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A kinetic theory of sphere drag in the transition flows, based on the Boltzmann equation for the
Maxwellian molecules, is presented. The exact binary collision integral, in the first order Knudsen
iteration, is expanded as a function of Hermite polynomials in molecular velocity. The drag of a
sphere at free stream temperature with molecular diffuse reflection is calculated. The results agree
well with Millikan’s measured values over a wide range of Knudsen number (0.5 < A/d < 10). It is
found that the sphere drag of the almost-free molecular flows normalized by the corresponding col-
lisionless drag is essentially independent of the speed ratio for the present range of calculations.

I. INTRODUCTION

HE recent interest on sphere drag in a rarefied

gas has been stimulated, partly at least, by the
advent of the earth satellite experiments and the
upper atmosphere measurements. The theory of
sphere drag in the extremely rarefied medium such
that the state of free molecules’ exists, is well known
provided the reflection mechanisms of the incident
molecules on the solid surface are adequately repre-
sented by accommodation coefficients of Maxwell
and Knudsen.

Numerous attempts have been made recently in
the determination of sphere drag for the state slightly
less rarefield than free molecules. This has been called
the near-free molecular flows (or almost-free molec-
ular flows). Many of these attempts are limited
either to the flows of extremely high speeds®*® or to
the extremely low speeds.* These restrictions have
been introduced to make the analyses tractable. In
the present study, an effort is made to remove the
limitations imposed in previous analyses on the speed
of the sphere. The purpose of the present work is
twofold: (1) to obtain the sphere drag in a rarefied
atmosphere which is of utmost interest in upper
atmosphere measurements, (2) to understand the
fundamental nature of the transition flows with a
model which is realistic enough such that accurate
drag measurements, either free flight or laboratory,
can be made in the near future in order to make
meaningful comparisons.

It is a matter of simple dimensional analysis to
show that the flows around geometrically similar

1 G. N. Patterson, Molecular Flow of Gases (John Wiley &
Sons, Inc., New York, 1956).

2 D. R. Willis, Rand Report R-339 (1959).

3 R. M. L. Baker and A. F. Charwat, Phys. Fluids 1, 73
(1958).

+ Z. Szymanski, Arch. Mech. Stos (Warsaw) 8, 449 (1956);
9, 35 (1957).

bodies without the influence of external force are
dynamically similar, provided the flows have equal
speed ratio s and Kundsen number Kn, respectively.

Experimental results of sphere drags corresponding
to the Knudsen numbers of the near-free molecular
flows rarely exist except for the excellent measure-
ments by Millikan® which covers a wide range of
Knudsen number (0.01 < Kn < 10) at however
extremely low speed ratios (s < 107°). Millikan’s
data for which the experimental conditions were
clearly defined may serve as important check points
for theory of sphere drag at asymptotically low speed
ratios.

The elementary kinetic theory of the transition
flows based on collision statistics’'® can only give a
gross quantitative answer to the problem of interest
as was painstakingly cautioned.® A rigorous theory
must start with the Boltzmann equation. The present
study on sphere drag gives the first-order (Kn™')
iteration of the Boltzmann equation for the Max-
wellian molecules.” The basic approach is similar to
that of Szymanski* except that we preserve the
nonlinear terms of speed ratio in the Boltzmann
collision integral which is essential in the treatment
of high speed flows. The inclusion of these nonlinear
terms considerably complicates the collision integral
analysis.

II. FORMAL ITERATION OF THE
BOLTZMANN EQUATION

Consider a gas with Maxwellian molecules’ of
mass m, number density ., and with the most prob-
able velocity w.. To describe the molecular distribu-

5 R. A. Millikan, Phys. Rev. 22, 1 (1923).

¢ V. C. Liu, J. Aeron. Sci. 25, 779 (1958); also J. Fluid
Mech. 5, 481 (1959).

7 S. Chapman and T. G. Cowling, Mathematical Theory of
Jl\g %ﬁ—)Um'form Gases (Cambridge University Press, New York,
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tion surrounding a spherical body of diameter d
placed in a free stream of velocity u., we introduce
a molecular distribution function F(c, r) for the mole-
cules at point r with velocity ¢ in dimensionless form
with displacement and velocity expressed in units
of 3d and w., respectively. If the differential collision
cross section for the molecular collisions ean be ex-
pressed in units of the momentum cross section B,
for Maxwellian molecules,” we can write the steady
state Boltzmann equation for Maxwellian molecules
in dimensionless form as follows:

caF dna,B fd f def

-B(O)F'F{ — FF,),  (2.1)

where
B, = 0.343 (2K /m)*(intermolecular force =
B(6) do de = b db de/0.343(b =

A physical interpretation can be given to the dimen-
sionless constant in front of the integrals in Eq. (2.1).
If we define a mean free path A based on the momen-
“tum cross section B, and use the definition of viscos-
ity u from transport theory for Maxwellian mole-
cules, namely®

= kT/6B, = 0.491(4/7)*mnow.\

K/°)

impact parameter’).

(2.2)
we can rewrite (2.1) as
27
@—0075dfdc,f def
B(6)(F'F; — FFy),  (2.3)

in other words, this dimensionless constant of in-
terest is inversely proportional to the Knudsen num-
ber (\/d).

For the studies of momentum transfer in flows at
high Knudsen number, it is permissible to expand
the distribution function F formally into a power
series in d/A,

F=TF"4 @/NF" + 24)

A word of caution should be noted concerning
the appropriateness of the asymptotic expansion in
Knudsen number as shown in Eq. (2.4). It has been
found,'® e.g., that with such expansion in the study

8 H. Grad, Commun. Pure Appl. Math. 2, 325 (1949).
[Note: the definition of B(6) is different from Grad’s by a
factor of By].

9 For the Maxwellian molecules, B; = B,™ following the
notations used in Ref. 8.

10 C, 8. Wang Chang and G. E. Uhlenbeck University of
Michigan ERI Report M999 (1953); D. R. Willis, thesis,
Princeton University (1959).
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of the shear flow between parallel plates, a singularity
appears in the expression for flow velocity. This does
not, however, suggest that similar difficulty will
necessarily appear in every flow study with the
method in question. The following sequence of equa-
tions follows, after the substitution of Eq. (2.4) into
Eq. (2.1) and a rearrangement of terms in powers
of d/\.

c-oF/or = 0 2.5)
(@8]
aF 0075dfdc1f def
'B(@)(F(O)’Fim' — F(O)Fin)) . (26)

It is observed that the left-hand side of Eq. (2.5)
is the derivative of ¥ in the direction of the vector
¢ in the molecular phase space. At each point in this
space (c, r), this vector points in the direction of the
molecular trajectory through that point, which is
also the characteristic curve of the equation. Hence
if ¢ denotes arc length along a trajectory, Egs. (2.5)
and (2.6) become respectively

cdF®/dg = 0, 2.7)

¢ dFV /dg = 0.075(d/NE(x, c), 2.8)

where E(r, c) denotes the multiple integral in Eq.
(2.6), the physical significance of which is discussed
later.

Since Eq. (2.7) states that the function F® is
constant along a trajectory, it is the distribution
function for the free molecular, or collisionless, flows
when appropriate boundary conditions of interest
have been satisfied. Equation (2.8), which contains
a collision term expressed in terms of the free molec-
ular distribution F”, may be considered as the
kinetic equation of flow of the almost free mole-
cules."’ It may be noted that the previous analyses
made on the flows of the almost-free molecules®'® are,
in essence, some macroscopic moments of Eq. (2.8)
for mass and momentum fluxes, ete., after drastic
simplifications have been made to the collision inte-
gral E.

It is further noted that in view of the mathematiecal
structure of Egs. (2.7) and (2.8), the analysis of the
rarefied gas invariably involves integrations along
the characteristic curves when the flow fields need to
be mapped. In the case of the free molecular flows,
this is quite similar to the problem of geometrical
optics. In fact, the line-of-sight principle will be
adopted in mapping the distribution F°(r, c).

1V, C. Liu, University of Michigan ORA Report 02885-
11-F (1962).
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Fre. 1. Sphere-cone
geometry.

III. ZEROTH-ORDER APPROXIMATION TO
THE MOLECULAR DISTRIBUTION

As a prelude to the analysis of flows of the almost
free molecules, we must first obtain the solution
F to the collisionless Eq. (2.7) with boundary con-
ditions prescribed on the sphere and upstream. This
constitutes our zeroth-order approximation to the
problem.

It is noted that the aggregation of molecules at any
point (r) in a free molecular flow field must come from
either of two sources: the free stream and the re-
flected stream from the solid surface. Thus we simply
express F” in terms of functions f{r, ¢) and g(r, ¢)
as follows:

F'=f+yg (3.1)
where
f=7%exp [—(c — 5)°] for all regions, (3.2)

¢ = 0 for region I (see Fig. 1), 3.3)

= 7 (P) exp (—¢") — v exp [~ (¢ — 5)7]

for region II, (3.4)

where s denotes the free stream velocity in units of
Wa, 1.6., 8§ = Uo/W. and the equivalent number den-
sity n(P) of reflected molecules at point P on the
sphere (see Fig. 1) is given by’

n(P) = exp [—(s-n,)’]—#’s-n,

3.5)
In (3.5) n, denotes a unit vector as shown in Fig. 1.
The subscript 0 always designates a unit vector in

the direction of the vector it subseripts, e.g., 8o =
s/ls|, ete.

+ #sen, erf (s-n,).
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It can be shown, by referring to Fig. 2 that
Ny Sq = Sp°f
(3.6)
In the present study the function n(P) is approxi~

mated by a linear function with s-dependent coef-
ficients a(s) and B(s) as follows:

n(P) = asz + B, 3.7

where ¢ = s,°n, and the parameters «, 8 are to be
determined by considering the conservation of parti-
cles for the upstream and downstream semispherical
surfaces respectively (see Appendix I).

—(So+Co)[(r+Co) — (1 — ¢ sin® x)¥].

IV. MATHEMATICAL REPRESENTATION OF THE
FIRST-ORDER COLLISION EFFECT

In the interest of aerodynamic drag, we are con-
cerned only with a few lower moments of the dis-
tribution function F rather than the function it-
self. Accordingly, the present approach dwell pri-
marily with the determination of moments for F™
from the use of Eq. (2.8). The fact, however, that
the distribution F© appearing in the integrand of
the collision integral E is a discontinuous function—
an inherent feature of the free molecular distribu-
tion—makes it unfruitful to use the moment-genera-
tion technique of Grad® which appears effective for
the near-continuum flows only."

1t is observed that the right-hand side of Eq. (2.8)
can be interpreted as the distribution function of
molecules having collisions in the neighborhood of
the point (r). In more precise statement, it can be
said that 0.075 (d/\)E(r, ¢) dr dc represents the net
rate of change of the number of molecules situated
in the region r, r 4+ dr and having velocities between
¢ and ¢ + dc. Note that eollisions have the tendency

Fia. 2. Field coordi-
nates.

2 R. Goldberg, thesis, New York University (1954).
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to randomize the molecular arrangement hence to
smooth out the discontinuity in molecular arrange-
ment in the molecular phase space. It is therefore
postulated that for the almost-free molecules the
collisional distribution E(r, ¢) should be better suited
for representation, compared to F for instance, by a
series of three dimensional Hermite polynomials
H{... (c) which has been used by Grad® for re-
presenting the distribution F(r, ¢) in the near-con-
tinuum flows. This must be considered as the funda-
mental hypothesis of the present approach.

A. Series Expansion for Distribution E(r, c)

It is assumed that

E(r, c) = 2m)" exp [~ ()] Z e Hii. @41
(¢, 4, k ranges from 1 to 3),

where the coefficients a!7}... , symmetrical tensors

of the nth order, are functlons of r,and H{?,... , the
three-dimensional Hermite polynomials of the nth
order, are functions of ¢. The coefficients are, in turn,
expressible as

(n) (n)
fd H.

Equation (4.2), after the substitution of F' = f 4 ¢
from (3.1) and E(r, ¢) from (2.6) and (2.8), also the
use of symmetry relations for the binary collision
integral,” becomes

2T /2
a(")=7%ffdcdclf def
H o ]

Er,c). (42

-BOH"g:f + 3919),  (4.3)

where
[H(n)] — H(n)(c/) + H(n)(c;) . H(n)(c) _ H(")(Cl)-
4.4)
Subscripts ijk - - - have been dropped since the order

of tensor is designated by superseript (n).

From conservations of momentum and energy in
elastic collisions of molecules, we obtain the veloci-
ties after collision (see Fig. 1)

¢.=c¢ +heosbk, ¢ =¢— hcosbk, (4.5)

where h is the velocity of approach in the center of
mass system and k, is the unit vector pointing to
the direction of interaction force that changes the
vector h to h’. The substitution of (4.5) in (4.4) and
the use of the identity:

Z H(n—i) (a)bi

i=0

H™@+b) =
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leads to

H] = 3 H (e) + (~ 1B (@)

i=1

-cos’ Oh'k). (4.6)
Further development of (4.3) involves integrals of

the following type:

N(i/2)
f deki = 3 RO (E — b2 a(—1)

m=0

-cos’ ™™ @ sin®” 6/m!,

“.7)

where N(3j) denotes the highest integer not greater
than %7; 8, the unit tensor or Kronecker delta §,; with
1, j omitted.®

Define

/2
L2
B, = 7rf sin”"
o

The expression (4.3), after the use of (4.6), (4.7), and
(4.8), becomes

n NGi/2)
a™ =— > > f dc dc,

6 cos”*™ 0 B(6) dé. 4.8)

-{H"‘”’(c) + (=1'H™ " (c)}h"#% & — b*)"
B2 gif + 27" g.g)/m!. (4.9)

So far, the expansion has been given to the nth order.
In the evaluation for collision effects, we shall trun-
cate the series beyond n = 2; the mathematical effort
of higher-order terms becomes prohibitively heavy
and is probably not rewarding because, as it will
be shown, the present approximation appears satis-
factory.

B. Evaluation of the Coefficient a®

A careful study of (4.8) will show that the final
evaluation of the coefficient ¢ amounts to the
calculations of the following types of moment inte-
grals:

W = [ edfde (4.10)
over the whole velocity space, which can be inte-

grated without much trouble. The results of the
first few moment integrals (n < 2) are as follows:

F=1; =5 f=¢+15 =5+ (“.11)
@) ‘¢g" = f cc'g de

over a conical domain subtended at the point r by
the sphere of diameter d. (see Fig. 1) To accomplish

4.12)
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the integration we divide the g-function into three
parts

g=g + g — g (4.13)
where
g1 = 7 'fas(so°r) + 6] exp (—¢")
— 1 das(8y+ Co) {1+ o — (1 —7° sin’ x)*} exp (—¢*)

(4.14)

g =
gs = = 1 exp [—(c — 8)°].

These moment integrals have been evaluated and
the results are as follows:

gt = (asr + Bt

N(i/2)
r(u"ziiﬁ) ST — 15)"am, (4.15)

m=0
where
gin~11/r
Gy = T f 27" cos™ 2" x sin®" ! x dx/m!
o (4.16)
and
'g: = —W_%F(n—————————i_ L+ 3)
2
NG r+1)
case D, 1R — 1) Bums 4.17)
m=0

sin” 1/r
Bam = 7rf 27"[r cos x — (1 — r*sin® )}
0

-sin®™*t x eos™ 1T x dx]/m!. (4.18)

The coefficients a,,, and 8,,, are functions of ™' and
are expanded up to the power r~°. These coefficients
have been evaluated and the results are as follows
(n < 2):

Qg = %7(4:7'—-2 + 'r—‘: + . '), dyjg = %Tr—z,
w0 = rr =17 ),
oy = (™t 4 1), (4.19)

(n/48)(24r™" — 16777 — 67" — 1" + -+ +),
Bio = (x/60)(30r™"

—20r" — 150 + 4t 4 ),
B = (r/120)(15r™° — 8™* + -++), (4.20)
Bar = (w/120)(15r™° — 8% — 5r7° 4 ---).

™

S

=3
Il

The remaining moment integral ‘g; turns out to
be the most difficult one to cope with. To facilitate
the integration we introduce the Cartesian coordi-
nates (o, to, t;) where r, is the unit vector pointing
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from center of the sphere to the point of interest;
t, is the unit vector, perpendicular to 1o, lying in the
plane containing r, and s,; t/ is the unit vector per-
pendicular to both r, and t,. In terms of the new
vectors, we obtain, after a lengthy algebraic manip-
ulation, the ‘g; in the following form:

n_ N(i/2)

gr=2r7I0@) D0 Y T(m + Der it
i=0

m=0

® sin—” 3 (r—1)
—c? 1
.[ e c cn+ +2 dc[ dX
<o [}
i

-exp [—2sc cos 8 cos x] sin’™* x cos"7 x

(5 enr )
dzjd2m k=0 k! (k + m)! z=2s¢ sinxsinﬂ.

(4.21)

Although the expression (4.21) appears very comp-
licated, by expanding the coefficient in powers of
r~*, we found that the lower order of t, and t; always
accompany with the lower orders of »™* as shown in
(4.21). Hence for any order of n, there will be only a
few terms of the low order t, and t} assuming impor-
tance in the expansion. It implies that the moment
integrals ‘g¢ are predominantly r-dependent func-
tions.

Again the moments of ‘g7 up to n = 2 and the ex-
pansion in power series of r~' to the fifth order are
evaluated and presented as follows:

°gs = Hm) e[,

+ r7*(f. + 2s cos 6f; + 2s° sin® 6f,)],
g5 = L(m) 7t (47,

+ r7*(fs + 2s cos 6f; + 2s” sin® 6fs)],
°gs = o)l [,

+ r7*(2s cos 8f, + 25" sin® 6f;)Ir,

+ 3™ 7% s sin ot~y
°gs = 1)l 47,

+ 7 *(—1s + 2s cos 0f; + 25" sin® 6f,)]r;

+ 1)t s sin @ fitore/2

+ @7 + D),

where

o

fn(s cos 0) = f e Sche e cos 8 de
1]

= (=1)"2" (s cos )" <n 4 m 1)

- ; m! r 9 .

(4.22)



SPHERE DRAG IN FLOWS OF ALMOST-FREE MOLECULES

C. General Expression for the Collisional
Distribution E(r, c)

Finally the expression for the collisional distribu-
tion E(r, ¢) can be given in computable form. It is
noted that the first nonzero term in the expansion for
E(z, ¢) is the second-order term because both [H ]
and [H™'] vanish. For n = 2 the possible j and m
are as follows:

@G m) = (1,0), (2,0),and (2, 1).
With these values of j, m we obtain
a(?)(r) — [OgZ OfO _ Ogl Ofl + Og() 0)(2 + OgZ OgO
o %Ogl 0g1](2B20 s BlO _ B21) _|__ [zgo OfO
—9 og1.0f1 + ogo 2f0 + 2g0 ogo _ Ogl.Ogl]s
The evaluation of B,y Byo, Bs; for the Maxwellian
molecules gives"

2B20 - BIO - le = _1.0562.

V. CONTRIBUTION OF MOMENTUM FLUX
BY THE COLLIDED MOLECULES

A. Formulation of Sphere Drag in an
Almost-Collisionless Flow

From the use of the collisional distribution E(r, ¢)
we can evaluate the momentum flux to the sphere
contributed by the first-order collisional effect. This
constitutes, of course, an additional term to the
sphere drag due to the free molecules. Note that the
rate of change of the molecular distribution in the
neighborhood, q, q 4+ dq (see Fig. 2) with velocities
lying between c, ¢ + dc is

0.075 (d/\) E(q, ¢) dq dc,

where q denotes the position of point @; the origin
of the vector q is at point P on the spherical surface
(see Fig. 2). The direction of the velocity vector ¢
at point Q is specified such that it extends from @
to intersect the surface of the sphere at P; hence

—¢ PQ/|PQ| = —cqo. (5.1)

Furthermore, the molecules with velocity ¢ origina-
ting from @ and intersecting a surface element do
at P, lie in

cC =

de = ¢ de cos r db/q’, (5.2)

where 7 denotes the angle between q and the normal
n, to the surface at P. From the use of Eqgs. (5.1)
and (5.2) we obtain the change of the incident

1B J  C. Maxwell, Collected Works (Dover Publications,
Inc., New York).
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molecular flux and momentum flux to a unit area
at P,

s d " cos 7
N(P) = 00752 fR dq f de g, —e)) 0",
(5.3)

d
M(P) = ~0.075m fR dq

[ aecE@ —aa BT, 6.9
respectively. The domain R refers to the semi-infinite
region bounded by the plane tangent to the surface
at P (see Fig. 2). The momentum flux taken from the
body by the reflected molecules of the amount N (P)
is, assuming diffuse reflection,

M,(P) = ir'mN(P)n,. (5.5)

The net change of momentum flux for an area do
around the point P is

(M(P) — M(P)lds (5.6)

and the sphere drag contributed by the first-order
collisional effect, in dimensionless drag coefficient

_ne® o
AC, = 0.6 (ras) f do

sphere

[M(P) — 3x'mNPn]  (5.7)

[Drag coefficient is defined as the ratio of the drag
force in question and the total dynamic pressure
based on the sphere cross sectional area lxd® and
the free-stream density and velocity.]

B. Computation

In order to facilitate the integration processes in
the formulations of the sphere drag, we must intro-
duce a coordinate transformation from the (r,, t,, t’)
-system, on which the moment integrals ‘g” have
been prescribed, to a new (g, r, ¢)-system in terms
of which the sphere drag will be conveniently ex-
pressed. Referring to Fig. 2, k is in the same direction
as no-i and k are coplanar with s, and n, while j is
normal to them. In terms of these unit vectors we
express the following quantities:

qQ =g¢gsinrcososi+ gsinrsinej+ geosrk,
r=gsinrcosci
+gsinrsino j 4+ (1 + ¢ cos 7) k,

—sin ® 1 — cos @ k,

(5.8)
S, =

Cg = _q(].
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Integrals (5.3) and (5.4) become, respectively,

© /2
N@) = f dq f drsin T cos 7
[+] 4] .

2m w©
[ o [ e, (59)
0 1]
© T/2
M((I>)=/; dq‘/; drsin 7 cos 7
2x @
f da[ de Em(se-C)a H? . (5.10)
[} 0

After the substitution of the contracted result of
H®a® in (5.9) and (5.10), and the use of (5.8), the
general term of which appear of the following type:

¢" cos' 7sin™ 7 cos” @ sin’ & cos” o/ (5.11)
Let
© /2 L 27
n = f dg [ dr/ dq>/ do v
[¥] 0 1] 0
-¢" cos' rsin™ 7 cos® ®sin® ® cos” ¢, (5.12)

and note that I..; vanishes after integration with
respect to ¢ with odd v; with even v and next inte-
gration for &, It\% again vanishes with odd e

In addition to the functions of (5.12), we need
some more building blocks to facilitate the computa-
tion of sphere drag which are defined as follows.

Let w = So+ Iy Y = 8¢+ Co) 2 = Co+ Iy, We define

o /2 x 2%
A,.,.=quf dffdcpf do
1] o 0 0
-yw'r”" sin ® sin 7 cos 7 (z, odd), (5.13)
«© /2 L4 2x
A‘f,-=quf dffd¢f do
V] 0 0 1}
-w'r”? sin ® cos ® sin 7 cos 7 (¢, odd). (5.14)
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Fia. 3. Drag coefficient of a sphere.

Similarly we may define B,;, D,;, and G;; by replac-
ing y in (5.13) with zy® (with 4, even), 2y (with ¢,
odd) and 3 (with 4, odd) respectively; also define
B3, D* and G} by replacing ' in (5.14) with 2y’
(with 4, even), 2’0’ (with 7, odd), and y’w’ (with
1, odd), respectively.

C. Results
The double integrals

0 x/2 sinm T
kl k 14
" = f dqf dr q° cos T
1] 0

obtained from (5.12), after elementary integrations,
are numerically integrated on the IBM 7090 com-
puter for integer indices in the ranges: 0. < k < 5,1 <
1<81<m<7,3<p<10wthk+1<p.

The basic integrals A,;, A%, B.;, B#, D,;, DX,
G;;, and G with integer indices in ranges ¢ = 1, 3,
j=2to5and k = 0, 2, 4 are computed. These basic
integrals are the building blocks which enable us to
calculate the sphere drag. The computed functions
are tabulated in Table 1.

The drag coefficient of a sphere in flows of an
almost free molecule, normalized by the correspond-

(5.15)

TasLE 1. Values of the basic integrals.

A, = —2.09439 A = —1.04719
Be = —2.09439 By = —0.69813
By = —0.33504 By = —0.77781
Ap* = —2.09436 Ay* = —1.19542
Asz* = —125655 A34* = —051400
Bp* = —1.39626 By* = —0.46541
By* = —0.33347 By* = —0.67809
Dp* = —1.62889 Dy* = —0.82237
Dg* = —0.97723 Dy* = —0.33440
Gp* = —0.97738 G* = —0.51834
Gp* = —0.69811 Gyt = —0.24640

A = —0.69813 Ais = —0.52358
Az; = —0.31408

By = —0.22733 By = —0.16451
Dy = —0.48859 Dy; = —0.34896
Gy = —0.41885 G, = —0.31415
A* = —0.85682 As* = —0.67410
Ag* = —0.40436

By* = —0.34905 By* = —0.93080
By* = —0.22621 Bs* = —0.16737
DM* = —054361 Dn,* = —040314
Dsa* = —024179

G* = —0.35753 Gi* = —0.27446
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TasLg I1. Coefficients B(s).
s 10-% 102 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
B(s) 0.149 0.149 0.150 0.150 0.151 0.153 0.154 0.155 0.156 0.154 0.152 0.148
ing value for the free molecular flows can be ex-
pressed as follows'*: DRAG CONTRIBUTIONS
I REFLECTED
- Co/Coy, = 1 — B(s)/Kn (5.16) mrome
hiid
where B(s) is given in Table II. o
The results of gomputations of f,}%e aerodynamic Fro. 4. Drag con- ::
drag for a sphere in an almost collisionless flow are tributions by the  acp |
shown in Fig. 3. The drag components contributed reflected and thein- 76, = 71
by the incident species (M ;) and the reflected species 2k
(N) respectively are also shown in Fig. 4. All the NS
calculations are based upon the assumed condition o}
that the sphere temperature is equal to the free- ‘
stream temperature, and perfect diffuse reflection b ’, :

prevails, Although it is difficult to prove the con-
vergence of the expansion, we are able {o establish
the rapid decrease of the absolute values of the suc~
ceeding terms in all the expansions when the speed
ratio s is not much larger than 1.

It is significant to note that the theoretical result
calculated for a very small value of s(s = 107°) agrees
with Millikan’s measured values'® at corresponding s
over & wide range of Knudsen numbers (0.5 < A/d <
10). It is also noted that over a wide range of speed
ratios (s < 1.0) the drag coefficient ratio Cp/Cy,
{Cp,,, denotes the drag coefficient of the sphere in
which the free molecules flow at the same speed ratio)
depends only on the Knudsen number (A/d) in this
first-order approximation (see Table I1I). Even for
1 < s < 1.5 the computed results for Cp/Cp,,, show
only slight dependence on s. We feel however that
to vindicate this conclusion with respect to the range
s > 1, higher-order terms of s in the expansions must
be included.

VI. DISCUSSIONS AND CONCLUSIONS

The classification of rarefied flows, e.g., the con-
tinuum, transition, free molecular, has been tradi-
tionally based on values of the Knudsen number, a
ratio of the mean free path, A, and a characteristic
dimension of the body, d. In view of the asymptotic
solutions of the Boltzmann equation we can give a
different viewpoint to the flow regimes.

Consider the flow ficld around a body. Within a
distance much less than a mean free path from the

1 The suggestion of the reviewer is appreciated.

15 Tn this comparison the same expression for the mean
free path is used in caleulating Knudsen numbers.

Kn

body the molecular distribution would exhibit the
features of quasi-free molecular flow since the col-
lisions between the streams incident on and reflected
from the surface is dominated by the collisions be-
tween the incident stream and the surface. On the
other hand, at distances of many free paths away
from the body the moleculer distribution is almost
locally Maxwellian, provided that sufficiently large
volumes are used for sampling; hence, it can be
treated as quasi-continuum. At the intermediate
distance from the body, the molecular distribution
will deviate from both the asymptotic solutions men-
tioned above. The significance of each of the three
flow regimes pertaining to a given flow must be deter-
mined by the Knudsen number in question.

Although there is little doubt that the transition
flow structure in a monatomic gas is contained in
the Boltzmann equation, we cannot treat the transi-
tion flow as an entity because the contemporary
solutions to this flow regime are valid only either
near continuum or near-free molecular flow. In the
former class there is Goldberg’s solution to the
13-moment equations which are linearized for the
problem of a slowly moving sphere. Contrary to
Grad’s remark,”® Goldberg’s sphere drag solution
cannot be expected to cover the whole range of mean
free paths because it would not be a meaningful ap-
proximation to the free or near-free molecular flows
(see Fig. 3).

In the latter class there is a valuable solution by

18 . Grad, in Handbuch der Physik, edited by S. Fligge
{Bpringer-Verlag, Berlin, 1958), Vol. 12, p. 292.
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Szymanski* which is a first-order Knudsen iteration
of the Boltzmann equation. Like Goldberg, Szyman-
ski also limits his discussion to the slowly moving
sphere such that linearization of the disturbance
effect can be used. Unfortunately, we found two
gross errors in Szymanski’s development and hence
have serious reservation about the validity of his
results. [One of these is in his equation (7.10), another
is Eq. (7.14) in Ref. 4.] In any event, his theory is
developed for the flows of extremely low speeds only.

At the other extreme of speed ratios (s >> 1) there
are theories of sphere drag based on either Boltz-
mann equation with simplified collision integral® or
collision statistics.’ In both cases approximate kinetic
models for collisions have been introduced. On the
experimental side there is hardly any data available
for such high Knudsen numbers. Besides, much of
the sphere drag measured at intermediate Knudsen
numbers is made with unknown surface temperature
on which the sphere drag strongly depends.

The present theory based on the exact'’ Boltzmann
Collision integral for Maxwellian molecules is formu-
lated for high Knudsen number (Kn > 1) and a
speed range 0 < s < 1; the upper limit for s is not
of the cutoff nature. In fact, it can be extended to
higher values of s with more terms in the expansions.
The effect on the sphere drag due to the use of an
artificial molecular model, such as the Maxwellian
molecules is difficult to estimate.

The lack of sphere drag measurements at cor-
responding Knudsen number and surface tempera-
ture makes it impossible to ascertain the accuracy
of the present theory; nevertheless its close agree-
ment (within 59%) with Millikan’s experimental re-
sults at the low speeds in a wide range of Knudsen
numbers does appear encouraging. A composite plot
of sphere drag against Knudsen numbers including
the continuum range is given in Fig. 3 to lend some
support to the present theory.

17 The only approximation introduced is at representation
of the molecular flux of the reflected molecules other than the
truncation of the Hermite expansion.

LIU, PANG, AND JEW

Much of the contemporary studies of flows, at
moderately high Knudsen numbers, with exact Boltz-
mann equation approach are limited to simple in-
ternal flows such as Couette flows, etc. Should the
present results be considered favorable, it could
suggest that the method of the present approach
might have opened a new effective avenue to the
mysterious regime of transition flows.
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APPENDIX I. DETERMINATION OF
afs) AND B(s)

The equivalent number density of the reflected
molecules at point P on the surface [see Eq. (3.2)]

exp [—(s2)’] — w'sz + n'sz erf (s2) = n,,

(A1)

n(P) =

where z = n,-s, is approximated by the linear func-
tion

n(P) = ast + 8 = n,, (A2)

such that the total number of molecules reflected
from the semispherical surface on the upstream side
based on (Al) is equal to that based on (A2); simi-
larly for the reflected molecules for the downstream

semispherical surface, i.e.,
+1 +1
f n, de = f n, dz.
0 0

-1 -1
f n, de = f N, dx,
0 0

Performing the integrations and solving for « and
8 we obtain

3

a = —r,

B8 =x(l + 25) erf s + 2s v} exp (—5°)](4s)7".



