The statistics of the organized vortical structure in turbulent mixing layers
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The statistics of the large scale vortex structure in turbulent mixing layers have been
investigated theoretically. It is shown that similarity in the fully developed flow results in a
common description of the Eulerian and Lagrangian statistics. In the Eulerian frame of
reference, a conservation equation is derived and solved to show that the distribution of vortex
circulation is lognormal. It is also shown that the standard deviation normalized by the mean
value of the distribution depends only on the amalgamation mechanism. The value for pairing
is in good agreement with experimental measurements. These results are used to calculate the
life span and survival probabilities of the vortices in the Lagrangian frame of reference. These
distributions are in good agreement with direct measurements of the life span probability and
with space-time correlation measurements, respectively. Some implications of these results on
the dynamics of the large scale vortices in the fully developed turbulent flow are discussed.

I. INTRODUCTION

An essential feature of the structure of turbulence in
plane mixing layers is the presence of spanwise coherent
large scale vortices. An important aspect of this structure is
the observation at any downstream location of a broad distri-
bution of scales associated with the large scale vortices. Mea-
surements of this distribution have been reported by Brown
and Roshko,' Winant and Browand,? Bernal,> Hernan and
Jimenez,* and Koochesfahani et al.® The life span of the vor-
tices also shows a broad distribution. Measurements of the
life span probability were reported by Brown and Roshko
and by Hernan and Jimenez. These distributions are in a
sense the primary manifestation of the turbulent character of
the flow. Another manifestation is the presence of smaller
scale three-dimensional structures and motions, but these
play only an indirect role in the distribution of large scales.
The nature of these small scale motions was investigated by
Bernal and Roshko.® Their results showed that three-dimen-
sional smaller scale motions within the large scale vortices
do not destroy their spanwise coherence. The large scale vor-
tices and their dynamics remain by and large two dimension-
al. In this paper we study theoretically the distributions of
scale and life span of the large scale vortices, and the relation
of these distributions to the dynamics of the vortices in fully
developed turbulent mixing layers.

A sequence of photographs from a high speed motion
picture of a high Reynolds number constant density mixing
layer is shown in Fig. 1. The motion picture was obtained by
Bernal® in collaboration with Roshko’ and Brown. The mix-
ing layer between a nitrogen stream at 1000 cm/sec and a
mixture of helium and argon of the same density as nitrogen
at 380 cm/sec was visualized using the shadowgraph tech-
nique. On each photograph the nitrogen stream is on top and
the helium/argon stream is at the bottom. The pictures illus-
trate typical evolutions of the large scale vortices. The vorti-
ces are convected downstream during lifetimes that termi-
nate when each vortex interacts or amalgamates with its
neighbors to form vortices of a larger scale. A form of inter-
action, the pairing interaction, in which two vortices rotate
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around each other until they amalgamate can be observed at
the center of the first three photographs in Fig. 1. This form
of interaction was first documented by Winant and
Browand? at low and moderate Reynolds numbers. Other
evolutions in pairing interactions have been found in nu-
merical studies by Patnaik et al.® and Riley and Metcalfe.’ In
all cases of pairing, however, two vortices combine to form
one. Another form of interaction involving the destruction
of three vortices to form one, the tripling interaction, is also
observed in the sequence in Fig. 1 just upstream of the pair-
ing interaction. This form of interaction has also been ob-
served at high Reynolds numbers by Dimotakis and
Brown. '® Moore and Saffman'' suggested a different possi-
ble form of amalgamation in which a vortex is torn apart by
its neighbors and assimilated into them. Thus in this form of
interaction three vortices are destroyed to form two new vor-
tices. Tearing processes were reported by Dimotakis and
Brown and Hernan and Jimenez.* Hernan and Jimenez also
found, using computer analysis of a shadowgraph motion
picture, the same number of triplings and tearings in a sam-
ple of over 100 amalgamations. Their results show that pair-
ing is the more frequent form of amalgamation. Each of the
other forms contributed approximately ten percent to the
total.

The parameters needed to characterize the large scale
vortices are the scale of the vortices and their downstream
location. The precise definition of these parameters used in
this paper are based on the features observed in shadow-
graphs like those in Fig. 1. On the shadowgraphs the large
scale vortices are outlined by dark lines shown schematically
in Fig. 2. The scale of the vortices is characterized by their
wavelength 4, defined as the distance between adjacent in-
tersections of the braids with the x axis. The circulation of a
vortex is given in first approximation by I' = AUA, where
AU= U, — U, is the velocity difference across the layer.
Since the velocity difference is constant, A also characterizes
the circulation of the vortex. For this reason, throughout
this paper A will be referred to as the circulation of the vor-
tex. Bernal® showed that within experimental uncertainty 4
is constant during the vortex life span. This is consistent with
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FIG. 1. Sequence of shadowgraphs from a high speed motion picture (3000
ppsec) of a constant density mixing layer: High speed stream on top at 1000
cm/sec; low speed stream at the bottom at 380 cm/sec; probe tip location
x = 10.cm; test section pressure 8 atm; Reynolds number 8.5 X 10°. Pictures
number 1, 6, 9, 13, and 19 of a sequence are shown.

the observation that fluid entrained by a vortex during its life
span is irrotational since it originates in a free stream. All the
vorticity in the mixing layer is introduced at the trailing edge
of the splitter plate. Thus during the evolution of a vortex its
vorticity is simply redistributed while the total amount re-
mains constant. Similarly, at an amalgamation the sum of
the circulation of the vortices destroyed equals the sum of
the circulation of the vortices formed. Therefore the sum of A
is conserved at an amalgamation.

The downstream location of a vortex, x, is defined as the
midpoint between adjacent braid/x-axis intersections as
shown in Fig. 2.> Browand and Weidman'? determined the
vorticity distribution in the large scale vortices using phase
averaged velocity measurements. Their results show that the
maximum vorticity is located approximately at the midpoint
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between adjacent braids in a well-formed vortex. As the vor-
tex approaches amalgamation this simple relation does not
hold. The detailed measurements of the velocity field by
Browand and Weidman were only obtained at two condi-
tions and therefore cannot be used to follow the evolution of
the vortices. Data on the evolution of the large scale vortices
has been obtained primarily from flow visualization motion
pictures. Brown and Roshko' and Hernan and Jimenez*
used slightly different definitions for the location of the vor-
tices in shadowgraph motion pictures. Their definitions ap-
proximately correspond to the midpoint between adjacent
braids. Those measurements as well as Bernal’s® showed that
within experimental accuracy the vortices are convected
with constant velocity U,. The convection velocity U, is
approximately the average of the free-stream velocities in a
constant density mixing layer. It also depends on the density
ratio in the case of a nonuniform mixing layer.'* Also shown
in Fig. 2 are the definitions of the velocity and density ratios.

Similarity is a particularly useful concept in the study of
the fully developed turbulent mixing layer. Similarity re-
quires a linear growth with downstream distance of any
mean length scale associated with the large scale vortices.
This similarity scaling is a consequence of the inviscid char-
acter of the large scale vortex dynamics. It is not inconsistent
with conservation of circulation during the vortex life span
provided that the distribution of circulation is self-similar.
In earlier investigations'+ similarity was shown for the mean
velocity profiles in regions where the vortices were observed.
Similarity of the mean and rms values of circulation of the
scale vortices was documented by Bernal.> These results
showed that after an initial region of nonlinear growth, the
mean properties of the vortices increase linearly with down-
stream distance. The extent of the transition region depends
on the initial conditions at the trailing edge of the partition.
The results based on the large scale properties are in good
agreement with the velocity field results obtained by Hus-
sain and Zedan.'*

Takaki and Kovasznay'’ studied the probability distri-
bution of large scale vortex spacing. They consider the time
evolution of a mixing layer uniform in space. They derived a
conservation equation for the distribution of spacings in
which the amalgamation process results in the formation
and destruction of spacings. Their formulation of the amal-
gamation process included only amalgamations by pairing,
which were described in terms of a second statistic, the rate
of merging. The rate of merging could not be obtained from
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FIG. 2. Schematic diagram of the plane mixing layer showing the definition
of the large scale vortex circulation and location.
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the dynamics of the flow and had to be modeled in order to
solve for the distribution of spacings.

In considering possible alternative approaches to this
problem, Kolmogorov’s'®'” statistical theory of breakage is
of considerable interest. Kolmogorov formulated the theory
for the distribution of particle size in a process in which the
size of the particles changes only in a sequence of grinding
events. He showed that if the sizes of the particles before and
after the grinding events are uncorrelated, then after a suffi-
cient number of grinding events the size distribution tends to
the lognormal distribution. The evolution of the large scale
vortices in the mixing layer can be viewed as a reverse break-
age process in which the scale increases only in discrete
events, the amalgamations. Thus it could be argued that the
distribution of circulation of vortices of the same generation
approaches a lognormal distribution after a sufficient num-
ber of amalgamations. Vortices of the same generation are
those that have been formed by the same number of amalga-
mations. It follows that a large number of amalgamations
may be required to reach the self-similar state. However,
Kolmogorov theory does not apply in a strict sense because it
fails to account for the randomization of vortex life span, an
important part of the mixing layer dynamics in the fully de-
veloped flow.

In this investigation we study the probability distribu-
tion of vortex circulation in plane mixing layers. In Sec. II
the main assumptions of the analysis are formulated. It is
shown that similarity results in a common description of the
Eulerian and Lagrangian descriptions of the statistics of the
large scale vortices. In Sec. III a conservation equation is
derived and solved for the distribution of vortex circulation
in the Eulerian frame of reference. The parameters of the
solution are related to known features of the evolution of the
vortices. In Sec. IV, the results obtained in the Eulerian
frame of reference are used to derive the Lagrangian statis-
tics of the vortices. The life span probability and the survival
probability are calculated and compared with experimental
measurements. These results and their implications on the
dynamics of the vortices in the mixing layer are discussed in
Sec. V.

1l. FORMULATION

Our objective is to determine the probability of finding a
vortex with circulation less than A at a location less than x.
From dimensional considerations, in the fully developed tur-
bulent flow, we expect this probability to depend only on the
similarity variable £ = A /x,

P(x,<x; A,<A) = P(&).

The similarity scaling implies that in the x-A plane P(x,4) is
constant along straight lines passing through the origin.
Thus P(x,4) is a singular distribution in the sense discussed
by Cramer'® and the corresponding two-dimensional den-
sity function does not exist. Only the one-dimensional prob-
ability density function,

_ dP&)
p(&) T

has physical significance. For an observer located at a fixed

s
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downstream position x, in the Eulerian frame of reference,
(&) describes the probability of finding a vortex with circu-
lation (4,4 + dA). On the other hand, for an observer fol-
lowing vortices with circulation 4, in the Lagrangian frame
of reference, p(&) describes the probability of finding the
vortex at a position (x,x + dx). Therefore similarity results
in the rather important simplification that a single function
p(&) is sufficient to describe the Eulerian and Lagrangian
statistics of the large scale vortices.

The statistics of the amalgamation process is fully char-
acterized by the probability that a vortex of circulation less
than A is formed at a position less than x, and destroyed at a
position less than x,. Using the similarity scaling it can be
written as a joint probability distribution W(£,£,) with
&, =A/x, and &, = A /x,. The corresponding probability
density is given by the usual relation

2
w(&s) = I W) .
9% 96>
An important property of this function is that w( £LE) =0
for £,<&,, which results from the fact that vortices are al-
ways destroyed downstream of where they are formed.
Of particular interest are the marginal probability densi-
ties pr (&) and py, (£) defined in the usual way:

pr(é) = J:" w(§,§,)dE,,
Po(€) = f: w(EE)dE,.

These marginal distributions describe the probability of for-
mation and destruction, respectively, of a vortex of circula-
tion A at a location x. Both pr(£) and pj, (£) have dual
physical interpretations analogous to p(£) in the Eulerian
and Lagrangian frames of reference.

It will be assumed in the analysis that the location of the
vortices at formation and destruction are statistically inde-
pendent. It is not immediately apparent that the vortices in
the mixing layer will satisfy this assumption. It provestobe a
good assumption because of the agreement found between
theoretical results and experimental measurements. In Sec.
V the implications of this assumption on the dynamics of the
vortices in the fully developed turbulent flow are discussed.
It follows from this assumption that w(&,,£,)
= pr(€1)Pp (£,)- Inthis case the requirement that w(£,,£,)
= 0 for £,<¢&, gives

pF(§)=O’ pD(§)>O, §>§c’
Pe(6)>0, Po(§) =0,  £<éc, (1)
PF(§)=0, pD(§)=0’ §=§C)

where &, is a constant. Thus under the assumption of statisti-
cal independence of the formation and destruction pro-
cesses, not only do px(£) and pj, (£) fully characterize the
statistics of the amalgamation process but also these func-
tions are nonoverlapping, i.e., they are different from zeroin
different regions of the £ axis.

lll. EULERIAN STATISTICS

In the Eulerian frame of reference a conservation equa-
tion is derived relating p(£), pr (&), and pp, (£). If the total
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number of vortices convected per unit time through a loca-
tion x is n,(x), the number of vortices of circulation
(A,A + dA) convected through that location is

n(A,x)dA = np(x)p(§)dE = nr(x)5p(§) ‘i—i . (2)

The function 7 (x) can be obtained by considering the total
length convected per unit time, which by definition equals
the convection velocity U, .Thus

A
#r) =5 §—fo Ep(£)dE.

Here, n1(x) is readily interpreted as the mean passage fre-
quency of the large scale vortices at x.

Similarly, if the total number of vortices formed and
destroyed by amalgamation per unit length and time is
ng(x) and np, (x), respectively, then the number of vortices
with circulation (4,4 + dA) formed and destroyed, respec-
tively, per unit length and time are

np(x)épp (§) ‘i—/l .

Thus the overall effect of the amalgamation process is

1 (X)Eps (£) ij—

n,(A,x)dA = [np(x)pp(§) — np(x)pp () ]s‘jj—,
(3

where n, (1,x) is positive if more vortices with circulation A
are formed than destroyed at x, and negative otherwise.

A conservation equation for p(£) is obtained by stating
that 4 is constant during the life span of the vortices. There-
fore the change with downstream distance in the number of
vortices of circulation A convected per unit time through a
location x equals the change due to amalgamations,
n, (A,x)dA. Thus

on(A,x) andx) o _
x
Substituting relations (2) and (3) we find

E0(6) + §i[—§—§—§@ — kplpp(E) — kebpp(), (4

n,(A,x)dA.

and

dn (x) dn(x)
dx dx

where k- and kj, are positive constants which represent the
number of vortices formed and destroyed, respectively, per
vortex lost during amalgamation. Since dn;(x)/dx
=np(x) —np(x),thenk, — kp=1.

It may seem that Eq. (4) is of limited value because our
understanding of the amalgamation process does not allow
the determination of the functions pr (&) and pp, (£). How-
ever, an exact solution for p(£) can be obtained without ex-
plicit reference to these functions. To obtain this solution it is
convenient to introduce the function g(In £) defined as

dg(lng) _
dé

and the new variables a =In§ and P(a)
Equation (4) in these variables reads

—kp

nF('x)‘: _—kF ’ np(x)=

2

g (§) DPD (;) kap(§),

=In[&p(£)].
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dP(a) _ dg(a)
da da ’
which can be integrated to give

Pla) =g(a) —a+InC.

The constant of integration C is obtained from the normali-
zation condition on p(£). Therefore the general form of p(&)
consistent with similarity is

p(&) =Cexplg (In§) /&2 (5)

An asymptotic expansion for this solution is derived in
the Appendix. It is argued that although £ changes by a
factor of the order of 2 during the amalgamations, In &
changes only by a small additive constant. Thus the variance
of In & is expected to be small. This justifies the use of an
expansion for p(£) with small parameter the variance of
In £ This expansion gives to leading order a lognormal dis-
tribution for p(£), namely,

ol aAn(E) 5l @

In this expression explicit reference to the function g(a) was
dropped in favor of the following parameters: £, the mean
value of the distribution, and ¢, the variance of In €. The
parameter o characterizes the width of the distribution. The
properties of the lognormal distribution can be found in the
monograph by Aitchison and Brown."

Comparison of this approximate solution for p(£) with
experimental measurements is presented in Fig. 3 in terms of
A /A = & /€ for o = 0.276. The lognormal distribution is in
good agreement with the experimental results. The accuracy
of the approximation can be determined from the moments
of measured distributions. Using the experimental results of

Bernal® shown in Fig. 3 we find InZ = — 1.4806,
o? = 0.0656, and the third-order moment about the mean
U; = — 0.0027. Clearly the magnitude of y, is smaller than
o*, which confirms the validity of the proposed asymptotic
expansion for p(£) and justifies the use of the lognormal
distribution in the rest of the analysis. The error incurred by
this approximation is of the same order as y,, i.e., less than
0.3%.

The significance of this result is that the problem of find-
ing p(§) has been reduced to the evaluation of two param-
eters, £ and o, which may depend only on a few specific
properties of the large scale vortex dynamics. It should be
emphasized, however, that there is no fundamental reason to
assume the higher-order terms in the expansion for p(£) to
be identically zero. If higher-order terms are retained, addi-
tional constants are introduced that must be determined
from the large scale vortex dynamics. The validity of the
approximation must then be confirmed after those constants
have been determined. Although as shown above these cor-
rection terms are expected to be very small.

The relationship between the large scale dynamics and
the parameter o can be obtained from the statistics of the
amalgamation process. The lognormal density function for
p(£) can be used to obtain the statistics of the amaigamation
process. If p(&) given by Eq. (6) is used in Eq. (4), it is
found that

1+

p§) =
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FIG. 3. Probability density of large scale vortex circulation: —, present the-
ory; histogram, measurements of Bernal® (r = 0.38, s = 1); — ~, measure-
ments of Brown and Roshko' (7 = 0.38, 5 = 7); —~, theory of Takaki and
Kovasznay.'

kppp(£) — kepp(€) = [(67/2 —InE/E) /P 1p(€),
(7
where p(£) is the lognormal density function given by Eq.
(6). As indicated above, in Sec, II, if the locations of forma-
tion and destruction of a vortex are statistically independent
then p, and p,, are nonoverlapping. Then p, and p,, are
uniquely determined by Eq. (7), namely,

p()

&, 3
pF(f)

Ee, ¢
%uﬂ

&, 3

FIG. 4. Schematic diagram of the functions p(£), p-(£), and p, (&) in the
Eulerian frame of reference.
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pr(&) = [(In&/E)/ka?1p(£), pp(€) =0,
w0 >E3Ec; (8)
Pr&) =0, pp(&) = [(—InE/Ec)/kpa®p(£),

bc>£>0.
where £, = £ exp(a°/2).

The functions p(&), pp (£), and pr(£) are sketched in
Fig. 4. The basic feature described by these equations is that
at a location x amalgamations destroy vortices with circula-
tion A such that 4 /x < £, while the vortices formed by the
amalgamation have circulation A such that A /x> £.. Thus
the picture emanating from this analysis is that if the fully
developed region vortices are formed with £>£., then, as
they are convected downstream, the value of £ decreases un-
til it reaches a value £ < £, where they amalgamate to form
new vortices with & > £. These new vortices follow the same
evolution, i.e., they amalgamate farther downstream with
& < £ to form even larger scale vortices also with &> &,
and so on. This picture is consistent with the observed evolu-
tion of the large scale vortices.

The value of o is determined from the normalization
condition on py and p,, which results in the equations

kF —"—*’I(O’) - 1’ kD =I(0)9 (9)
where
o 2
I(o) = exp( — o*/2) + 1 f exp( —t )dt.
2mo 2r J-w 2

(10)

The function I(o) is plotted in Fig. 5. As noted earlier,
kp — kg = 1 and therefore the two equations for o are con-
sistent.

The constants k and &k, were defined as the number of
vortices formed and destroyed, respectively, per vortex lost
in the amalgamation process. It is immediately apparent that
the values of k- and k, depend on the amalgamation mecha-
nism: for tearing kp =2, kp =3; for pairing kp =1,
kp = 2;and for tripling k- = 1, kK, = 3. In general we expect
a combination of these amalgamation mechanisms. If v, is

04 02 03 04 05 08

FIG. 5. Plot of the function (o) used to determine the value of o for various
amalgamation mechanisms.
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the frequency of tearing processes and v,, is the frequency of
tripling processes then the values of k- and k,, are given by
the equations

1+Vte 2+vtr +Vte
kp='—_, p—m—.
1+Vtr 1+Vtr

Note that if the frequencies of tearing and tripling are equal
then &k = 1 and k,, = 2, the values for pairing.

Therefore the width of the distribution p(£) character-
ized by the parameter o is determined by the type of amalga-
mation mechanism. The value of o for several amalgamation
mechanisms is given in Table I. Amalgamations by tearing,
pairing, and tripling give increasing values of o, respectively,
and therefore broader probability distributions. In order to
obtain the value of o we note that amalgamations by pairing
dominate the evolution of the mixing layer. Further, amalga-
mations by tearing and tripling tend to balance each other in
their effect on 0. Hernan and Jimenez* found experimentally
the same number of tearings and triplings. Thus the value for
pairing o = 0.276 should be a good estimate of this param-
eter in a fully developed turbulent mixing layer. The density
and velocity ratio can only influence o through their effect
on the relative frequency of the various forms of amalgama-
tions. These effects are expected to be small and therefore
this value of o is expected to be only weakly dependent on the
velocity and density ratios.

The main conclusion of this study is that the probability
distribution of large scale vortices in the self-similar region
of a turbulent mixing layer is a lognormal distribution with
the standard deviation normalized by the mean value equal
to 0.28 (o = 0.276) independent of velocity and density ra-
tio. Comparison with other experimental and theoretical re-
sults is presented in Fig. 3 in terms of A /4. The measure-
ments of Brown and Roshko' in a mixing layer between
nitrogen and helium streams and Bernal’® in a constant den-
sity mixing layer are in good agreement with the result of the
present analysis. The theoretical result of Takaki and Ko-
vasznay ' is also shown in the figure. They found a broader
distribution with the mode at a smaller value of A /4. A more
guantitative comparison can be made in terms of the stan-
dard deviation of A /4. Experimental measurements of the
standard deviation are in the range 0.24-0.33,' in agree-
ment with the theoretical result. These experimental results
include measurements at several velocity and density ratios.
Takaki and Kovasznay found a standard deviation of 0.39,
somewhat larger than the measurements or the value found

TABLE L. The calculated averaged values of large scale vortex parameters
for different forms of amalgamation.

Tearing Pairing Tripling
kp 3 2 3
_o_ 0.162 0.276 0.436
$r/€ 0.798 0.660 0.484
Ep/E 1.198 1.330 1.495
L/x 0.518 1.074 2.306
L/(x+L7/2) 0.398 0.659 0.977
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in the present theory. Koochesfahani et al.> measured a val-
ue for the standard deviation of 0.031. They also found a
normalized mean value of the circulation somewhat higher
than that of other investigators. These anomalous results
might be attributable to the technique used to measure the
vortex circulation, which may have biased the sample to-
ward vortices early in their evolution where the velocity sig-
nature is expected to be cleaner.

IV. LAGRANGIAN STATISTICS

The results obtained in the Eulerian frame of reference
provide important new insight into the Lagrangian statistics.
It is convenient to discuss the basic features of the Lagran-
gian statistics in terms of the similarity variable { = x/A.
The probability of finding a vortex of circulation 4 at a posi-
tion (x,x + dx) is given by p(£), which after a change of

variables reads
1 ¢ 02]2
——In(2}+=]|},
2ot CXP[ 207 "(;)+ 2 ]

Pe &)=
with £ = exp(0?)/£. Its maximum value is found at &y,
= ¢ exp( — 30%/2). The probabilities of formation ps(£)
and destruction p,, (&) are given by Egs. (8), which after a
change of variables read

Pr(8) = [(—In§/6r)/ ke 1D(8), pp(§) =0,
0<&<8ums
Pr(8) =0, pp(§)=[(In §/§M)/k002]17(;)a
Su << .
In Fig. 6 p(£), pr(£), and p,, (£) are sketched. These equa-
tions show that vortices with circulation A are formed at

x < &y A and destroyed at x > £, A. If we focus on vortices of
a given circulation A the probability of finding vortices with

p(®)
¢t ¢

T

pe()
3 ¢

4

Pp(D)
18 :

FIG. 6. Schematic diagram of the functions p, ({), pr(§), and pp, (£) in the
Lagrangian frame of reference.
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circulation 4 close to the origin of the mixing layer is zero.
As we move downstream vortices of that circulation are
formed by amalgamation, p.($) >0, and therefore p, (&)
increases. At x = A£,, the probabilities of formation and de-
struction are both zero and p, ({) has a2 maximum. Down-
stream of that point vortices of circulation A are destroyed by
amalgamation, p, (§) >0, and therefore p, (£) decreases.

An important property of the Lagrangian evolution of
the vortices is their life span. If the life span of the vortices is
normalized by their circulation the mean vaiue can be calcu-
lated using the statistical independence of p- (&) and p,, (£),
which gives L/A =, — £, where £, and £, are the nor-
malized mean formation and destruction locations, respec-
tively. The values of £ and £, are obtained from the above
equations as

Cr =28 [120) — 1)/[I(a) — 1], &, =2E1Q20)/1(0),

where the function (o) is defined by Eq. (10). The values of
/€ and £ ,/E depend only on o and are given in Table I for
the three amalgamation mechanisms. It follows that in this
normalization the mean value of L /4 depends on both &
and o.

The statistics of the vortex life span takes a simpler form
when normalized by the formation location. The life span
probability density, p, (L /x), is defined as the probability
that a vortex formed at x will be destroyed at x + L. The
contribution to this probability by vortices of circulation 4 is
wl&,E/(1 4+ L /x)] with £ = A /x. The sum of all contribu-
tions gives the life span probability density, which after using
the statistical independence of p, and p,, reads

L £ )
=)= d
pL(x) (1+L/x)2f gp”(g)p"(uz,/ &
Using p and p,, from Egs. (8) it is found that

exp( — A%Y/4)
L/x)= "
P ) =
: 1
M(a,b) — M(b, —
X [M(a,b) (a)]l—l—L/x
where A= 1/ocln(1 +L/x),a=0—A/2, b=0c+ A/2,

and
M(xy) = (xy + —;)f exp( — t3)dt + y exp( — x?).
0

Note that p, (0) = O consistent with the fact that the life
span of a vortex must be greater than zero.

The life span probability is by definition the probability
that a vortex formed at x will have a life span greater than L.
Thus

wl5)=2(5)45):

which after integration reads

L B—o
K( A)
Pr ( x ) 21;-ka f A=
Xexp( — E—) dp,
2
where
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X 2 2
K(x) =f exp( —! —-2x ),

)dt + L exp(
o

— o <X LT,
K(x) =K(0) =2rl(0), o<x, (11)
and A = 1/oIn(1 + L /x). In constrast with the mean life

span normalized by A, P, depends only on ¢. The function
P, (L /x) is plotted in Fig. 7 for the values of o correspond-
ing to tearing, pairing, and tripling amalgamations. As o is
increased the weight of the life span distribution shifts to-
ward higher values of L /x, i.e., the vortices have a longer life
span. This trend is shown clearly by the mean value of L /x
given in Table I for the three amalgamation mechanisms.
Also of interest is the average value of the life span normal-
ized by the mean life span location, i.¢., the mean value of L /
(x + L /2), given in Table 1.

Comparison of the life span probability P, (L /x) for
o = 0.276 with the experimental measurements of Hernan
and Jimenez* is presented in Fig. 8. Clearly the theoretical
calculation agrees well with the measurements. The mea-
sured mean valueis L /x = 0.97 in good agreement with the

theoretical result L /x = 1.074. Brown and Roshko! re-
ported an average value of the life span normalized with the
mean life span location of 0.43, which is significantly lower
than the calculated value 0.659 for o = 0.276. It must be
noted that the number of vortices in the experimental sam-
ples was small.

An independent characterization of the life span of the
vortices is obtained from space-time correlation measure-
ments between two velocity probes deployed in the down-
stream direction. Roshko’ argued that the decay with in-
creased distance between the probes of the maximum
correlation coefficient is a manifestation of the finite life span
of the large scale vortices. He proposed an exponential decay

L
R 05

00

FIG. 7. Life span probability distribution P, (L /x) for values of & corre-

sponding to tearing (0 =0.162), pairing (0 =0.276), and tripling
(o= 0.436) amalgamations.
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FIG. 8. Comparison of the calculated life span distribution with experimen-
tal measurements: —, present theory for pairing amalgamations; histo-
gram, measured distribution of Hernan and Jimenez.*

of characteristic length scale equal to the average value of the
life span normalized by the mean position of the vortices. In
order to relate the large scale statistics to the space-time cor-
relation measurements the following three assumptions are
made: (a) the velocity signature of the large scale vortices
does not change during their life span (this assumption is
consistent with the observation that the circulation of the
vortices is constant during their life span); (b) the velocity
signature of the large scale vortices before and after an amal-
gamation are uncorrelated; and (¢) the contribution to the
correlation coefficient by smaller scale motions is negligible.
Under these assumptions the maximum value of the correla-
tion coeflicient for fixed probe spacing equals the probability
that a vortex convected by the first probe is destroyed down-
stream of the second probe. We call this probability the sur-
vival probability of the vortices, F(Ax/x), where Ax is the
distance between the two probes and x is the location of the
first probe.

In order to calculate the survival probability we intro-
duce first the survival probability density, f{Ax/x), defined
as the probability that a vortex found at x will be destroyed at
adistance Ax from x. The contribution to f(Ax/x) by vorti-
ces of circulation A is the product of the probability of find-
ing a vortex of that circulation at x, p(£), times the condi-
tional probability that a vortex of circulation 4 will be
destroyed at x + Ax, p,[§ /(1 + Ax/x)1/W(w,£). Thus
S(Ax/x) is given by the equation

) =traom

o (72 ©polE /(1 + Ax/)]
o S§pp(t)dt
The survival probability distribution is then

(3)=1L 545
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FIG. 9. Survival probability distribution F(Ax/x) for values of o corre-
sponding to tearing (o =0.162), pairing (o =0276), and tripling
(o =0.436).

which after integration gives

© 2
F(éx—) =1 KB —A) exp( —B )dﬂ,
x V2rJ-«  K(B) 2

where K(x) is given by Eq. (11) and A = 1/o In(1 + Ax/
x). We find then that the survival probability, F(Ax/x),
depends only on ¢. It is independent of the velocity and den-
sity ratio. The function F(Ax/x) is plotted in Fig. 9 for sev-
eral values of ¢. The mean value of the distribution shifts
toward higher values of Ax/x as ¢ is increased, consistent
with Roshko’s argument. An important difference between
the life span probability and the survival probability is that
the former has zero slope at the origin while the latter has
finite negative slope. This is because the probability of a vor-
tex having zero life span is zero but some vortices are de-
stroyed by amalgamation at any downstream location and
therefore f(0) > 0. The slope of F(Ax/x) at the origin is
proportional to the number of vortices destroyed at x.

Comparison of this resuit with experimental measure-
ments is presented in Fig. 10. The solid line in the figure is
the survival probability for o = 0.276. The symbols are max-
imum values of the correlation coefficient for several probe
spacings, Ax, normalized by the location of the upstream
probe, x. These data were calculated from the reported mea-
surements of Davies et al.'® The experimental measurements
are in good agreement with the theoretical result. It should
be noted that these measurements were obtained in the mix-
ing layer at the edge of the potential core of a circular jet and
therefore the velocity ratio was zero. Also shown in Fig. 10 is
the exponential curve proposed by Roshko.”

V. DISCUSSION

An essential aspect of the dynamics of the fully devel-
oped flow uncovered by this analysis is the nonoverlapping
feature of the amalgamation statistics, i.e., only vortices with
£ <& are destroyed and only vortices with £> &, are
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FIG. 10. Comparison of the calculated survival probability distribution
with experimental measurements: —, present theory for pairing amalgama-
tion; — —, proposed distribution of Roshko’; O, cross correlation measure-
ments of Davies ef al.'*

formed by amalgamation in the fully developed turbulent
flow. Thus vortices with A < Ao = £ x are “dynamically un-
stable” and vortices with 4 > A, are “dynamically stable.”
This feature of the dynamics of the large scale vortices in the
fully developed flow is a manifestation of the underlying sta-
bility characteristics of the flow. The cutoff value A varies
linearly with downstream distance. These features are analo-
gous to the stability characteristics of the laminar mixing
layer. In the laminar layer, disturbances with small wave-
length compared to the local thickness of the layer tend to
decay while disturbances with wavelength large compared
to the local thickness of the layer tend to grow. The cutoff
point in the large scale vortex dynamics corresponds to the
neutral stability point in the laminar stability problem. Giv-
en the lack of detailed quantitative understanding of the dy-
namics of the large scale vortices, this analogy can be used to
estimate the value of A, from linear stability theory,2>-?? in
the spirit of the model proposed by Ho.?** For typical mix-
ing layer velocity profiles the inviscid analyses of Monkewitz
and Huerre,?! for the constant density layer, and of Maslowe
and Kelly,?* for the nonuniform density layer, give values of
Ac/8,, in the range 3.14-3.43 at the neutral stability point.
Based on these results the calculated values of A /8, for
o = 0.276 are in the range 3.0-3.3 in good agreement with
experimental results."

An interesting result of this investigation is the finding
that the distribution of large scale vortex circulation in the
fully developed turbulent mixing layer is lognormal. This
result is quite general since it was based only on self-similar-
ity, conservation of circulation during the life span of the
vortices, and the small change of In £ in the amalgamations.
It is independent of details of the amalgamation process.
Takaki and Kovasznay'® also considered the statistics of the
large scale vortices under these same basic assumptions but
used a different model of the amalgamation process. Hence
the result of their analysis is expected to be a lognormal dis-
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tribution even though they used a different approximate
form of the distribution in their calculations. If the variance
and third moment about the mean of In £ are evaluated for
their distribution, it is found that (¢)yx = 0.153 and
(u3)1x = —0.0013, respectively. The very small value of
the third moment confirms our expectations. Clearly Takaki
and Kovasznay’s distribution is well approximated by a log-
normal distribution.

A second observation in comparing these results with
the results of Takaki and Kovasznay is the large difference
between the variance of In £, 0. In their analysis the width of
the probability distribution is determined by the rate of
merging, a function of vortex spacing. They assumed a rate
of merging inversély proportional to the square of the dis-
tance between the vortices. This functional dependence was
justified on the basis of the behavior of vortices with small
spacing. However, they also found, by solving the inverse
problem, some discrepancies between the assumed form of
the merging function and the merging function calculated
from the experimental measurements of Brown and
Roshko.' In the present analysis the value of o was obtained
based on the assumption of statistical independence of the
amalgamation locations, which leads to the nonoverlapping
feature of p-(£) and p,, (£). It is apparent that the Takaki—
Kovasznay model is not consistent with statistical indepen-
dence of the amalgamation locations. It follows that for the
assumed form of the merging function p; (£) and p,, (£) will
overlap. This more general case was treated by Bernal.” The
main difference in the analysis is that a non-negative func-
tion appears on the solution for p, (£) and p, (£). This func-
tion results in a positive constant added to the right-hand
side of Eq. (9). Therefore, if p(£) and p,, (£) are not statis-
tically independent, the value of o for a given form of amal-
gamation must be larger than the value obtained for statisti-
cal independence. Thus the value of ¢ for the Takaki-
Kovasznay distribution must be greater than the value ob-
tained in the present investigation, as indeed it is the case.
We conclude then that the reason for the discrepancy in the
values of o is the merging function assumed by Takaki and
Kovasznay, which does not accurately model the nonover-
lapping feature of the amalgamation statistics.

The lognormality of the probability distribution reduces
the problem of the large scale vortex statistics to the deter-
mination of two parameters: the mean value of the distribu-
tion, £, and the variance of In £, o®. Current understanding
of the large scale vortex dynamics in the fully developed
turbulent flow is not adequate to determine either one of
these parameters. The present theory can be used to relate
these parameters to measurable quantities. In the Eulerian
frame of reference £ determines the average passage frequen-
cy of the large scale vortices, n,(x). In the Lagrangian
frame of reference £ determines the mean value of the vortex

. life span normalized by its circulation. The results presented

earlier (Sec. IV) give L/4 =0.723 (£)~! for o = 0.276.
This second physical interpretation can be used to obtain the
relation between £ and the velocity and density ratios. It is
argued that the vortex life time scales as 4 /AU. Thus the life
span is proportional to AUc/AU and, consequently, & is
proportional to AU /U,. This scaling should be valid for
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arbitrary values of the velocity and density ratios.'?* These
measurements give values of £U./AU in the range 0.27—
0.31. It is interesting to compare these results on the vortex
life span in the fully developed flow with measurements of
the life span of the vortices in the initial region of a forced
mixing layer obtained by Ho and Huang.?® They measure for
a second generation vortex, i.e., after the first pairing, L/
A =4withAU /U, = 0.62. This value of L /A isequal to the
mean value calculated for the fully developed flow at the
same flow conditions.

The second parameter of the lognormal distribution is
the variance of In £, o In the Eulerian frame of reference o
determines the width of the distribution of vortex circula-
tion. In the Lagrangian frame of reference o determines the
life span, normalized by the formation location, and the sur-
vival probability distributions. As o is increased the width of
the distribution of vortex circulation increases and the mean
life span and the mean value of the survival probability also
increase. The parameter ¢ was also related to the amalgama-
tion mechanism. The value for pairing was found to be in
good agreement with experimental measurements of the vor-
tex circulation distribution, the life span distribution, and
the survival probability distribution. The dominance of pair-
ing in the fully developed flow is another feature common to
the laminar stability problem. In the laminar layer it is relat-
ed to the fact that the wavelength of the most amplified dis-
turbances is approximately twice the wavelength of neutral
disturbances. The experimental evidence available suggests
that o does not depend on the velocity or density ratios.

Vi. CONCLUDING REMARKS

One initial motivation for this work was the realization
that the measured probability distribution of large scale vor-
tices is well approximated by a lognormal distribution. This
observation led to an early attempt to use Kolmogorov’s
breakage theory'® and to the idea that the fully developed
flow can only be reached after a large number of amalgama-
tions. It now appears that the lognormality of the distribu-
tion is a consequence of the underlying stability characteris-
tics of the flow. Several aspects of the dynamics of the fully
developed flow have been shown to be analogous to the insta-
bility characteristics of the laminar layer. This analogy pro-
vides very good quantitative estimates of several aspects of
the evolution of the vortices in the fully developed turbulent
flow. These instability characteristics combine with ran-
domization of the vortex size and life span to produce a rapid
transition to the self-similar lognormal distribution. Experi-
mental evidence® suggests that only three or four amalgama-
tions may be needed to obtain the lognormal distribution.
This self-similar distribution is a necessary condition for the
fully developed turbulent flow. In addition, the development
of small scale three-dimensional motions will also be re-
quired. These, however, play a small role in the statistical
distribution of large scale vortices. Better understanding of
the nonlinear dynamics of the large scale vortices is needed
to determine the parameters of the large scale vortex distri-
bution. The theory described here does provide a self-consis-
tent description of the large scale statistics in the Eulerian
and Lagrangian frames of reference that is in good agree-
ment with experimental results.
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APPENDIX: ASYMPTOTIC EXPANSION OF p(t)

The following derivation of an approximate form for
p(£&) is motivated by the fact that in a typical amalgamation
£ changes by a factor of 2. Hence a = In £ changes by an
additive constant In 2 = 0.693. This suggests that the prob-
ability distribution when written in terms of a, p,, (a), will
have small variance. Thus an asymptotic expansion of p,, (@)
for small variance may provide a valuable approximation for
p&).

The function p, (@) is given by Eq. (5), which after a
change of variables reads

Do (a) = Cexplg(a) —al.

The asymptotic behavior of p,, () is derived using the char-
acteristic function ®(7) defined in the usual way,

$(7) = J-w exp(ira)p, (a)da

= Cf explira + g(a) — alda.

The asymptotic expansion for ©(r) is found from the
behavior of g(a) — « near its maximum, «,. The value of
is determined from the equation g’'(¢;) = 1. An expansion
of g(a) — a in powers of & — a, gives, to second order,

&(7) =270 C explg(a,) — aplexplira, — o°7°/2)

X [1 4 0% (a,)/8 + io*g* (ay)7/2 + 0(d°) ],
where 0> = — 1/g" () is the variance of the distribution
and g"(a,) and g"(a,) are the third and fourth derivatives
of g(a) at @ = a,, respectively. This asymptotic expansion is
valid for small variance, i.e., 0> €1.

The normalization condition on p,, (a) gives ®(0) =1,
which determines C as

2mo 1+ 0°¢"(ay)/8
and therefore

®(7) = exp(ita, — 0°7°/2)

X [1 + io*g"(ay)7/2 + O(d®)].

To leading order p,, (@) is given by the exponential term that
is the characteristic function of a normal distribution with
mean (a,) and variance o> It follows that p(&) is lognor-
mally distributed with mean € = exp(a, + 0°/2) and vari-
ance (£)*[exp(d?) — 1].

The accuracy of this approximation can be determined
from the moments of the distribution p, (a). Of particular

L. P. Bernal 2542



interest is the third moment about the mean since this mo-
ment is zero for a normal distribution. These moments are
obtained from the characteristic function, which give to sec-
ond order

a = ao + 0'4 .ﬁ(ao)/zs
H= a2,
#;=0.

Therefore retaining the second-order term in the expansion
for p, (a) results in a small correction to the mean. The
second and third moment about the mean equal the values
for a normal distribution to order o°.
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