denotes the Lagrange polynomials defined by

N-1(4 4.
L) =TI ((: _t;)). (3.33)

This study will consider the 1 and 3 point formulas. Making the definition ¢ =

7 fh, the 1 point formula is given as

b , .
/ A2)e ¥ ds = oy (9)z(zo)e 2™ (3.34)
where
sin
(W) = h 12’/’). (3.35)
The composite 1 point rule is given by
b ) N-1 )
/z(x)e'ﬂ"f”dx = oy(¥) 3 z(zx)e 2o (3.36)

¢ k=0
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and the 3 point formula yields

/b 2(2)e” e = oy (1h)z(x0)e ™I + ay()z(z1)e™ I 4 () 2(zg) eI

a

(3.37)
where
Ql() = gz (37 =2 sin(5w) + (159" - Dsin(s) + 4(cos(50) + 2cos(s)
(3.38)
@) = oz (3 —2)cos(5%) — (1597 - 2) cos(y) — 4w(sin(5w) - 2sia(y))]
(3.39)
wa®) = 155 (2~ 5)sin(34) — 61 cos(34) (3.40)
as(¥) = eq(f) (3.41)
The composite 3 point rule may be written as
L1
/b z(x)e—jzwfzdx — al("/)) Z z(msk)e—jmrfzak +a —J21rfh Z w3k+1 e —j2rfra
k=0 g—l k=0
+az()e R N 2(zapyq)e I (3.42)
=0

3.3.2 Weighted Open Finite Difference Integration

It is possible to derive integration formulas which use not only function values
but also derivative values [16]. The derivatives may then be approximated using
finite differences. This integration formula will be referred to as a weighted open

finite difference (WOFD) type.

b , :
/ s(z)e” o dr = [aps(zo) + a18'(z0) + azs”(z0)] e ¥ (3.43)

where h = b— a and zo = % The coefficients may be calculated by requiring the

formula to be exact for polynomials up to and including z* for n = 0,...,2. Thus,
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this formula has the same order as the 3-pt WONC formula. An alternative and
easier derivation of the coeflicents is to integrate the interpolating polynomial over
the interval. An interpolation scheme which uses both function and derivative
values is called Birkoff interpolation. The single point integration formula is a
special case of Birkoff interpolation which expands the unknown function in a

Taylor polynomial around each point.
1
s(z) = s(zo) + (z — z0)s'(z0) + 5(:1: — z9)%s"(z0) (3.44)

By inspection, the weight coefficients are expressed as the integrals

. b
ag = eﬂ"f“/ eIt I= gy (3.45)
. ab )
a; = eﬂ"f“/(x—-xo)e“ﬂ"f”dx (3.46)
1. b :
a, = 5eﬂ"f”"‘/a(:z:—a:o)2e"’2"f’”d:1: (3.47)
which yield
Qp = h’yl (348)
1
a = ]§h272 (3.49)
1
Qy = ﬁhsﬁ’s (3.50)
where
sin
- _12@ (3.51)
cos(y) — sin
= LAYty .
2 — 2)sin(v)) + 2¢ cos(vp
3 = 3 ¥ ) (zz (%) (3.53)

Extending the single point formula to a composite formula with N points yields

b ) N-1 _ N-=1 '
/ s(2)e ¥4z = ap Y s(za)e T oy Y 8/ (2, ) eI o
a n=0 n=0
N-1
tay Y §"(z,)e I, (3.54)

n=0
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The derivatives may be approximated using the center difference derivative rules

1

(o) ¥ o (s(E) = (5] (3.5)
S(za) ~ h12[(x,,+1) 25(2a) + 8(2n1)]. (3.56)

The Fourier transform of the first and second derivatives is given by

0 [ -j2nfz ~ _ —j2rfz
/ s'(z)e dr =~ 2h/ [s(z + h) — s(z — h)]e dz

— 2h [6121rfh e—JZrh] /oo S(x)e—j%rf:c

-00

_ j%sin(%r i) [ s(@yeinte (3.57)

-00

¥ (z)e R Ay L s(z + h) — 2s(z) + s(x — h)] e 22l
h? J-oo

-0

— ﬂ [ej2wfh -2+ e~j21rh] /oo s(z)e—ﬂﬂfx
= —%[1 — cos(27 fh)] /oo s(z)e~If= (3.58)
The integral may be written as
o —-j2rfz _ 1 : 2 = —j2rfrn
/ s(z)e dr = |ag +]Za1 sin(21) — ﬁaz[l —cos(29)]| D s(zn)e
-0 n=0
+(Io + Ipg_y)e~ 32 (3.59)
where I and Ip;_, are given by
’ 1 j2r fh
Io = o |S ($_1) oh [3($0) - S(CC 2)] (4

+ou [+ (z0) = 5ls(2) = s(z-)]

+a, :S”(m-l) - %[3(10) —2s(z_1) + 3(;,;_2)]] el2nfh

+ay :3"(:1:0) - 7}5[8(1‘1) —238(zo) + s(x_l)]] (3.60)
Iy = 4+ :3’(9:M_1) - %[s(zM) - s(zM_2)]] e—i2mf(M=1)h
+a :3’(1'M) 21h[ (Tm41) = S(:DM_l)]] eI fMh

: 1 |
+a [s"(2ar-1) = 5ls(oar) — 26(enr-1) + s(oar-a)]] 708

+a;, :s"(xM) - -}%[s(xM_H) —2s(zpm) + s(a:M_l)]] e~ 2 IMh(3.61)
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and represent the end point corrections which replace the midpoint difference for-
mulas by forward and backward differences, respectively. These correction terms

may be simplified to

I, = ags"(xo) + o8’ (z0) + == {2a2(2 — &) - haleﬂ"’] s(zo)

2h2
2h2 [hay + 200] s(2:) (3.62)
Iy = [023 (a:M 1) +a13’($M-1)] e~ I2(M-1)¢
+§7ﬁ [har — 2a3(1 — )] MY 5(zpy_y)
1
77 [hea — 205]e” IUAM=1V5(2pr_5) (3.63)

by excluding all points outside the interval. The derivatives at the initial points

may be approximated with forward difference rules

§'(zo) = 21h [s(z2) — 4s(z1) + 3s(z0)] (3.64)
S(z0) ~ %[s(mg)—2s(x1)+s(zo)]. (3.65)

Similarily, the end point derivatives may be approximated using the backward

difference rules

1

s’(:cM_l) e~ 5’-{ [38($M_1) —4s(zp-2) + s(zpr-3)] (3.66)
Same) ~ % (5(zp—1) — 25(2rt-3) + s(2is)] . (3.67)

Making the assumption that s(z,) =0 for n > M — 1 (3.59) may be rewritten as

N-1

/oo s(z)e ™y = ¢ Z 8(zp)e 2 I2n

n=0

+ [C28(z0) + Cas(z1) + (as(x)] €720

+ [(s8(zm-1) + Ces(zpm—2) + (78(zp-3)) e_j2”°(3.68)

where, letting § = M

GG = hlm-—- %72 sin(2¢) — -1—73[1 — cos(29)] (3.69)



G2 =

(s =

(4 =
G =

Table

25

% [6v2 sin(2%) + ¥3[3 — cos(2¢)]]

iy l3 + cos(26)] + 7 5in(2)] (3.10)
—% [¥s = 567 (3.71)
2_’;' [v3 — 7672] (3.72)

5’% [6[3sin(2(0 — +)) + sin(28)]y2 + [3 cos(2(0 — ¢)) — cos(26)] 73]

+j2—’; [6[3 cos(2(8 — 1)) + cos(28)]y2 — [3sin(2(8 — 1)) — sin(20)]73]

(3.73)
~ £ sin(2(0 — ¥) + 12 08(2(0 — ¥)
+5{372 c05(2(0 — ) — e 5in(2(0 — ¥)] (3.74)
57167 5n(2(60 — ) + 75 cos(2(0  ¥))
+5{672 cos(2(0 — ) = 7 5in(2(0 — $)]] (3.75)

3.3.3 Operation Count

3.1 shows the operation count comparison for the conventional FFT

verses the 1pt and 3pt WONC formulas and the 2nd order 1pt WOFD formula.

Type real mult. real add.

FFT aN N
1pt (WONC) | e1N +2N 2N
3pt (WONC) | 3e1 N + 6N | coN +2N
1pt (WOFD) | e1N + 24N | coN + 14N

Table 3.1. Operation count

As the next section will show for 60 < N < 504 the constants ¢; and ¢,

approximately range over 3 < ¢; < 5 and 18 < ¢; < 27. For functions with
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sharp end point discontinuities the 3pt WONC formula would be more efficient.
However, if the function approches zero in a smooth manner at the end points,

then the end point corrections of the 1pt WOFD may be neglected and it becomes
as efficient as the 1pt WONC.

3.4 Derivation of a Prime Factor FFT

The FFT is a fast method of computing a summation of the form
N-1
Z(q) = ) 2(p)W*. (3.76)
p=0
where W = ¢=% and N = NyN;N3---N,,. The basic strategy of computation
is to map each one-dimensional index p and ¢ onto a N-dimensional map which

allows the summation to be accomplished in a more efficient manner. W#? may be

factored as
WP = WPhaWwpRewRe. .. yrmim (3.77)

and the single summation becomes a nested set of m Ny point summations
Nm—-1 N3—-1 | No—-1 | N1 -1
) = Y- > | Y Z 2(p)WP | WP | Wis% ... WEmin (3.78)
pm=0 p3=0 | p2=0 | p1=0
X
where Wi, = W k. The indices p and q are refered as the input and output maps
respectively. One possible mapping would be to let each factor N; represent the

base of a number system and express the input and output maps in mixed radix

notation. This mapping attributed to Cooley and Tukey [17] expresses p and ¢ as

Pm + Nmpm—l + N, —1Num—2 + Nm—2Nm—1Nmpm—3 + ...+ N2 e Nmpl

p

9 = @+M@+MNegs+...+ N+ N1 (3.79)

Note that the order of the radix expression for the output map is the reverse of

the input map. Performing the multiplication pq yields

N

N N N 2
Pg = PGt Pt JrPsgs T Pmdn + nN"pug, + ap,qs (3.80)
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where n is an integer, « is real and u # v, r # s. The first m terms of (3.96)
represent m N point DFT’s. The next term may be ignored since W™V ’Putv = 1
for all n,p,q. The last term represents the cross product terms which are the
‘twiddle factors’ in [18]. It is possible to avoid these twiddle factors by using a
different map construction.

An understanding of the prime factor algorithm requires a few introductory
terms from number theory. A congruence relation is defined by assuming that a
is congruent to b Modulo N if a and b yield the same remainder when divided by

N. A congruence is defined by
a=b (mod N) (3.81)

A set integers is called mutually prime if the greatest common divisor between
them is 1. The prime factor mapping is based on the following theorem. The
Chinese Remainder Theorem [19] states that given a set of mutually prime integers

{Ny, N2, N3, ..., Ny, } the system of congruences
t = r, (mod N) k=1,...,m (3.82)

has a unique solution z (mod N). Two basic maps were suggested by Goode [20]
and called the Sino and Ruritanian maps, respectively. Both of these expansions
use the same map for input and output. The Sino map may be constructed as

follows. Let

N N N

p = Ll ']"V:pl + Lgm}b + L3']V—3p3 + . + LmN—mpm (mod N) (383)
N N N N

q = Iy ‘N—lth + Lzm% + L3F3p3 +...+ LmN_QO (mod N) (3.84)

then there is a one to one correspondence between p and {p;,ps,ps,...,Pm} and
between q and {qi, 2,43, ..., gm } if the integers L,, Ly, Ls, ..., L,, are chosen such

that

Li— =1 (mod Ny) k=1,..m (3.85)
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Unfortunately, a numerical implementation of the DFT using this map will either
require the solution of this set of congruences for each N or require auxillary
storage of a precomputed set. This is somewhat undersirable since speed is of
prime importance. An alternative called the Ruritanian map is a special case of

the Sino map where Ly =1for k=1,...,m

N N N

p = N1P1+ N2P2+ N3p3+ +N—pm (mod N) (3.86)
N N N N

q N1q1+ N2¢I2+ N3P3+ .+ N, gm (mod N) (3.87)

Since W is periodic in N W~ {IN — W and the exponent does not have to be
evaluated Module N. Performing the multiplication pq yields
N? N? N? N?
= — coo—=PmGm + nN? 3.88
Pq N2p1q1+N22pzqz+ N§P3q3+ NZPmin +n (3.88)
where n is an integer. W?? may now be factored as

WP = (WP )% (W) % (W) - (Wram) B (3.89)

This factorization is not in the desired form because each W}*% is raised to the
power N However, it may be shown [21]-[23] that if - ~- is mutually prime to Ny
the effect of the exponent is to permute the output Nk point sequence. Replace

the output sequence

s(n;) 1=0,..k-1 (3.90)
by the permuted sequence
N )
s(n,) r= ZF (mod N¢) fori=0,...k—1 (3.91)
k

It is not apparent which way to sequence through the indices. As an example

consider N =2-3 -5 = 30. The index sequences are given in table 3.2.
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™ o g © — D= 1] © N © g ~ =~ » o N 0 ¥ O
& I [JE oo IHqTIS oo qEII+FZ 533903 23S
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g
2 & co o g~ - - 418NN OO0 T = HNNNNN
& O 0O g~ H A A O OO AN A OO O e
— ~
& TRl E28Aq+rI3I I ELS - JIoPIIA2 KRS
ﬁm o~ Ao oo~ A NN Do
g
21 & NN A o 4~ O - N - NNO A NN - NO - NS - NSO N
& cgd- ~ {oog~mrAo0oo0cod--r oo~~~ 00 A~ —~ —~
o ~ o o o — N H g =g w2
_ A~ YY" A" Jqa9g9r a9 A A~ A A~ &
Hm g A mear Hodgd A m g Ho g~ N o <
g
21 & g 41 oo -~ {aqog -~ o~ {8 qo o~ N A
& {oeo4{o {o o o 1o 1o {o 1o 1o 1o 1o 40 o —

2-3-5.

Table 3.2. Index sequence for N
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Table 3.3 shows the possible factors for V chosen from the list of {2,3,4,5,7,8,9, 16}.
Let

ar = multiplications for kth factor DFT (3.92)

Br = additions for kth factor DFT (3.93)

then for N = N1N2N3 v Nm

“ N
total multiplications = Z—ak (3.94)
k=1 Nk
" - N
total additions = Y —p, (3.95)
k=1 Nk



31

N | Factors | Mult. | add. | N | Factors Mult. | Add.
2|2 0 4 80 | 5-16 260 1284
313 4 12 84 13-4-7 304 1536
4 |4 0 16 9 |2-5-9 380 1996
515 10 34 105 [ 3-5-7 590 2214
6 [2-3 8 36 112 | 7-16 396 2188
717 16 72 120 | 3-5-8 460 2076
8 |8 4 52 126 | 2-7-9 568 2780
919 20 88 140 | 4-5-7 600 2952
10{2-5 20 88 144 | 916 500 2740
1213-4 16 96 168 | 3-7-8 692 3492
1412.7 32 172 | 180 | 4-5-9 760 3704
15135 50 162 | 210 {2-3-5-7 1180 | 4848
16 | 16 20 148 | 240 | 3:-5-16 1100 4812
1812-9 40 212 | 252 | 4-7-9 1136 6064
20{4-5 40 216 | 280 | 5-7-8 1340 6604
2113.7 76 300 | 315 | 5-7-9 2050 8462
24 13-8 44 252 | 336 | 3-7-16 1636 7908
28 14-7 64 400 | 360 [ 5-8-9 1700 8308
3012-3-5 | 100 | 384 | 420 [ 3-4-5-7 | 2360 | 10536
35157 150 | 598 | 504 | 8-7-9 2524 | 13388
36|[4-9 80 496 | 560 | 5-7-16 3100 | 14748
4015-8 100 | 532 | 630 [ 2-5-7-9 | 4100 | 21964
42(2-3-7 | 152 | 684 | 720 | 5-9-16 3940 | 18596
45(5-9 190 | 746 | 840 [3-5-7-8 | 5140 | 23172
48 | 3-16 124 | 636 | 1008 | 7-9-16 5804 | 29548
56 | 7-8 156 | 940 | 1260 | 4-5-7-9 | 8200 | 38888
6013-4-5| 200 | 1104|1680 |3-5-7-16 | 11540 | 50964
6317-9 284 1264|2520 | 5-7-8-9 | 17660 | 84076
70|2-5-7 | 300 | 1588 | 5040 | 5-7-9-16 | 39100 | 182012
72189 196 | 1172

Table 3.3. Real multiplications and additions
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tensi wo Dimensio

The two dimensional fourier transform and inverse transform are defined as

(forfy) = / / 2z, y)e~ U=+ gz dy (3.96)
2ey) = [ [ #f f)e 0y, g, (3.97)

Making the change of variables ¢ = u+x and y = v+y, and defining the quantities

s(u,v) = z(u+ zo,v + yo) (3.98)

(far fy) = z(fz,fy)ej%(jﬂo-{—f"yo) (3.99)

the transform pair may be written as

5(fus fo) / / s(u,v)e It i) gy gy (3.100)

swv) = [ [ 5(fu f)eP 0y, df, (3.101)

Since the exponential kernal of the integral is separable, the two-dimensional DFT
may be decomposed into a series of one-dimensional DFT’s. Because the data set
is padded, a significant savings in computation time may be achieved by avoiding
any unnecessary one-dimensional DFT’s of sets of zeros. The two-dimemsional

DFT is decomposed as shown in figure 3.5.
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Figure 3.5. Two-dimensional DFT Operations.
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3.6 Test Results

The formulation was tested with a function

o(z) = 2(z) for—a<z<a (3.102)

0 otherwise

which is expanded as a finite sum of Chebyshev polynomials T%({(z)) where

4
z"‘(x) = ch"Tk({(x)) (3.103)
k=0
and {(z) = £
Test Coeflicients
k| c; c}'c
01]0.0 0.0
1104 04
210.8 0.2
3105 0.5
4112 0.3

Table 3.4. Test coefficients.
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Figure 3.6. Test function.
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CHAPTER IV

SCATTERING FROM A SINGLE PLANAR PLATE

L1 05 .

The orientation of the plate is given as in figure 4.1.

Figure 4.1. Plate with plane wave incidence.

37
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The incident electric field has unity amplitude and may be decomposed into

the orthogonal components

B =[(6-0)0+ (6 d)ple N = [Epi + Byl + Enof]B' - (4.1)
where
ki-7 = —ko[sin(6;) cos(;)z + sin(6;) sin(¢;)y] . (4.2)
E., = cos(a;)cos(6;)cos(¢;) — sin(ey)sin(d;) (4.3)
E,, = cos(a;)cos(8;)sin(e;) + sin(e;) cos() (4.4)
E,, = —cos(a;)sin(6;) (4.5)

and ' = e~#%)_ The corresponding magnetic field components are computed

from H* = -Zlgl::, X E' = [Hzot + Hyo + H,02]h* where

H,, = Zio[sin(a,-) cos(8;) cos(¢;) + cos(e;) sin(¢;)] (4.6)

H, = 710- [sin(ey) cos(8;) sin(¢;) — cos(e;) cos(¢;)] (4.7)
1 . :

H, = 7 sin(ey) sin(6;). (4.8)

The E-polarization case is defined at a; = 90° and H-polarization occurs at a; = 0°.

4.2 Integral Equations

The scattered fields may be written in terms of vector potentials as

Eo=_vXF_j-f-°(vaXA_je) (4.9)

0

B =V x A- j— (V x V x F = J™) (4.10)
koZo

where J*™ are electric and magnetic polarization currents and A and F satisfy
the inhomogeneous vector Helmholtz equations
VA+ KA = -J° (4.11)

ViIF4+kF = —J" (4.12)
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which have the solutions in integral form given by
1= / / Je(R)G(R, R')dv (4.13)

F = / / / J™(R)G(R, R )dv' (4.14)

e—iko|R-FR!|

G(E, )—47r|R R

with

(4.15)

The incident fields induce electric and magnetic polarization currents inside the

material body. The total internal fields are expressed in terms of the currents as

ET = 8,J° and HT = ,,J™ where

:Bc = (fr — l)ko (416)
= — (417)
" (e = DkoZo '

These currents represent the source of the scattered field and are the solutions of
the volume integral equations formed by relating the internal total, scattered and

incident fields as

ET-E = E (4.18)

AT - = H. (4.19)

If the plate is electrically thin, the internal field components are assumed to
have a constant z variation such that % = 0. It is convenient for computational
purposes to express the integral equations in terms of tangential variables such
that the normal components E, and H, are found from (4.9) and (4.10) directly
and the tangential components are found after substituting (4.11) and (4.12) into
(4.9) and (4.10). The volume integral equations may then be implicitly written as

e ,Zo 2 82 62 3 _ ’
Bl + i [(k Yo7 ) At gogp |+ e = BL o (420)
,Zo[ 9?

0z0y

2
A,+<k2 aaz)A]—%Fz = E,  (421)
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Wb = 5 Fet 5Py = ((,fy +6622)Az y
IndZ 4 [(k Z)~ +aa;yFy]—§y-A, - u
ﬂm.]"‘+]klzo [68; F, + (k’+aa22) Fy} +%Az = H,
BT+ 5 A = Ay = (;; +§;)Fz - HL.

(4.22)
(4.23)
(4.24)

(4.25)

Since the volume current has no z variation, the volume integral may be reduced

to a surface integral. The volume currents may then be replaced by an equivalent

normalized electric surface current K® = 7J°Z;! and a magnetic surface current

K™ = 7J™. Assuming that the coordinates are normalized with respect to Aq

(4.20)-(4.25) reduce to

wK+ [[ [1K:+ WK + VKT dS' = E
wik; + [[ [W:K:+WK; - UKT]dS' = E]
wy K& — / /S UKD — WK + VK2 dS' = Ei
wk? + [ [ [BKD + K] - WeKedS' = H
wskp + [[ [0 + WK + WK:]dS' = H
wk? + [[ [WeK: - WsK; - WKT|dS' = H]
where
1 2, 0 1 6?
h ~Jor (47r + 6:1:2) G N ) O0zdy
1 2, & .1 (3 @
Yo=igy (4” +5;z)G Ya=ios (azz 55 ) ©
0 0
= — Uy = —
Vs = 2-G o= 5-G
and
v = it 1] e+ill-€)
! J (6, — 1271 277 | (€ — 1)2 4 (€")?
& 1 [e-jlalg =1+ ()]
2 J (6 — 1271 277 (el —1)% 4+ (e)?

1.26)

(4.32)
(4.33)

(4.34)

(4.35)

(4.36)
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wy = —j— = L [ IO )
3 J (or = 1)277 277 [(,uL -1)2 4 (”;'1)2} (4.37)
v = i L T =gl (e = 1) + ()]

4 J (pr = 1)217 277 [ (1! = 1)2 + (pu")? } (4.38)

The two dimensional fourier transform and inverse transform are defined as

g(fmfy) - / / -'17 y € sz(fzz-*-f”y)d.T dy (439)

o) = [ [ 5 gy, ds, (4.40)
The two dimensional green’s function has a fourier transform given by

e 32T/ +y? —j% for f24+f2<1

(4.41)
dm/a? £y 2% for f3+f3>1

where d = 2(|f2 + f2 - 1)~%. Let X denote the fourier transform and X* signify

complex conjugation. The fourier transforms of (4.32)-(4.34) are

” G for f24+f2<1

¥, = JCI fot 4y (4.42)
| 0 for f2+ f2 > 1

- JO for f24+ f2 <1

Py = { . (4.43)
(i for f24 f2>1

. G for f24+ f2<1

g, = 4 G for fot+Jy (4.44)
0 for 24+ f2>1

~ 0 for f2+ fi<1

Uy = J orfaty (4.45)

(o for f24f2>1

~ for f24+ f2<1
g, = | @kt (4.46)

0 for f2+f2>1

~ 0 for f24 f2<1
Us = | J=+ 4y (4.47)

(s for 2+ f2>1

- for f24 f2<1
¥y = | G Y (4.48)

0 for f24 f3>1
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~ 0 for f2+f2<1

Uy =
& for 4 f2> 1
J§5 for 2+ f2 <1
0 for f24+f2>1
for f2+ f2<1
(s for f2+4 f7>1

=N
43
1
S
o

-

?

. J (¢ for f2+f2<1
Ve =

0 for f24f2>1
~ 0 for f2+f2<1
Vi =

Co for fZ24 f2>1

where

G = (1-f2)d
G = —fufyd

G o= (1-f)d
G = —(f2+£)d
G = fud

G = fd

The adjoint operators are computed from W2 = W*(—f,, —f,).

4.3 Surface Geperation

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

The surface generation is based on the premise that any planar area may be

approximated by a collection of square cells of dimension As. Arbitrary perimeter

geometries may be generated by passing a spuare arroy of cell centroid locations

through a series of constraints which determine whether the cell is inside or out-
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side the perimeter. This information is then stored in a square tag array which

represents a digital code for the geometry.
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Figure 4.2. Digital Generation of a Square, Circular, or Triangular
Plate.

4.4 Perfectly Conducting Plate

The program CGFCON solves for the surface current and the backscatter cross
section of a planar perfectly conducting plate illuminated by a plane wave. At
the present time the program is set up to allow circular, square and equilateral
triangular perimeters. The unknown surface currents are found by solving a pair

of coupled integral equations by a combined conjugate gradient FFT method.
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4.4.1 Formulation and Implementation

The formulation for E-pol or H-pol results in two coupled integral equations
which are defined and valid on the plate. Assume the coordinates are normalized

to Ao and the current is normalized to Z;'. The integral equations are
/ / [0S + 0.K(] dS' = E: (4.60)
SI
/ /s [WaK:+ WaKS] dS' = E: (4.61)

The plate is divided up into square cells of side A. The algorithm is given by

solve the 2 coupled equations for K; and K

initialize
Toy = E;,yff.l [\‘1}1,2f(;,0+\i,273f;,0] (4.62)
@, = F[U,7 4 0,7 (4.63)
Bo = (2P +17)" (4.64)
Pay = Bodsy (4.65)
for k=1,...
q,;,y = F! [‘il,2ﬁ:+‘iz,35:] (4.66)
o = (4P +1gP)” (4.67)
Kot = Koo+ oapy, (4.68)
il = b gl (4.69)
ghtt = FU[Bg R 4 Bk (4.70)
B = (!qi””|2+Iqj’“‘l"')'1 (4.71)
pEEY = pk, + Bt (4.72)
terminate when
(|r§+1|2+|r§+1|2)% < tolerance (4.73)

(|Ei|* + |Ei|)3
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The Algorithm is programmed by separating all parameters in to their real and

imaginary parts. No complex numbers are explicitly used.
hin Dielectric P

The program CGFDIE solves for the equivalent surface current and the backscat-
ter cross section of a planar dielectric plate illuminated by a plane wave. The plate
is assumed to be thin such that the thickness 7 satisfies the relation 7 << A, where
A, is the wavelength inside the plate. At the present time the program is set up to
allow circular, square and equilateral triangular perimeters. The unknown surface
currents for the E-pol case are found by solving a pair of coupled integral equa-
tions by a combined conjugate gradient FFT method. The H-pol case requires the

solution of an additional equation.

4.5.1 Formulation

The formulation for E-pol two coupled integral equations which are defined
and valid on the plate. The H-pol case requires an additional solution for the
normal component of current. Assume the coordinates are normalized to Ay and

the current is normalized to Z;'. The integral equations are given by

wk:+ [ ]S [vk:+ K] ds' = Ei (4.74)
wi;+ [ [ [0:K:+ K] ds' = E (4.75)
w K® — / /S U,KdS' = E (4.76)

4.5.2 Implementation: E Polarization
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The plate is divided up into square cells of side A. The algorithm for E-pol is

given as
initialize
r;,y = E;;,y - le:ng - .7:_1 [(I}I,ZE;'O + \‘IVIZ’SE;’O] (477)
@, = wirk, +F [, + B37) (4.78)
-1
Bo = (121" +1421) (4.79)
p::,y = /Boqg,y (480)
fork=1,...
qalcc,y = wlplzc-,y +F1 [‘1’1,2[3: + ‘T’z,sﬁ'z (4.81)
o = (lgfP+1gf1) (4.82)
Kzt = Koy +aph, (4.83)
ratl =k — gk, (4.84)
Gyt = wirkt 4 F[0g R 4 By ] (4.85)
-1
Be = (1571 +1gk+1P) (4.86)
pitt = b+ gkt (4.87)
terminate when
k+1)2 k+1(2 %
(" + |7'y ") < tolerance (4.88)

(1B + | Egf?)?
The Algorithm is programmed by separating all parameters in to their real and

imaginary parts. No complex numbers are explicitly used.

4.5.3 Implementation: H Polarization

The H-pol case requires compution of the normal component of current in

addition to the previous equations. The algorithm for the normal component of
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current is
initialize
rl = Bi—wK®— F'[,K: (4.89)
¢ = wirl+F ! [¥57 (4.90)
Bo = lg2™” (4.91)
p; = Bogl (4.92)
fork=1,...
¢ = wpt + F U] (4.93)
o = |qzl—2 (4.94)
KoMl = K% 4 oppF (4.95)
et = rh—augf (4.96)
‘Lfﬂ = w k+1+]:- [q,a~k+1] (4.97)
B = lg:t™? (4.98)
o= B+ Bt (4.99)
terminate when
Ire*|
IT;.' < tolerance (4.100)

Each Algorithm is programmed by separating all parameters in to their real and
imaginary parts. No complex numbers are explicitly used. The more refined algo-

rithm is given as

4.6 Thin Dielectric and Magnetic Plate

The program CGFDAM solves for the equivalent surface current and the backscat-

ter cross section of a planar material plate composed of dielectric and magnetic
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material illuminated by a plane wave. The plate is assumed to be thin such that

the thickness 7 satisfies the relation 7 << A, where A, is the wavelength inside

the plate. At the present time the program is set up to allow circular, square

and equilateral triangular perimeters. The unknown surface currents are found by

solving two sets of coupled integral equations by a combined conjugate gradient

FFT method.

4.6.1 Formulation

Assume that the coordinates are normalized with respect to A\ and the electric

currents are normalized by Z;'. The E-pol equations are

w KE + / /S ,
le; + /_/S,
i

wKD + [ [ 9K + 0K

k] + [[ [0:KT + Bk

and the H-pol equations are

wo K™ + / / ,
wk ],
o=

w KS + / /S (WK + 0K

wik;+ [[ [9K: + UK
sl d

U, K2+ U, KS + UK

}1:21{; + UsKE — \1:51{;":

WeK2 — UsK; — WK

W, K + UK — UeKC]
(W KT + UK + U5K]

W6k — Vs K" + ‘I’4K::

ds’
ds’
dsS’
ds’
as’

ds’
ds’
ds’
ds’
ds'

(4.101)
(4.102)
(4.103)
(4.104)

(4.105)

(4.106)
(4.107)
(4.108)
(4.109)
(

4.110)
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4.6.2 Implementation: E-Polarization

The plate is divided up into square cells of side A. The algorithm for E-pol is

solve the 3 coupled equations for Kz, K; and K"

k+1

k+1

initialize
riy = Biy—wiKgy— F7 [T1aKet + By Kot £ 855K (4111)
i = Hi—wK - F7' [§Ke" — UsKg! — UK (4.112)
@, = wirk, + F 05,7 + 05,7 £+ 057 (4.113)
¢ = wirl+F [ - il - Gar] (4.114)
Bo = (1P +1a2P +12P)” (4.115)
Pry: = Dolay: (4.116)
(4.117)
fork=1,...
¢ty = wiphy + F 7 [T1apt + Uouph + Uy 557 (4.118)
¢¢ = wopt + F [Tt — Tsph — U] (4.119)
ar = (I +1gf1* + 16417) (4.120)
Ko = Kb+ onpl, (4.121)
KM = K% + aeph (4.122)
retl = kL, (4.123)
gt = wirktt 4 PG By A 2 B (4029)
qf“ — w;rf+l +F! [{i’,gF:+1 _ @,g;ﬁﬂ _ \f,g;.icﬂ] (4.125)
B = (17 P + 15+ P + gt )™ (4.126)
(4.

px,y,z

k
pz?yiz + ﬂk qz?y7z
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terminate when

(4P 4+ b1 + i+

(B2 + | Ej |2 + | Hi[?)3

< tolerance

solve the 2 coupled equations for K* and K}

initialize
dy = Hiy—waKD - 7 [Tt 4 B Ry
@, = wirk, +F U5, + 03,7
-1
Bo = (19 +14P)
pi',y = ﬂoqg,y
fork=1,...

qg,y = w3p§,y + ‘7:—1 [{I}I,Zﬁ: + @2,455

ar = (I +1k?)”

Koyt = K3+,
T:,-:'/I = r:,y - akQ£,y
‘Iﬁ;l = wg"ﬁ,;l +F [‘I’g,zF:H + ﬁ;g,i’gﬂ]
B = (&P +1g+P)”
Poy' = Poy+Beasy

terminate when

(k12 + Irg* )5

(IHi]? + | HJ?)2

< tolerance

(4.128)

(4.129)
(4.130)
(4.131)

(4.132)

(4.140)

Implimenting this algorithm is most efficient without use of any complex numbers.
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4.6.3 Implementation: H-Polarization

The algorithm for the H-pol case is

solve the 3 coupled equations for K7, K}* and K

initialize
ray = Hi,—wsKDy' — F71 [81,K0" + 8y K 055 K27] (4.141)
ri o= Ei—wK'+ F 7 [BK - UK+ UeKe| (4.142)
@, = wirk,+F 1[5, + 85 7 05 7 (4.143)
@ = wirl — F |57 - el + Bgrl] (4.144)
fo = (I2F+IgP +12P)” (4.145)
Pry: = Poday, (4.146)
fork=1,...
¢, = waph+F [‘T’l,zf’: + ¥, 5% ‘T’s,sﬁf] (4.147)
¢ = wapt — F [Tt — Uspt + Topt] (4.148)

ar = (I8 + g5 + It P?)

K3 = KIF+ aeply, 4.150)
Kokt = K% 4 appk 4.151)
T:Ihlz = rlxc,y,z_akql;,y,z 4152)

(
(
(
(

it = wirktt 4 P[RR 4 By Y R B Y] (4153)
qic+1 = wirt k+1 _ p-1 [\I,a~k+1 {I“,g;:!llc+1+q,a~k+1] (
B = (I + s + lasH 1) (
(

k+1 k k+1
pz?y’z - px,y 72 + ﬂk qz’y ’z

terminate when
1
(IrEF 12 + [rE*1)2 + |rEt1)2)2

(|Hi|? + |Hi]? + |Ei]?)3

< tolerance (4.157)
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solve the 2 coupled equations for K; and K;

initialize

oy = Bpy—wKZ, —F7 [‘f’l,zkf-’l + ‘EAR;’I] (4.158)
@, = wirl,+F U5, + ¥ 7] (4.159)
Bo = (12P+1gP)" (4.160)
Pr, = Bods, (4.161)

fork=1,...
¢ty = wipk, + F [t + Ut (4.162)
ar = (g +1gP)” (4.163)
Kot = Koy +aupl, (4.164)
ritl = ok — gk, (4.165)
¢t = wirit 4 F [\Tliﬁfﬁl + \Tf;jf“] (4.166)
Be = (512 +1gf+'P) (4.167)
ot = b+t (4.168)

terminate when
1
(Ir5t12 4 |ri*1 %)z

(IEL]? + | E}|2)?

< tolerance (4.169)

C ] 0S tio

The scattered far zone electric field is given by
E*(R) = jkoG(R)[R x N["(8, ) — ZoN; (9, )] (4.170)
where N;"™ (0, ) has the § and ¢ components

Ng™ = cos(6)[cos(¢)S™(8, 8) + sin(¢)S;™ (6, #)] — sin(8)S;™ (0, ¢)
NE™ = —sin(4)S7(6,9) + cos(8)Si™(0,6) (£171)
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and

gem (9, §) = / [ Ko (7)o s (4.172)

If the current is constant over the square cell and the coordinates are normalized

to A then

5™ (8, ¢) = Xn: zn: K™ (p, q)ei?m sin(6)lcos(¢)z(p) +sin(4)y(q)] (4.173)

p=1g=1

where

B _1_ sin [rA sin(#) cos(@)] sin [r A sin(9) sin(¢)]
F(0,¢) = 72 sin(f) cos(q) sin(f) sin(¢) (4.174)

For the electric current normalized to Z;! the backscatter cross section is given by
|E°f?
|2
= ©[INF+ NP+ NP - Mgl (4.175)

o = hm AR —1



CHAPTER V

RESULTS

The conjugate gradient FFT algorithms given in chapter V were implemented
using the prime factorization described in chapter III. This allowed an efficient solu-
tion of all plate shapes and sizes. In addition, the FFT employed was speciali'zed to
exploit the sparcity of the data due to the zero padding. An additional increase in
the convergence rate was observed combining the higher order integration formulas
with the prime factor FFT. The total computational time was reduced by a factor
of 3 to 4 over the authors previous programs using a conventional Cooley-Tukey
mixed radix FFT.

Figures 5.1-5.4 show the magnitude of the induced surface current on a square
perfectly conducting plate illuminated by a plane wave at normal and edge-on in-
cidence. Figures 5.5-5.8 compare computed backscatter patterns with experimen-
tal mesurements for a perfectly conducting triangular plate and a RAM material
square plate. Figures 5.9-5.10 compare computed results with a semi-analytical
method by Chu et al [24] for a circular dielectric plate. Figure 5.11 compares the
computed backscatter pattern of a square constant 1 ohm resistive plate with a

quadratically tapered plate with 1 ohm at the center and 57, at the edges.

54
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Figure 5.1. |K¢|:perfectly conducting plate,s = 2o, A = 2 o, tol =
.007, iter = 500,n = 256,80 = 0°,¢ = 0°, scale = 1.0.
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Figure 5.2. |K¢|:perfectly conducting plate,s = 2Xg, A = Z X, t0l =
.007, iter = 500,n = 256,80 = 0°, ¢ = 0°, scale = 6.1.



57

Figure 5.3. |K|:perfectly conducting plate,s = 2o, A = %/\o,tol =
.007, iter = 500,n = 256,80 = 90°, ¢ = 0°, scale = 1.0.
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Figure 5.4. |K¢|:perfectly conducting plate,s = 2Xo, A = ZXo, tol =
.007, iter = 500,n = 256,80 = 90°, ¢ = 0°,scale = 0.8.
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Figure 5.5. Perfectly conducting equilateral triangular plate: y —
zplane,s = 2Xg,tol = .05,A = %Ao,n = 128.
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Figure 5.6. Perfectly conducting equilateral triangular plate: y —

zplane,s = 2Xq,tol = .05,A = 3—29)\0,11 = 128.
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Figure 5.7. Square plate: s = 2Xo,7 = .0234X0, & = T4—3111,u, =
1.4 — j0.672,tol = .001,A = ZXo, n=128.
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Figure 5.8. Square plate: s = 2Xg,7 = .0254 )¢, € = 7.4 —j1.11p, =

1.4 — j0.672,tol = .001,A = £ )¢, n=128.

90.00



4

dB

10.00

63

0.00

-10.00 -

-20.00 [~

-30.00 —

-40.00 -

-50.00

l I I

| I

E-Pol Chu-Weil-Willis [24]

E-Pol CG-FFT

0.00

11.25 22.50 33.75

45.00
0;(deg)

56.25 67.50

78.75

Figure 5.9. Circular plate: rg = X, = .01)o, & = 2.0 — j10.0,tol =
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Figure 5.10. Circular plate: ro = Ao,7 = 01X, €& = 2.0 — 710.0,tol =
.001,A = £, n=128.
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Figure 5.11. Square resistive plate:s = 2Xo,7 = .01, tol = .001,A =
'325‘/\0, n="72.



CHAPTER VI

FUTURE WORK

There are basically three projects under consideration for the near future which

are extensions of the idcas presented in the previous chapters. They are

1 scattering by multiple layer planar plates
2 scattering by single and multiple layer non-planar plates

3 synthesis of material tapers for different plate configurations

Project 1 is a direct extension of the techniques presented in the previous chapters.
Project 2 concerns the development of a method which combines the versatility
of a finite element method with the efficiency of a conjugate gradient method to
solve scattering by non-planar plates. Project 3 assumes the material distribution
of a plate is an unknown and solves the scattering problem for not only currents
but also constitutive parameters such as € and p subject to certain constraints on

the radiation pattern.
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