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It is found that the elasticity in the liquid cannot only destabilize the flow, but it can also stabilize
the flow for certain values of depth ratio, wscosﬂ;y ratio, and elasticity ratio. The stabilizing or desta~
bilizing effect of the elasticity in hquld is absent in the absence of viscosity stratification, and is only

brought about when the viscosity varies.

"I. INTRODUCTION

Oldroyd' proposed a mathematical model to de-
scribe the mechanical behavior of viscoelastic mate-
rial. This model has proved very useful in character-
izing the rheological properties of certain dilute
polymer solutions at sufficiently small rates of strain.
Using this model, Thomas and Walters,?* Herbert,*
and Lai® examined the stability of specific cases of
flow. Recently, Chun and Schwarz® adopted Cole-
man and Noll’s” model of a second-order fluid and
considered the effect of slight viscoelasticity on the
hydrodynamic stability of a plane Poiseuille flow.
They all showed that the elastic behavior in elastico-
viscous liquid destabilizes the flows. Yih® considered
plane Couette-Poiseuille flow of two superimposed
layers of Newtonian fluids of different viscosities.
It was found that the viscosity stratification desta-
bilizes the flow in some ranges of the depth and
viscosity ratios, and stabilizes the flow in others.

Investigation of the plane Couette flow of two
superimposed layers of elasticoviscous liquid of
different viscosities and different elasticities is made.
The prototype of liquid designed by Oldroyd® is
considered. For this liquid, the equations of state are

S = — DG + Piny (1)

and
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in which 8, is the stress tensor, p an arbitrary iso-
tropic pressure, g.. the metric tensor of a fixed
coordinate system, e;, = $(u;,: + u; ;) the rate-of-
strain tensor, n, a coefficient of viscosity, \; the relax-
ation time, and A, the retardation time. The coeffi-
cients 7o, A1, and A;(<A,) are all positive. The symbol
d./dt denotes the convective derivative of a tensor
quantity in relation to the fluid in motion. For a
contravariant tensor T
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It is found that the elasticity in the liquid cannot
only destabilize the flow, but it can also stabilize the

flow for certain values of depth ratio, viscous ratio,
and elasticity ratio.

II. THE PRIMARY FLOW

Consider two elasticovisecous liquids I and II
between two parallel walls having the upper bound-
ary moving with a constant velocity U,, the lower
boundary being stationary (see Fig. 1). Let [(u.):,
(43)z, (us)s] denote the velocity components in the
T1, 3 and z; directions, respectively, where x,, 2.,
and z, are Cartesian coordinates, (p;;); denotes the
1 — j component of stress tensor, and (\,); and (\2)s
denote the relaxation time and retardation time. The

Us

J J "

T

— - X,

Fia. 1. Definition sketeh.

531



532

subscript k is I for the upper liquid and II for the
lower liquid since the equations of state and equa-
tions of motion governing liquid I and liquid IT will
be the same in the form. At this stage we drop the
subscript for convenience, and consider the steady
undisturbed flow

U = 11(2:2), U = 0, and Ug = 0.

For this flow, the constitutive equations can be
written as follows:

_ ap Pu u au \’
Pu+ )\1( 621 + apn — 2Py oz ) 2"707\2(5_1;> )
5 P g - éﬂ_) _, ou
Pz + N(axl De2 o) Mo oz, '
_ D13 _ "
Dis + )\1( pm“ ~— P23 (")l) =0

ax, 0%, @)

The equations of motion can be written as

ap + Py, + P21 + 3Dsy

0= dz, Ay 0z, ’

_ 0P |, Py |, D32 | 0Pz
0= 9z, T o, dz, + ox, T dx, T ro, )
0= ap+ap13+a_?_2§+%,

9z, 0%, 0z,

Equations (4) and (5) admit the stress components
of primary flow to be

=0, Doz = 0, P2z = 07 Das = 0, (6)
P =p@:), P = Pulxa), and Py = Pra2).
We make all quantities nondimensional by letting
= xdy, Y =yd, @=UU,, p= pIUgPy
d
p:; = pUoPy;, d =
P pilo an Uo

The nondimensional forms of the first two equations
in (4) and (5) are then
M

_ o 1l (aU;
_mR(@)’

(Pr): — 2(M ) (P

(Pr2): (7b)
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d

= &“ (P21)17 (70)
0= —iP — §,F? (7d)
- dy i i )
in which B = [Uypid,/(n0):] is the Reynolds number,
(M) = [Us\)i/di], (M) = [Us(N\r):/di}, and

= Ui/gd, is the Froude number. The subseript ¢
is taken to be I and II for the upper and the lower
layer of liquids, respectively,

(7?0)11
81 B m, m, (o)1 (8)
is the ratio of viscosity, and
o =1, d11 ="Y, Y= P (g)
P1

is the ratio of density. From Eqgs. (7b) and (7¢) the
equations governing the primary flow can be ob-
tained. These are

d*U,
dy*

d2 UI]
dy’

=0 and = 0. (10
Subject to the boundary conditions that U, is equal
to a specified U, on the upper boundary and Uy,
is zero on the lower boundary, and that U; and Uy,
and (Py3); and (P,5);r must be continuous at the
interface, Eqs. (10) can be solved to yield the solu-

tions

Ur=ay+b and Uy = ayy + b, (11)
in which
— m, — n
Bt b m, +n’
el i
2 ,m.,-l-n’ )

The primary flow has the same velocity profile as
that in the Newtonian fluid. As soon as we have U,
and Uy, from Egs. (7a-d) we obtain

P2y = au/R, (Py): = 2/R)(M ), — (M,)I]af,
dP, " _
W = —F y (Pu)n = mr/R (Plz)ly (12)
P = % M (M) — (Mz)n]ag;
and
%—I- = —yF7%.
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III. DIFFERENTIAL SYSTEM GOVERNING
STABILITY

Two-dimensional infinitesimal disturbances are
considered in this investigation for simplicity, but
this does not imply that Squire’s theorem is appli-
cable. Hence, the stability against the three-dimen-
sional disturbances should be studied in a separate

ELASTICOVISCOUS FLOW
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dicate the small perturbation from the primary flow.
Substituting these quantities into the general equa-
tions of motion and the constitutive equations, and
neglecting terms of higher orders, we obtain the
linearized equations governing the perturbation flow.
The linearized equations of motion are

investigation. %_w + U + U _Z’_ + % dayy + %‘ﬁ ’
Letu1=U+u',u2=V',p=P+p',pu= T ox Y
P, + G131y P12 = P, + 012y P22 = 023,y €17 = Gfu €13 = ' ' o’ F) F)
E,; + €5, €33 = €, in which the strain components Py U Pl —F 4 Sy Tm (13)
are nondimensionalized by the unit U,/d,, and a4,
012, G2, and the quantities denoted by a prime in- and the linearized equations of state are
’
out M|y g gy L o(Wp L Hp oy, )]
or ox d
_2, 2M[6_ dely _( )dU]
- R €11 + R 67' + 61: U + 2612 dy H
9015 | 901 yOPw _ _ dU o' ) 1
0'12+M1(61_ + Y U+U 3y T2z dy axPu (14)
2, , 2M, (g_eé el v U dU)
‘ =Bt R \or Tz U+2dy @ gy )
il i) ] 2 2M, (9 d ' dU
032+M1(012+§22U—2vP)=R‘€£2+ Rz(€22+_€_zg 6mdy>

In addition to these, we have the equation of con-
tinuity

du’ | o

oz -+ bg = (. (15)
In order to retain the meaning of R and nondimen-
sionalize the pressure by the same unit p; U? for both
layers of liquid, a factor 1/y will arise on the right-
hand sides of Eq. (13) and another factor m, will
arise in Eqgs. (14) for those terms which contain the
Reynolds number &, when the lower layer is con-
sidered.

Equation (15) permlts the use of a stream funetion

¥, in terms of which

Y ;

U = ’a—y' ’ vo= —
Ag is customary in stability analyses, we assume,
that all perturbation quantities contain an exponen-
tial time factor, and study the behavior of a spatially
periodic disturbance. Thus,

9,

9z (16)

(‘ﬁ; P', Oi1y T12, 0'22)
= [6(¥), f¥), F.(y), Fy(y), Fs(1)]

-exp [talz — e1)], an

in which ¢ is the eigenvalue sought. The stability

or instability is determined by the sign of the imag-
inary part of ¢, which can be written as ¢, + #¢;. The
flow is stable when ¢; is negative and unstable when
it is positive. It is understood that more general
disturbances can be decomposed into Fourier com-
ponents, each of which has the form assumed in Eq.
(17).

Substituting Eqs. (17) and (16) into Eqs. (13) we
eliminate p’ and obtain, for the two layers in turn,
1e{(Uy — o)(@1’ — a2¢1)]

= ta(F)i + (F)Y + o*(Fa)x
id’Y[(UII — o)t — Ot2¢11)]

= ia(Fl){I + (Fz)ﬁ + az(Fz)n — 'ia(Fa)fx- (18)
Similarly, substituting Eq. (17) into Eqs. (14) for
the two layers in turn, one obtams the linearized
equations of state

(F)):1 + ia(M,)(U; — 0]
= (M) {ia(P1)id: + 2[ia(P11) @i + (Pra) 0¥

- EDU + iap S 6 — 5, 2L
[’ U; — ¢) + Ui(2¢7 + o ¢‘~)],

— 1a(Fa)1,
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(Fo)i[1 + () (U; — o)]
= (Ml)o‘[ia(Pl2):¢i + (F3)|‘U£ + a2¢,-(Pu).-]

+ B35 @1 + a%) + i, L2
L4 + (U — ¢) — .UV + 201U,
(Fo)ill + (M) (U — o))

= Z(Ml)i(P11)€a2¢i - ’I:aﬁ.'l%qf’:‘

2(M 2(M>);

+ 8: =% iU ~ o) — Uls, (19)

in which the subseript ¢ is taken to be I and II as
before for the upper layer and the lower layer of
fluids, respectively.

On the boundaries, the zero normal veloeity and
nonslip condition demand that

#(1) =0, $i(1) = 0,
¢u(—n) =0,  ¢l:(—n) = 0.

The continuity of ¢’ at the interface demands
$:(0) = ¢1:(0). (20e)

The kinematic boundary eondition at the interface is

(202, b, ¢, d)

( + U )"7 =v =
From this we find
¢I( )

—1a¢:(0) exp [ia(z — c¢7)].

n = exp [ta(z — c7)], (21)
in which 5 is the deviation of interface from its mean
position, and ¢’ = ¢ — Uy(0) (or ¢’ = ¢ — b). The
continuity in %’ at interface then demands
; 0 ‘ 0

¢ + 22 130 = o6 + 222 v40). 200
The continuity of shear stress at interface is expressed
by [o1a + (@Pw/dy)nhr = [0z + (@dP12/dy)nlu,
evaluated at ¥y = 0. Since dPy;/dy = 0 from Eq.
(7¢), this boundary condition is simply

(F3): = (Fa)n (20g)

The continuity of normal stress at interface is ex-
pressed by

at y = 0.

P
('—p - Zy 7 + 0'22)1

-(—p’_%ﬂ‘FO’zz)I:"‘
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in which 8 = T'/p;U%d,, and T is the surface tension,
and again, variables are evaluated at ¥y = 0. We
utilize the first equation in (13) to evaluate f and
hence p’ for either liquid. With the results so ob-
tained, and with 5 evaluated from Eq. (21), and
dP;/dy and dPy/dy from Eq. (12), the normal
stress condition can be rewritten as

—a(c'¢1 + awpr) — alFyr + UF)]
+ o(Fy): + ay(c’¢t + o1
+ a(FI)II - 'i(Fz)fl - aFa)ur

=aly - 0P + 280, o)
evaluated at y = 0.

The differential system governing the stability
consists of Eqs. (18), (19), and (20a-h).

IV. SOLUTION OF THE DIFFERENTIAL SYSTEM

The regular perturbation technique is used to
solve the eigenvalue problem for long waves, or for
a < 1. From Egs. (19) we obtain as Lai® did,

#: = 222 Uiy + 0(),
(P)e = 3¢t + ia S0 [Upg: — 210
— ¢1'(Ur — 9] + 0@,
(P = ~ia2 41 + 0@),
F)re = 228 m m Uttt + 06, (22
(Fo)u = 3 m,it +m113mmxAM
(Uitdn — 260U — o1:(Unn — )] + 0(0!2)1
(Fa)u = mq¢’h -+ 0(052),
in which
= (Ml)l - (Mz)n (23)
_ (Mx)u "' (Mz)n = O\l)n - ()\2)11.

™E MY — (M) T O — ()i

Substituting Eqgs. (22) into Eqgs. (18) and (20a-h),
we have, to the first power of o

61" — iaR(Uy — O# + i AM {4(Ui")’

+ Ui — 29101 — o' (Ur — )]’} = 0, (24)
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o4 — taR T (Un — O)ff + o AM ma (4(USi11)’

+ [Ulipnr — 261:UL — 61U — 0)]”’} = 0;

¢I(1) = 0; d’;(l): 0; (2537 b)
dul(—n) = 0, ¢§I(—n) =0, (25¢, d)
¢:(0) = ¢1:(0), (25€)

#10 ~ ¢:0) + 22 [0y0) - U401 = 0, ©5D

o1’ + o AM [Ut'¢: — 291U
— ¢1'(Uy — )] — m,pif — 1 AM m,m,
(Ut — 201Ut — ¢u(Unr — ©)] = 0,
¢1"" + iaR(c'Pl + arpr) + i AM
{4Ult" + [Ut'er — 261U1 — 61'(Ur — )]’}
— mypti’ — taRy(c'dt + aspu)
— ta AM m,m\{4Ul o1t
+ [Uiu — 20U — ¢1i(Unn — 01’}

(25g)

+ diakly — it &0 = o, (25)
In Eqgs. (25g) and (25h), all variables are evaluated
at y = 0, where primes, except the prime on ¢,
indicate the derivative with respect to y. All terms
containing «® and higher orders of « are ignored
since this investigation will include only the first-
order approximation. In fact, the method of regular
perturbation adopted here can accommodate as high
an order of approximation as we desire by including
the higher order terms of a.

Following the approach of Yih® by expanding the
eigenfunctions and eigenvalue in a power series of
wavenumber o

$r = ¢ + ad, +ap. + -,
b =x0 + o+ o+ o,

c=0C +ac, +ao%c, + - .
A. The Zeroth-Order Approximation

The zeroth approximation gives us the governing
equations

110 —
¢0’ "'07
11— .
X3 = 0;

and the boundary conditions

(26)

# C.-S. Yih, Phys. Fluids 6, 321 (1963).
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& =0, &1 =0,

xo(—m) =0,  xi(—m) =0,

¢0(0) - XO(O) = O)

80 = x50 + 2 @ - ) = 0,

¢6/(0) - mﬂX(,),(O) = 0’
o47/(0) — mxi"(©0) = 0.

Solution of the differential system is found to be

¢ =1+ Ay + Ay + A5y’ @7
xo = 1+ By + Byy* + Byy/’,
in which
f L mEar o w et mdt3n)
v o’ +n) ! 2mn(l +n)
B - _mtm, B o= =M
2T Pm,(1 + )’ 87 2n’m,(1 +n)’
A, = m,B,, A = m,B;.

The eigenvalue ¢, is determined by
_ a; —
A1 - Bl
2n*m,(1 + n)(a; — ay) .
m: + 2nm,(2 + 3n + 2n°) + 2’
(28)

The solution of the zeroth-order approximation is
the same as that given by Yih® for Newtonian fluids.

g =¢—b=

B. The First-Order Approximation

Having obtained the eigenvalue ¢, and eigen-
funetions ¢, and x,, we put them into the equations
governing the first-order approximation and obtain

¢1’"" = iR[6a, A5y

+ 2(a1A2 - 3A366)y - 20(’)A2]1 (29)

e — 2 s 2
X1 iR m, [6a.Byy

+ 2(a,B; — 3Bach)y — 2¢iBs).
The general solutions of Eq. (29) can be written as

¢ = Ady + Ady + AAg® + RH(),

(30)
X1 = ABy + ABz?f + ABaZ’f + iR _m‘)'_ Hz(?/):
7
in which
_ s o @A, — 345 5 _ ¢4, .
H@y =57y + 0 Yy T



536

and

azBa a,B; — 3B.c) ya _ CoBz 4

6
+ 60 12 ¥

Hy(y) =

The six constants of integration and hence the eigen-
value will be determined from the boundary con-
ditions. The boundary condition (22h), in the first-
order approximation, can be simplified by using the
relations in the zero-order approximation, and the
simplified form is

¢1"(0) — m.x{"'(0)

+ iR[(y 1)( T —ctd, — al)]

+ 20 AM [a, A, + 3¢iA,
— mym(a,B; + 3¢iB,)] = 0.

The first-order approximation of the boundary con-
dition (25e) is automatically satisfied by (30) be-
cause we take the terms of zero power in y for ¢,
and x; to be zero by following Yih’s’ argument. The
first-order approximations of the boundary con-
ditions can be derived straightforwardly from Egs.
(25). Applying the boundary conditions on ¢, and
X1, we obtain

(31)

AA, + A4, + A4, + RH,(1) = 0,
AA, + 2 A4, + 3 A4, + SRE(1) = 0,

nAB, —n® AB; +n* AB; — iRy ;nl— Hy(—n) = 0,
n
(32)
AB, — 2n AB, + 3n® AB, + iRy mi Hi(—n) = 0,
7

AA, — AB, + le, =0,

( 0)2
AA, — m, AB, + i AM K, = 0,
AA; — m, AB; + iRK, + 1 AM K; = 0,

in which
K, = a,A, — c}4, —

mymy(a:B;, — ¢iB,),

K,

1
3y — 1)(;;;:2 chd, — al) )
and A
Ky = #{a;A; + 3ci4; — mymi(a,B, + 3¢{Bs)].

We note that the non-Newtonian effect is felt only
through the conditions of continuity of shear and
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normal stresses at the interface. Separating the
eigenvalue ¢; into real and imaginary as¢; = (¢)), +
i(¢1)s, we obtain from Eqs. (32) the results (¢;,), = 0
and

(Cl)-' = RJI('Y; n, mn) + AMJZ(n: My, mk)» (33)
in which
gy = 8 ) — 2
— 24H(~n) — yHi(~n) — 'K,
m. , ___
+ s (H () — B — % Hy(-n)
~ L Hy—m) - M)] , (34)
and
_ (AR n — nin + m)
Elal rap— (2<1 o e R )
(35)

V. RESULTS AND DISCUSSION

The (¢;); given by Eq. (33) is the criterion of
stability. It consists of two parts: RJ, due to the
viscosity and AMJ, due to the elasticity of the
liquids. For AM = 0, Eq. (33) becomes

(cl)i = RJ1(7) n, mn)s
which reproduces Yih’s® result for Newtonian fluids.

As pointed out by Yih, we can verify directly
from Eq. (34) that
1 1
) = (n m)

when v = 1. This is still true in this investigation.
In addition, one from Eq. (35) can also verify that

1 1 1
Jz(' y ',;n—)‘) ’ (36)

n’ m,

m
7?1 Jl('n:

;—nl_; Jz(nr my, mk) =
which is to say that the part of (c¢,); due to the elas-
ticity also remains the same when the two super-
posed layers of fluid are interchanged, as it should
from a physical point of view. The factor 1/m, on
the left-hand side of Eq. (36) arose as long as the
definition of AM is retained before and after the
interchange.

To see whether the elasticity of the liquids has
any stabilizing influence, numerical calculations have
been carried out. The results are illustrated by curves
shown in Figs. 2-4. Since N, > \;, AM is positive.
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Keeping Eq. (33) in mind, we see that the elasticity
in liquid causes the flow stability if J, < 0 and
instability if J, > 0.

For n < 0.5, the elasticity in liquid stabilizes the
flow if m, < 1, no matter what values m, may have,
and destabilizes the flow if m, > 1. The stabilizing
effect is increased with inereasing m,, but the value
of m, seems to have only a slight influence on the
growth rate of the disturbance for cases in which the
elasticity destabilizes the flow. The variation of J,
with m, and m, for the special case, n = 0.1, is shown
in Fig. 2.

For n increasing from 0.5 toward 1, the range of
value of m, for which the elasticity of the fluids
stabilizes the flow becomes narrower for m, < 1, and
wider for m, > 1. Figure 3 illustrates the variation
of J; with m, and m, for the special case, n = 1.
Whether stabilizing or destabilizing, the damping
rate or growth rate of the disturbance attributable
to the action of elasticity of the liquids varies only
slightly with m, when m, < 1, but greatly with
my, when m, > 1.

The values of J, for n > 1 can be calculated from
the values of J; for n < 1 which are plotted in figures
by using the correlation (36).

Figure 4 shows the variation of J, with m, and
n for m, = 0.4. From this we see that nonuniformity
in elastic property of the liquids stabilizes the flow
when n < 1, and destabilizes the flow when n > 1
for this particular value of m,,.

As one can see from Figs. 24, J, vanishes when-
ever m, approaches 1. J, is other than zero when
m, # 1. This result reveals that the stabilizing or
destabilizing effect of the elasticity in liquid is absent
in the absence of viscosity stratification, and is only
brought about when the viscosity varies.

Numerical calculation also shows that the values
of J; and J, can be of opposite sign for the ecasey = 1
with the depth ratio » larger than about 0.5. J, can
be positive while .J, is negative or vice versa depend-
ing on the values of n, m,, and m,. This indicates that
the effect of the elasticity in the liquid can be either
stabilizing or destabilizing. Computations for J,
are also carried out for the cases of vy = 1.1, 1.2, and
1.4 each for four different values of the Froude num-
ber F = 0.1, 0.5, 1, and 2. The results demonstrate
that J, decreases with increasing the value of v. This
feature is expected since the effect of gravity is to
stabilize horizontal flows when there is a negative
density gradient-in the direction of the vertical. For
thecasesof F = 0.1 (y > 1.1),and F = 0.5 (y > 1.2),
the destabilizing effect of viscosity variation in New-
tonian fluid is completely overshadowed by the

I, x 102

I | I L1 11 L
02 04 06 10 20 4o 60 10 20 40 60

Ma ;
Frg. 2. Variation of J: with the elasticity ratio m, for

various values of the viscosity ratio m, for the case of depth
ration = 0.1.

20 T T T

15

10 |-
NSS_
;‘: L

oﬁ:

L 10 .
08
-5 |- 20
[ I I 1 |

ma

Fra. 3. Variation of Jp with the elasticity ratio m, for
various values of the viscosity ratio m, for the case of depth
ration = 1

30 T 17 T T T T T T

n=25 h
L 125
10

-10 08
0.1

20 F 0.4 ]

I | I ] 1 1 ] !
02 04 06 10 20 49 60 (0 20 40 60
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Fra. 4. Variation of J; with the elasticity ratio m, for
various values of the depth ratio, n, for the case of viscosity
ratio m, = 0.4.



538

stabilizing effect of gravity. In these cases, the posi-
tive value of J, indicates that the elasticity of the
liquid destabilizes the flow while the negative value
of J, indicates that the elasticity behavior in liquid
increases the degree of stability of the flow. For
F > 1, the destabilizing effect of viscosity variation
in Newtonian fluid is not completely overshadowed
by the stabilizing effect of gravity, at least for
¥ < 1.4. The oppositeness in sign of J; and J; is
still there for certain values of n, m,, and m,. In
order to shorten the paper, the numerical results
for J, are not presented. For the case of y = 1, the
value of J; ean be found in Yih’s® paper.
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From the foregoing it can be concluded that the
elasticity of the liquids destabilizes the flow for
certain values of n, m,, and m,, but stabilizes it for
other values of these variables. The detailed results
are shown in the figures mentioned before.
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