NOISE IN DIODE AND TRANSISTOR STRUCTURES

more clearly that the excess white noise is due to an
internal mechanism. Both the emitter and collector
junctions could be observed with photoinjection and
there was no strong temperature dependence of the
1/f spectrum occurring at low frequencies. The strong
temperature dependence of the 1/f noise in the ger-
manium diffused base transistors was most probably
due to the imperfect nature of the emitter junction.

In attempting to correlate the room temperature
noise behavior of the silicon transistors with structural

differences, we observe that the alloy type (unit Si PNP

2N496) gave good agreement with theory while the
diffused-base types gave moderate to large disagree-
ment. The most important structural difference is the
gradient of fixed impurities in the base region of the
diffused structures. By reasoning in a qualitative
fashion, we can see that the effect of a “built-in” field
will be in a direction to reduce the cancellation due to
base-region fluctuations being reflected out of phase
from the emitter. By taking the full value of the shot-
noise generator [ Eq. (1d)] we can qualitatively account
for the observed excess noise. When the temperature
variation of the excess white noise is considered, how-
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TaBiE I. Comparison of theoretical and experimental noise figures.

Unit
VFR-2 VFR-4 27D M-1 324-7 2N496
Fiheory 1.5db  3.2db 40db 14db 19db 3.8db
Fexp t.5db 3.7db 160db 94db 50db 4.8db
R,=562 ohms, [,=500ua, V.=5v, T=300°K

ever, no appreciable effect is observed due to the tem-
perature variation of the “built-in” field. The relative
changes in the excess noise correspond to what is pre-
dicted by the temperature variation of %;; and ao.
It would seem that a more sophisticated point of view
is necessary for the understanding of these effects.
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Theory of Oscillation of a Viscoelastic Medium between Parallel Planes
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A theoretical description of sinusoidal oscillation of an incompressible viscoelastic medium between fixed
infinite parallel planes is presented. The mechanical properties of the viscoelastic medium under sinusoidal
shear are expressed by a complex viscosity coefficient. The general equation for oscillatory motion-of an
incompressible viscoelastic medium is developed. The solution to this equation is obtained for rectilinear
motion parallel to a pair of infinite planes. The equation for the velocity distribution between the planes is
developed and several typical profiles are presented graphically. The equation for the acoustic impedance per
unit area of plane is obtained. Functions from which the acoustic resistance and acoustic reactance may be
determined are presented in graphical form for media which range from a perfect viscous fluid to a perfect
elastic solid. The applicability of the theoretical results to oscillatory flow in rectangular tubes is discussed.

1. INTRODUCTION

HE problem considered herein is that of the
rectilinear, oscillatory motion of a viscoelastic
medium confined between fixed, parallel planes infinite
in extent. The medium is assumed to be characterized
by a linear relation between stress and strain. It is also
assumed to be incompressible. Thus, no dilatational
wave effects are considered. The oscillatory motion of
the medium is assumed to be sinusoidal. This permits
description of the properties of the medium in terms of
a complex viscosity coefficient. It also permits deter-
mination of the acoustic impedance of a section of the
infinite system. This acoustic impedance is descriptive

* Now at the Oklahoma State University, Stillwater, Oklahoma.

of the properties of the oscillatory motion of the fluid
system. Acoustic impedance and particle velocity are
used as final descriptive quantities. From the particle
velocity, stress and displacement are directly obtainable.

Several treatments of oscillatory flow of viscoelastic
media have appeared recently. Broer! treats incom-
pressible oscillatory flow in a circular tube. However,
the form of his solution is of limited direct applicability.
Tyabin? and Krasilnikov? have also treated facets of
unsteady motion of a viscoelastic medium in circular
tubes. Oldroyd* has analyzed theoretically the oscilla-

11. J. F. Broer, Appl. Sci. Research A6, 226 (1956).

2N. V. Tyabin, Doklady Akad. Nauk SSSR, 95, 473475 (1954).
3V, I. Krasilnikov, Priklad. Mat. i Mekban. 20, 655~-660 (1956).
¢ J. G. Oldroyd, Quart. J. Mech. Appl. Math. 4, 271 (1951).
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tory motion of a viscoelastic medium in the narrow
annular gap between two coaxial cylinders and Oldroyd
et al.® have used this analysis as the basis for experi-
ments directed toward determining mechanical proper-
ties of viscoelastic fluids.

In this paper, stress-strain relations and an equation
of motion appropriate to sinusoidal motion of an in-
compressible, viscoelastic medium are presented. Solu-
tion to this equation appropriate to the parallel plane
problem is obtained. Functions needed for determina-
tion of acoustic impedance and particle velocity are
presented in graphical form. Finally, the applicability of
the theory to finite, flat, rectangular tubes is discussed.

II. GENERAL EQUATION FOR OSCILLATORY FLOW

A general linear relation between stress and strain for
an isotropic viscoelastic medium is®7

CyTa;j=fIA5,'j+ZBE,',‘; ’I:, j= 1, 2, 3 (1)
where C, 4, and B are operators of the form
C=Co+C1(8/3t)+ - - - +Ci(3*/3t¥), 2

for example, r;; are the components of the stress tensor,
€;; are the components of the strain tensor, A is the
dilatation €k, and §;; is the Kronecker delta. By appro-
priate selection of the constants of the operators the
stress-strain relation (1) it may be made to describe a
variety of media including a perfect elastic solid, a
viscous fluid, and others.

If we restrict our attention to sinusoidal motions of
radian frequency w, then the operators of (1) may be
replaced by complex quantities possessing frequency
dependent real and imaginary parts. By appropriately
arranging and naming these complex quantities, the
stress-strain relation (1) may be put into the form often
used for liquids,

7= (RA+F*A) 05+ 2n*¢;; 3)

where (kA) is the negative of the static pressure, the

complex shear viscosity is
* o/ !l — mp—i
nT=n —m 773 1¢,

(4)

7* is a complex second viscosity coefficient and corre-
spondingly the complex bulk viscosity is

n8* =7+ (2/3)n*,
Aq is the dilatation rate, and the rate of strain is
eii=3[ (8:/92;)+ (84;/9x.) ]

where £, are components of the particle velocity.
The mean pressure is defined as

p=—7u/3 (7

5 Oldroyd, Strawbridge, and Toms, Proc. Roy. Soc. (London)
Be64, 44 (1951).

¢ T. Alfrey, Quart. Appl. Math. 3, 143-150 (1945).

7E. H. Lee, J. Appl. Phys. 27, 665-672 (1956).

(%)

(6)
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and for the stress-strain relation (3) is

p=—(kA)—n5*A.. (8)
Substitution of (kA) from (8) into (3) gives
= —[p+ (2/3)n* A, J6:+ 2n*e;. )

If we let the viscoelastic medium be incompressible then
A; in (9) vanishes. The resulting equation may be
combined with the equation of motion assuming no
distant acting forces,

374/ dx;= p(dE/dL),

where p is the fluid density. This gives the following
general equation for sinusoidal motion, or oscillatory
flow, of an incompressible viscoelastic fluid,

— (3p/3x:)+n*ViEi=p(dEy/dt) =~ p(9:/0t). (11)

In (11) 9* is assumed constant. The total derivative
may be approximated by the partial derivative as
shown when [£,(0£;/9xx)] is negligible.

(10)

III. SOLUTION FOR RECTILINEAR MOTION
BETWEEN PARALLEL PLANES

The specific solution to (11) sought is that for the
sinusoidal oscillation of an incompressible viscoelastic
fluid confined between two infinite parallel planes, the
planes being considered unyielding to stress associated
with the fluid motion. Figure 1 shows a section of the
planes and defines the coordinate system to be em-
ployed. It is assumed that the velocity of motion of the
fluid has an x component only. This x component of
particle velocity is considered as dependent on the 2
coordinate and time £ only. In Fig. 1, d is the plane
separation, ¢ the width, and & the length along the
direction of flow. Subject to these conditions and letting
(21,%2,23) = (x,9,2), (11) becomes

— (9p/dx)+n*(%/32) = p(0¢/ 1) (12)

where £ is the x component of the velocity, its partial
and total time derivatives being equal. Write the sinus-
oidal pressure gradient as

— (0p/0x)=rpe™ (13)
and the particle velocity as
E=Af(z)e™. (14)
Then (16) becomes
(f/de)+ B f+ (U/n*4)=0 (1)
where
= —iwp/n*. (16)
A solution of (20) is given by
Bf=[—y¢/(*A) ]+ [ao cos(kz)+a, sin(kz)]. (17)

We assume that the fluid does not slip at the bounding
planes, thus £ and f must vanish for (z==d/2). Putting
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Fic. 1. Section of infinite parallel planes confining the oscillating
viscoelastic fluid. The fluid is assumed to have an x component
of motion only,

this condition into (22) gives

a1=0
av=[¥ /T4 cos(kd/zn} a8
and (22) becomes
L)/ & *A)J[—Cﬁs—(kz—)—l] (19
/@) K Py |

The velocity amplitude factor f as determined from (19)
serves to establish the distribution of velocity between
the planes. Combining (14) and (19) gives the particle
velocity as

cos(kz)

(ol

As this is in complex form, it is not immediately suitable
for determination of velocity profiles. Taking the real
part of £ from (20) gives

Re(&)=[ @)/ (p) J[F (pt,Y,7)], (21)

where r=(3)/(d/2) and F is a sinusoidal function of
(wt) for the remaining parameters fixed. Thus from (21)
it is a simple calculation to determine the particle
velocity if F is known. Further, it should be noted that
by replacing (wf) in (21) by (wt—w/2) the right side
of (21) yields the particle displacement.

Let us now turn to the determination of the acoustic
impedance of a section of the planes. We must first
determine the volume velocity of flow through the
section. To do this we obtain the average velocity
between the planes from (20) as

1 +d/2
éAv = f E.dz
dvV_ge

=L()/ (#n*)]{[tan(kd/2)/ (kd/2)]—1}e". (22)

The volume velocity of flow through a section of the
planes of width @ as shown in Fig. 1 is

U= adEM
=[(ady)/ (kn*) L tan(kd/2)/ (kd/2) ]—1}e".

(20)

(23)
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The acoustic impedance of a section of the planes of
width ¢ and length 5 is

Z=Pb/ua
= (Ybe™?)/ (ua). (29)
Into (24) put (23) and (16) to get
—wpb
s (25)

Z= .
ad{[tan(kd/2)/(kd/2) ]-1}

It is convenient to resolve (kd/2) into its real and
imaginary parts. Thus using (4) and (16) we get

(kd/2)={[cos(¢/2)+sin(¢/2)]
—ilcos(¢/2)—sin(¢/2) ¥ (26)

Y= (d/2)(pw/ 2m)*
tang=x""/9'

and 9 is the modulus of #*. The factor ¥ is proportional
to the ratio of plane separation to wavelength of a plane
shear wave in the mdeium?® as

V= {md}/{N[cos(¢/2)+sin(¢/2)]}

where A, is the wavelength.

Limiting values of Z may be obtained from (25)
which, other factors being constant, correspond to very
closely spaced planes (¥ small) and very widely spaced
planes (¥ large). By retaining the first few terms of a
series expansion of tan(kd/2) in powers of (kd/2), and
separating the result into real and imaginary parts gives,
for ¥ small,

pwb[ /3 cosg 6 3sing
2" +(0)] @

aod 277 5 2y
The impedance for ¥ large is obtained from (25) by
introducing the substitution (26) and writing the

tangent in terms of exponentials. We then obtain for
Y large

where

27)

(28)

pub ([ cos(¢/2)+sin(e/2)
="l |

" 3%

+i[1—'FCOS(¢/ 2)—sin(¢/ 2)] } 30)
)%

where the upper sign is used when

[cos(6/2)—sin(¢/2)]>0

and the lower sign is used when

[cos(¢/2)—sin(¢/2)]<0.

8T. Alfrey, Jr., and E. F. Gurnee, “Dynamics of viscoelastic
behavior’” in Rheology, Theory and A pplications, edited by F. R.
Eiricl; (Academic Press, Inc., New York, 1956), Vol. I, Chap. 11,
p- 423.
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Fi6. 2. Logarithmic plot of (R/Ry) versus Y for several viscosity
angles ¢. These functional values may be used in Eq. (30) to
determine the acoustic resistance of a parallel plane section. The
curve for ¢=0 corresponds to a viscous fluid. The curve for
¢=m/2, corresponding to an elastic solid, is not shown since for
this case (R/R;)=0.

For the case [cos(¢/2)—sin(¢/2) =0, p==/2, and
iV2Y }

—_— (31)
V2V —tanV2Y

x/2 =

pwb {
ad
this expression being valid for all values of Y. It is
convenient to write the acoustic impedance for all
values of ¥ in terms of the limiting values of the acoustic
resistance R, and reactance X, for ¥ small and as
obtained from (29). The impedance of (25) then
becomes
Z=R+iX
= (R/Ro)Ro+1i(X /X)X,

where from (29) and (27) we get

Ro=[(pwb)/(ad) JL(3 cosp)/(2¥*)]
= (124b cosg)/ (ad).

(32)

(33)
and
Xo=[(pwb)/ (ad)[(6/5)— (3 sing)/ (2¥?)]
= (6pwb)/ (Sad) — (12qb sing)/ (ad®). (34)

The advantage of the impedance formulation (32) is
found in the fact that the functions (R/R,) and (X/X)
are dependent on ¢ and ¥ only. Comparing (32) with
(25) gives

Y2 —_—
R/Ry)= Re 35
(R/R) [3 cos¢] {[tan(kd/Z)/(kd/Z)]—ll (33)
and
1
<X/Xo>=[ ]
(6/5)— (3 sing)/(2V?)

—1

XIm{ ’ (36)
[tan(kd/2)/(kd/2)]—1

GEORGE B,

THURSTON

Thus, if we have a set of values of (R/R,) and (X/Xy),
calculation of the impedance from (32) is relatively
simple, Ro and X being determined from (33) and (34).

IV. NUMERICAL CALCULATIONS

Numerical calculations were made of the functions
(R/Ry) and (X/X,), these functions being necessary for
impedance computations using Eq. (32). Calculations
were also made of the function F(¢,wt,V ), this function
being necessary for velocity profile computations using
Eq. (21). The range of viscosity angles considered was
from ¢=0 radians as for a viscous fluid, to ¢=m/2
radians as for an elastic solid. The dimensionless
parameter ¥ was varied from 0.1 to 100. The range of
angles selected for ¢ is that range which includes
published values®*™ of viscoelastic parameters. The
calculations were made with an I.B,M. 650 magnetic
drum data processing machine.

For purposes of calculation, Egs. (35) and (36) may
be rewritten as follows:

2Y? TAC+BD
®ro-|—] =] @1
3 cospldl CH-17?
6 3singTfAD—BC
axo-| -2 ] @
5 272 C+-D?
where
A =—B+a tan(e) tanh(8)
B=q¢+8 tan(a) tanh(8) (39)
C=tan(a)—B
D=tanh(8)+4

and, as given in Eq. (26),
{a—18)= (kd/2).

Numerical calculations are carried out by first deter-
mining the value of « and B for the particular values of
¢ and ¥ of interest. Next Egs. (39) are calculated, thus
permitting determination of (R/Ry) and (X/X,) from
(37) and (38). Figures 2 to 5 show the results of such
calculations. Figure 2 shows a logarithmic plot of
(R/Rq) versus Y for =0, x/8, w/4, 3x/8, Tx/16 radians,
(R/Rq) being zero for g=u/2. Figures 3, 4, and 5 show
a semilogarithmic plot of (X/X) versus Y for these same
viscosity angles. With the exception of the ¢=0 case,
all curves in these figures show a discontinuity in
(X/Xo) corresponding to the vanishing of the de-
nominator term, X, However, the reactance, X, is
continuous, undergoing a change of sign as this critical
value of ¥V is passed. The reactance is then negative
(spring-like) for Y less than this critical value, changing
to positive (mass-like) as ¥ exceeds this critical value.

¢ E. R. Fitzgerald and J. D. Ferry, J. Colloid Sci. 8, 1-34 (1953).
10 Fitzgerald, Ackerman, and Fitzgerald, J. Acoust. Soc. Am. 29,
61-64 (1957).
(11914161)' Frohlick and R. Sack, Proc. Roy. Soc. (London) A185, 415
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The curves for a viscous fluid, ¢=0, as given in Figs. 2
and 3 are identical to those previously presented.?

For the nondissipative case, ¢=w/2, we have a
sequence of discontinuities in (X/X,) as shown in Fig. 5.
The heavy dots on the abscissa indicate the values of
¥ corresponding to these discontinuities as determined
from the reactance ratio for this case,

Y% _[ 6 3 (1 tanV2¥V\ 1! 1)
X/ Xo)sia= (5 277 VIY )] -

The spacing between dots is 7/VZ on the ¥V axis.
From Eq. (20) we obtain the velocity profile function
defined in Eq. (21) as

PR+QS
] sinw?

R*--8?
PS—QR
—l—[—————] coswi  (41)
R?+4 57

27 K, Wood and G. B. Thurston, J. Acoust. Soc. Am. 25,
858-860 (1953).

F(¢pwt,Y,r)= [1 -
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Fi6s. 3~5. Semilogarithmic plot of (X/X,) versus ¥ for several
viscosity angles ¢. These functional values may be used in Eq. (32)
to determine the acoustic reactance of a parallel plane section.
F;)r Fig.3,¢=0,7/16,7/8; Fig. 4, p=7/4,3x/8; Fig. 5,0="7x/16,
/2.

where
P=cos(ar) cosh(Br)
Q=sin(ar) sinh (8r)
R=cos(a) cosh(B)
S=sin(a) sinh(B)

Figures 6-8 show plots of this velocity profile function
for several values of ¢ and ¥, the range of » being from
the midpoint between the planes to one of the planes.
On each figure, the function is shown for several phases
of the hali-cycle of motion, values for the remaining
half-cycle being the negative of those shown. As the
multiplying factor [()/(sw)] in Eq. (21) contains
none of the parameters of the function F(¢,wt, ¥V ,r), the
plots of the function give directly an accurate picture
of the velocity distribution between the planes.

(42)

V. DISCUSSION OF RECTANGULAR TUBES

Consideration should be given to the applicability of
the foregoing theory for infinite planes to planes of
finite extent and with side walls thus forming a flat,
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Fics. 6-8. Velocity profiles. Plotted is the function F(¢,wt,Y,7) versus distance ratio 7. (r=0) locates the midpoint between the planes
and (r=1) locates the plane surface. Values of the function F are shown for various instants, w#, during the cycle of motion for wt from
zero to  radians. The motion is oppositely directed during the remainder of the cycle as F(wt+m) = —F (wf). The time epoch is such that
the pressure gradient is a maximum at w#=0 for all values of r. Values of the function F may be put into Eq. (21} in order to determine

particle velocity.

rectangular tube. Considering the acoustic impedance
of such a tube, the end effects and side wall effects could
be made relatively unimportant by making the lateral
dimension and length of the tube suitably large com-
pared to plane separation, the suitability perhaps being
determined by the precision of impedance measurement.
For other tube dimensions it may be possible to apply
correction factors for finite dimensions, these factors
being presently unknown. However, the special case of
a purely viscous fluid for which (¢=0), has been treated
both theoretically and experimentally by Wood and
Thurston.!? The effect of finite tube dimensions and the
applicability of the infinite plane considerations to
finite tubes is considered. Lateral dimension and tube
length of the order of twenty times the plane separation
gave good agreement between infinite plane theory and
measured impedance. An end correction factor for tube
length for very short tubes is found to be effective.
Experimental equipment has been described”® which

18 G, B. Thurston, J. Acoust. Soc. Am, 24, 649-652 (1952).

may be adapted to the study of the acoustic impedance
properties of oscillatory flow of viscoelastic fluids in
tubes. Once theoretical and experimental methods are
established for treatment of oscillatory flow in tubes,
either flow properties can then be predicted or measured
flow properties can be used to determine viscoelastic
properties of fluids undergoing sinusoidal motion. This
method could then be used to augment several experi-
mental techniques already available* for determining
fluid properties.
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