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The eigenvalues and eigenfunctions of self-adjoint Sturm-Liouville problems with a simple pole
on the interior of the interval [4, B ] are investigated. Three general theorems are proved and it is
shown that as n— 0, the eigenfunctions more and more closely resemble those of an ordinary
Sturm-Liouville problem and A, ~ — m?7*/(B — A )?, just as if there were no singularity. The
low-order modes, however, differ drastically from those of a nonsingular eigenproblem in that (i)
both eigenvalues and eigenfunctions are complex (despite the fact the problem is self-adjoint), (ii)
the real and imaginary parts of the nth eigenfunction may both have ever-increasing numbers of
interior zeros as B— 0, instead of just (n — 1) zeros, and (iii) as B— oo, the eigenvalues for all small
n may cluster about a common value in contrast to the widely separated eigenvalues of the
corresponding nonsingular problem. These results are general, but in order to present
quantitative solutions for the low-order modes, too, special attention is given to the particular case

u" +(1/x — A)ju =0, (1)

with u(4 ) = u(B ) = O where A is the eigenvalue and A4 and B are of opposite signs. For small n, one
can obtain the approximation

An ~exp[(1 +3"%)d, /(2B'7)]/B, 2)

where d,, is the nth root of the Airy function Ai( — z). The imaginary part of (2) shows explicitly
how profoundly the interior pole has modified the structure of the eigenproblem.

The WKB method, which was used to derive (2), is shown to be accurate for all n. The WKB
analysis is of some interest in and of itself. Although the number of WKB “‘transition” points is
the same as for the half-century old quantum harmonic oscillator (two), the substitution of the
interior pole for one of the turning points has a profound (and fascinating) impact on both tke
WKB formalism and the numerical results. Thus, although this problem was motivated by the
physics of hydrodynamic waves, it is also an extension to both classical Sturm-Liouville theory
and to the WKB treatment of eigenvalue problems.

PACS numbers: 02.30.Hq

1. INTRODUCTION

Normal self-adjoint Sturm~Liouville (SL) eigenprob-
lems on an interval [4, B ] fall into two classes: those whose
equations have no singularities on [4, B ] and those which are
singular only on the boundaries. The theory of the diurnal
ocean tide introduced a third class: equations which would
otherwise be described by the classical SL theory except for
having so-called ‘“‘apparent” singularities in the interior of
the domain. Although the tidal equation was derived by La-
place in the eighteenth century and despite the fact that the
eigenfunctions themselves are analytic everywhere in the in-
terior of the domain, the mathematical problems of this ex-
ample of the third class were not resolved until 1970, endin g
a long history of confusion, controversy, and many pub-
lished blunders."? The goal of the present work is to study
the simplest example of a fourth class of SL eigenproblems in
which the eigenfunctions themselves, as well as the differen-
tial equation, are singular in the interior of the interval.

Up to now, this fourth class of self-adjoint SL problems
has been completely ignored, and small wonder. Such prob-
lems seem bizarre and outrageous: what physical theory
could lead to equations whose solutions are singular inside
the physical domain? In reality, such interior singularities or
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“critical surfaces™ arise as naturally in fluid waves as kittens
from cats. Physically, the singularity is removed by friction,
which shifts it into the complex plane. In the real world,
there is always at least a little friction, so the actual fluid
waves are always finite and well-behaved, as one would ex-
pect. Because the dissipation is so weak, however, it is a good
approximation to take the inviscid limit so as to eliminate the
friction as an explicit parameter, and this will be done in
most of the paper. In the next two sections, however, the
friction is temporarily restored to a finite value to show how
the singularity should be interpreted when making this ap-
proximation. (In brief, the conclusion is that the eigenfunc-
tions should be made single-valued by a branch cut in the
upper half-plane.)

Although some attention will be given to a general class
of problems, for simplicity and for the sake of giving explicit
results instead of vague generalizations, most of our atten-
tion will be focused on the particular example

U, + (1/x —A)u=0, (L.1)
ud)=uB)=0, (1.2)

where 4 is the eigenvalue. If 4 and B are of the same sign,
then (1.1) and (1.2) are merely a normal, self-adjoint Sturm—
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Liouville problem of the first kind with no singularities on
[4, B]. Here, however, 4 and B will be of opposite signs so
that both (1.1) and the eigenfunctions are singular in the inte-
rior of the interval [4, B]. None of the usual theorems of
conventional SL theory apply because the interior singular-
ity violates the conditions of the theorems, and most are no
longer true. In particular, the eigenfunctions and eigenval-
ues are complex.

Thus, one has no choice but to regard (1.1)and (1.2)as a
new species, a “‘Sturm-Liouville eigenproblem of the fourth
kind,” when the singularity is in the interior. The problem is
not a lack of self-adjointness (it is well known that non-self-
adjoint equations may have complex eigenvalues); actually,
(1.1) 1s self-adjoint. The rub is solely that the differential
equation has a pole on the interior of the domain.

In several years of searching, it has not been possible to
locate a single paper other than this one which attempts a
systematic attack on such “fourth kind”’ eigenproblems, but
there have been three precursors. Dickinson® and Tung*®
analyzed waves with “critical latitudes’ using the continu-
ous spectrum approach discussed in Appendix B. This work
is complementary to that reported here, and some of Dickin-
son’s WKB analysis can be carried over. Simmons®” is the
only author besides Boyd® to have previously computed dis-
crete, singular eigenfunctions, but his calculations are strict-
ly numerical and limited to more complicated equations
than {1.1).

This present work has three principal goals: (i) to prove
some simple theorems about the general SL problem of the
fourth kind, (ii) to obtain analytic approximations to the
high- and low-order eigenvalues of (1.1} in particular, and
(1ii) to describe the WK B treatment of an eigenvalue problem
with a turning point and a simple pole. The reasons for inves-
tigating “‘fourth kind” SL problems have already been ex-
plained above and also in Boyd.? The purpose of studying
(1.1} is to understand the general class by thoroughly exam-
ining a particular example.

The WKB analysis has several motives. First, itis a
straightforward and familiar method for obtaining asymp-
totic approximations to the solution of (1.1). In addition,
however, the WKB analysis is of interest in itself. Genera-
tions of budding physicists have studied the quantum me-
chanical harmonic oscillator from a WKB viewpoint. Here,
however, although the number of WKB “‘transition points”
is the same (two), the replacement of a turning point by a
simple pole profoundly alters the solution, and it is fascinat-
ing to see how the application of such familiar ideas can lead
to such radically different conclusions.

The plan of the paper is as follows. The next section
proves three theorems for general Sturm-Liouville problems
of the fourth kind. Section 3 gives the exact analytic solution
of (1.1) in terms of Whittaker functions and also the rather
unorthodox choice of branch cut which is physically appro-
priate for making the eigenfunctions single-valued. The next
two sections discuss the eigenvalues and eigenfunctions in
the limits n-— o and n—0, respectively. Sections 6 and 7
analyze the WKB method and its accuracy. The eighth sec-
tion is a case study of the complete spectrum for a particular
choice of parameters, paying particular attention to modes
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of intermediate #. The final section summarizes the similari-
ties and differences between normal Sturm-Liouville eigen-
problems and those of the singular fourth kind discussed
here. The three appendices discuss the Whittaker functions,
discrete versus continuous eigenvalues, and Chebyshev ap-
proximations for the eigenvalues, respectively.

The theorems of Sec. 2 and the asymptotic #— oo ap-
proximations of Sec. 4 [Egs. (4.6) and (4.10)] are applicable to
general Sturm-Liouville eigenproblems of the fourth kind.
Most of the remaining results are quantitatively applicable
only to the particular example (1.1), but the methods used to
derive them are general also.

2. THREE THEOREMS

In this section, some simple results will be proved for an
equation more general than (1.1). Tointerpret the singularity
of (2.1), the friction € is explicitly included. As noted in the
introduction, € is normally so small that it is good approxi-
mation to take the limit e—0, which reduces the number of
parameters from three (€, 4, B ) to two (4 and B).

Theorems

Let u,, (x) and u,, {x) be eigenfunctions of the differential
equation

U, + [rx)/(x —ie)+ plx) — A Ju =0, 2.1y
with

uld) = u(B), (2.2)
where p(x) and #{x) are real and analytic on [4, B], A is the
eigenvalue, 4 and B are of opposite signs, and € > 0 is a real
constant. Then in the limit e—0, one can prove

Theorem 1: If A, #A4,, the eigenfunctions are orthogo-
nal, 1. e.,

B
f u,u, dx=0. (2.3)
A

Theorem 2: Letting Im(A,,) denote the imaginary part of
the eigenvalue,

B
Im(A, )f \u,| dx = m|u, (0)*r(0). 2.4)
A
Theorem 3: The eigenvalue A is always in the upper
half-plane, i. e.,

Im(4,)>0 foralln, (2.5)
if r{x)> 0.

Proofs

The demonstration of Theorem 1 is identical with the
proof of orthogonality for orthodox Sturm-Liouville prob-
lems as given in Morse and Feshbach,” for example. Let

glx)=r{x)/(x — i€) + p(x). (2.6)

Writing the differential equations satisfied by «,, (x) and
u, (x) after multiplication by the other mode gives (letting
primes denote differentiation)

U, (u;l + qu, — Anun ) = 0’ (27’
u, (u:n +qu,, — Amum ) =0 {28)
John P. Boyd 1576



Subtracting (2.8) from (2.7) gives

Uty — Ul + (A, — A, ), u, =0. {2.9)
The offending singular term g(x) has already disappeared
through subtraction, and the remaining steps—rewriting the
first two terms in {2.9) as a perfect derivative, integrating
from A to B, and invoking the homogeneous boundary con-
ditions—give

B
A, —4, )J u,, (xX)u,(x)dx=0, (2.10)
A

from which (2.3) is obvious.

The steps in the proof of the second theorem are formal-
ly identical to those for the first except that u,, (x) is replaced
by u, (x)* where the asterisk denotes the complex conjugate.
Since u,, (x) cannot be orthogonal to its own complex conju-
gate, this argument is used in formal Sturm-Liouville theory
to show that A, = A,, i. e, all the eigenvalues are real. For
the singular class examined here, the rub is that because of
the pole (and the friction €), g(x) #¢(x)*, so the singular terms
do not cancel out and the equivalent of {2.9} is

wy — iy + (1, — A7)

nn

unlzz (qpq*)iunlz'

(2.11)
Following through the remaining steps gives
(P B lu, |*2ier(x)
i, —4, )J |u,|” dx = J ——— dx. (2.12)
A 4 X 4 €

Carrier, Krook, and Pearson® show that

lim = 76(x). (2.13)

€0 x? 4 ¢

Substituting this into (2.12) and performing the integration
on the right-hand side gives (2.4).

The third theorem follows trivially from the second.
Since all the other quantities in (2.4) are absolute values and
therefore positive semidefinite, it follows that Im(4, ) must
be as well.

A few remarks are in order. First, only Theorem 2 actu-
ally requires e-—0; the third theorem can be proved directly
from (2.12).

Second, Theorem 1 shows that the eigenfunctions are
mutually orthogonal among themselves. The orthogonality
relation (2.3) does not involve the complex conjugates of the
eigenfunctions nor is (2.3) a biorthogonality equation involv-
ing inner products of the eigenfunctions paired with those of
the adjoint. Despite its complex eigenvalues, (1.1) with (1.2)
is self-adjoint and the form of the orthogonality relation,
Theorem 1, reflects this.

The second theorem shows that Im(A4, } = 0 only when

u,(0)=0, (2.14)
i. e, in the very special case that u,,(x) is nonsingular. When
p(x) = 0 this means u, (x) is proportional to M _, ,( — x/x),
which always has a zero at x = 0. Since (2.14) plus (2.2) are
equivalent to imposing three boundary conditions on a sec-
ond order differential equation, Theorem 2 implies that 4, is
real on a set of measure zero. In other words, there are cer-
tain sets of values of (4, B, n) for which A, is real, but if one
chooses 4 and B at random, the odds are infinitesimally

1577 J. Math. Phys., Vol. 22, No. 8, August 1981

small that any of the modes will have a real eigenvalue (al-
though the imaginary parts of some may be very small).

Theorem 3 states what will be assumed in later sections
in working out the WKB formalism: that 4 is always in the
upper half-plane and « [defined by (3.4) below] therefore,
always in the fourth quadrant. The physical significance
(and necessity!) of this are discussed in Boyd.® The condition
that r{x) be positive is equivalent to satisfying the well-known
Rayleigh-Kuo criterion for barotropic stability, and is al-
most always true in the upper atmosphere. It is automatical-
ly satisfied by the linear wind shear model [H{x) = const] that
will be considered in the rest of this paper.

3. THE EXACT SOLUTION OF THE MODEL PROBLEM
The general problem
u, +(a/z—A"Yu=0, (3.1)
uAdVY=uB')=0, (3.2)

can be reduced to the canonical form (1.1) and (1.2) through
the substitutions

x = az, (3.3a)
A=ad’, (3.3b)
B=aB’, {3.3¢)
A=A/’ (3.3d)

Equation (1.1) is a special case of Whittaker’s equation,
which in turn is merely a transformed version of the conflu-
ent hypergeometric equation. Defining (principal branch)

k=1/24 "2, (3.4)
the linearly independent solutions may be taken as

ux, A)=M_, (—x/x), (3.5)

ux, A) =T (1 + )W _, ,(—x/K). (3.6)

The power series for these Whittaker functions and their
relations to the usual M and U confluent hypergeometric
functions are given in Appendix A. The minus signs in (3.5)
and (3.6) are a convention introduced by Dickinson to ensure
that the Whittaker functions have different asymptotic be-

=z S Chosen
€ Branch
Branch
Point \,\
e {
I T
x=A x=B Re(x)
Principal
Branch

FIG. 1. Two possible branch cuts for the solution of Eq. {2.7) with friction
coefficient € and complex eigenvalue A. The principal branch of the Whitta-
ker function cuts the real axis between the boundaries A and B, which
would make the solution discontinuous. The chosen branch is convenient
and avoids this discontinuity. Any other branch cut which avoids the real
axis would be acceptable, however.
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havior (M _, , blowsupand W _, , decays) as x-— — co.
With this convention, the lowest few eigenfunctions are ap-
proximately proportional to the W function alone, as ex-
plained in the next section, which is a great simplification.

M . ,(y)is an entire function, but W __,(y) has a
branch point at y = 0. The obvious choice is to take the prin-
cipal branch of the function, but this is not physically al-
lowed. If one inserts a small amount of dissipation with fric-
tion coefficient € (with the understanding that é—0 in the
end), (1.1) becomes

u,, +[1/(x —ie) —Alu=0, (3.7)

and the singularity is shifted into the upper half-plane. If one
uses the fact that « lies always in the fourth quadrant (proved
in Sec. 2), then the branch cut for the principal branch of
W _,..(—x/k) would cross the real x axis as shown sche-
matically in Fig. 1, which is absurd. The simplest allowable
choice is to place the branch cut along the ray

argy = — m/2, (3.8)
where (note the sign difference between p and x)
|
W(PL,Zl O s
W— w1 ( ) - 1
T oy 2T
: I'(l+«k)

— 7/2<argy<
M_, (), m<argy<3m/2

(3.9)

Dickinson® made the same choice. Any branch cut which
lies above the real x axis is permitted, however, and in fact
the different choice argx = 7/2 is made in Fig. 5 for the sake
of clarity. Since there is always (weak) damping in a real
fluid, such frictional arguments have been used to choose the
proper branch in fluid mechanics for a very long time.
Unfortunately, this nonstandard choice of branch im-
plies that the usual textbook asymptotic formulas for
W _.i(y) cannot be directly applied to our Whittaker func-
tion when y is in the third quadrant. However, it is a property
of logarithmic solutions to linear, second-order differential
equations that the coefficient of the logarithm is always pro-
portional to that solution of the equation—in this case,
M _ . ,(y)—which is analytic at y = 0. If one defines In(y) to
be the logarithm with branch cut at argy = — 7/2 and
In'"l{y) to be the principal branch of the logarithm, then

ln(P}(y),
In‘P(p) + 2mi, m<argy<3m/2
From this it follows that

y= — x/kK.

— m/2<argy<mw

In(y) = (3.10)

(3.11)

The most efficient way to evaluate the Whittaker functions is by numerical integration of {1.1), using the power series for
M, ,(y)and W _, ,(y) to initialize the calculation for small y. Even though (1.1) is “stif” in the parlance of numerical
analysis, an ordinary fourth-order Runge-Kutta program gave high accuracy even for large x, and was used to compute the

“exact” results presented in later sections.
Letting

ulx,A) = au(x,A)+ Bu,lx,A),

(3.12)

the boundary conditions (1.2) can be written in the form of a 2 X 2 matrix equation whose determinant is

A(xA)=ufAdA ) usBA) — uy(BA Jus(4.A).
The eigenrelation is then
AA)=0.

(3.13)

(3.14)

Once the eigenvalues have been determined from (3.14), it is trivial to solve the matrix equation for & and B in (3.12) to obtain

the eigenfunctions.

4. HIGH-ORDER MODES

In the limit |y|— o with « fixed, the Whittaker functions have the familiar asymptotic approximations

M () =S [sin(km)/kr 1T (1 + )WL (p)

/2K _ . _ _
n ey (1 B k(1 —k) _ k(1 —k)(1 —=x)(2—«k) _;....), (4.1)
' (l +x) y
- y/2
]‘(1+K)W(f£”l(y):r(1+l()€ (1_ k(1 +«) +/c(1+lc)(142—K)(2+K) __) 4.2)
2 Ly y y
I . .
where be obtained from (4.1) and (4.2) via (3.11).
el Im(y) >0, ‘ In the limit A—c0, ;f—»O.along the negative imaginary
S = (4.3) axis, and (4.1) and (4.2) simplify to

—e” ™ Im(y) <0,
and where the superscript (P ) denotes the principal branch of
the Whittaker function as before. The asymptotic approxi-
mation to our Whittaker function of unorthodox branch can
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M, (—x/Kk)= — 2isin( | I*x), (4.4)
r(+o0Ww. (—x/k)=e’!", (4.5)
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for fixed x (at either sign) with relative error O (1/44x) where

the Whittaker function has a branch cut at argy = — 7/2.
Substituting {4.4) and (4.5) into (3.14) gives
A, = —m'm/(B—A), n—cw. (4.6)

Several features of this eigenrelation deserve comment.

First, the integer m that appears in (4.6) is not necessar-
ily equal to the mode number # when the modes are ordered
accordingto |4 |. A counterexample wherem = n + 2 is giv-
en in Table IV of Sec. 8.

Second, (4.6) implies that as was assumed in obtaining
it, A, — — oo as #— oo . Thus, the derivation of (4.4) through
(4.6) is consistent.

Third, if we generalize (1.1) to

u, +[1/x —A + plx)]u =0, (4.7)

as done in the theorems of Sec. 2, where p(x) is analytic on
[4,B], then

plx) <A (4.8)

uniformly on [A,B ] in the limit that 4 is large. Thus, the
function p(x) is only a small perturbation to the eigenmodes
of (1.1) for sufficiently large n. Therefore, (4.6) is a valid ap-
proximation to the large eigenvalues of (4.7) for general
bounded p(x}—though of course the approximation is more
accurate (for a given n) when p(x) = 0 than when it is nonze-
ro. One could presumably correct for p(x)#0 along the lines
of the usual Rayleigh—-Schrodinger perturbation theory, but
(4.6) will suffice for the present.

Fourth, (4.6} is identical with the eigenrelation of the
same problem with the pole removed, i. e.,

u, —Au=0, (4.9)

with the usual boundary conditions (1.2). Further, the eigen-
functions of (4.9) are given by a linear combination of the
trigonometric eigenfunctions of (4.4) and (4.5),

u,(xj~sinimox/[B —A4]). {4.10)

Thus, for the high n modes of an equation with an interior
pole, the singularity is essentially irrelevant. The solutions
differ from those of (4.9) only in two small ways.

First, A, always has a small imaginary part A,., which
appears to decrease roughly as O (1/n).'° Second, the ap-
proximation (4.10) breaks down in an internal boundary lay-
er of width O (1/4 ) about the singularity at x = 0, where the
full Whittaker functions must be used. Since both A, and
the width of the internal boundary layer decrease as n— o0,
however, it still remains true that the singularity has little
effect on the higher-order modes.

5. LOW-ORDER MODES

When 4 is small, the internal boundary layer in which
the asymptotic series (4.1) and (4.2) are inaccurate includes
the whole of [4,B ], and more powerful, (and alas, more com-
plicated) methods are needed. There is, however, one power-
ful simplification that we can make before applying them.

When n is large, 4 hugs the negative real axis and the
eigenfunctions are sinusoidal as shown explicitly by (4.4) and
(4.5). For the low-order modes, however, 4 is complex with
either a large imaginary part or a positive real part; and then
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the eigenfunction must decay exponentially on [4,0] away
from the pole.

The reason for this decay is most easily seen by assum-
ing A is real and positive {as it is in the limiting case} and
looking at the equation to which (1.1) reduces for large |x/:

u,, —Au=0. {5.1)

In order to satisfy the boundary condition of vanishing at
x = A where 4 is negative, u(x) must be of the form

u = (const) (e *'"IXl g W IAIA Iy (5.2)
which is approximately
u(x)=~(constje ~* " (5.3)

everywhere on [4,B] except in a narrow boundary layer of
width O (1/4 g) near x = A where the growing exponential is
significant. In this boundary layer, however, u(x) is exponen-
tially small in comparison to its value at x = 0 (by a factor of
e ~*""111), 50 the absolute error in replacing the exact solu-
tion (5.2) by the approximation (5.3) is exponentially small
everywhere on [A,B ].

In general, of course 4 is complex rather than real and
we want to solve {1.1) rather than (5.1}, but these complica-
tions do not affect the basic argument in the least. The sign of
1/x, like that of — 4, is negative for x <0, so the pole merely
makes the two linearly independent solutions grow or decay
faster. The complexity of A will cause oscillatory growth or
decay, but the growth or decay is still there unless 4 is nega-
tive real—as is approximately true for the high order modes
discussed in the previous section.

Thus, the qualitative behavior of the solutions of (5.1) is
identical with that of the low order eigenfunctions of {1.1).
From the asymptotic approximations (4.1) and (4.2), one sees
that M _ «+( — x/k) is analogous to the positive exponential
in (5.2) while W _ «.1 [ — x/x) decays exponentially away
from the pole. (These asymptotic approximations may not be
numerically accurate for the small A we are interested in
here, but they do indicate the correct exponential growth-
/decay behavior as one can verify from the more powerful
WKB approximations of the next section). Thus, it must be
approximately true, in analogue to (5.3), that

ulx)~Ww _ i { — X/K) (5.4)

—in words, that the low order eigenfunction is proportional
to the W-function alone.

This approximation, which is equivalent to setting
A= — o (5.5)

since (5.3) and (5.4) are exact in this limit, is justified
provided

e Mgl (5.6)

In the next section, we will assume (5.5) and then check a
posteriori that (5.6} is in fact satisfied for small # and not-too-
small 4 and B.

This assumption (5.5} and the reasoning behind it is im-
portant both physically and mathematically. Physically, the
argument is important because it tells us that the low-order
eigenfunction has nothing except an exponentially decaying
tail to the left of x = O0—in startling contrast to the high »
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modes, which are oscillatory on bot# sides of x = 0. Figure 2
compares the amplitudes for a typical low-order and a typi-
cal high-order mode. (To avoid repeating ‘“‘small # modes”
and “‘large n modes” ad nauseam, it is convenient to intro-
duce the terms “‘monokeric,”—literally, ‘‘one-sided”—for a
model which has only an exponentially decaying tail to the
left of x = 0 as in the top of Fig. 2, and “dikeric”—*two-
sided”—for a mode which is sinusoidal on both sides of

x = 0 as in the bottom of Fig. 2.) Mathematically (5.5) is
significant because it reduces the number of parameters from
two (4 and B) down to one (B alone).

Turning to the eigenvalues, we show in the next section

that for small n and moderate or large 4 and B, i. e., a “mon-
okeric” small A mode

A, ~(1/B)Yexp[(1 +3"2)|d,|/(2B"M)], (5.7)
where
d, =|3m(4n — 1)) (5.8)

is the nth root of Airy’s function Ai( — x). The hodograph of
the product of B with the exact A, (as determined by numeri-
cal integration) in the complex plane is shown in Fig. 3. The
approximation (5.7) is a good qualitative description of the
entire graph.

As B— w0, (5.7) becomes exact and

A,~1/B (5.9)

independently of #. This ¢lustering of eigenvalues for large B
is in sharp contrast to ordinary SL theory, where for the
boundary conditions (1.2), one can prove that the eigenval-
ues must always be distinct and well-separated.

For finite B, (5.7) and the hodograph show that the ei-
genvalue is complex even though the differential equation
(1.1) is both real and self-adjoint. This again would be prov-
ably impossible for a real, self-adjoint Sturm-Liouville prob-
lem of the usual classes.

The hodograph of 4 is shown only for the lowest mode
because one can prove from (5.7) that

9 9B
A, (B) = = A [ ] 5.10
(4n — 12 'L (4n — 1)? 5-10)
|
|
|
|
|
|
1
1
|
. |
10 0 10
|
l
!
|
|
|
|
-10 ) 10

FIG. 2. A comparison of the absolute value of a low order, small |4 |, mono-
keric mode with that of a high order, large |4 |, dikeric mode.
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30

201

FIG. 3. The hodograph in the complex plane of the lowest eigenvalue for
A = — . The numbers labelling the curve give the values of B. Note that
BA, rather than 4 itself, is the quantity plotted.

Thus, to within the accuracy of (5.7), the hodograph for 4,
will apply to all the low-order modes with appropriate res-
caling of the axes and tic-marks.

As B—>0, or equivalently as n— o for fixed B, one can
see from Fig. 2 that 4 is tending towards the negative imagi-
nary axis. This, of course, is what has been already been
shown by (4.6). Thus, the high # and low #n modes blend
smoothly into one another.

For intermediate values of r neither (4.6} nor (5.7)is a
good approximation, and the eigenfunctions are hybrids of
the two extreme forms shown in Fig. 2. Nonetheless, enough
has been obtained to give a good qualitative picture of the
whole spectrum. In the next section, we will explore the bi-
zarre behavior of the low-order modes via WKB, derive
(5.7), and discuss its accuracy.

6. WKB

A. The method of matched asymptotic expansions

The grand strategy of this section is to derive asymptot-
ic approximations by combining the WKB method with the
method of matched asymptotic expansions MMAE).

Although the WKB method itself is of ancient lineage,
this pairing with the MMAE technique has been widely used
only in the last decade. Historically, the WKB *connection
formulas” were derived through a variety of coordinate
transformations, integral representations, and other argu-
ments. The books by Heading,'' Dingle,'” and Olver'” de-
scribe this line of WK B development and extensions to high-
er order. After the MMAE method had been developed to a
high art for boundary layer problems in fluid mechanics,
however, it was recognized that it could be applied to a huge
variety of other problems including WKB. The recent books
by Bender and Orszag'* and Nayfeh'’ present this “‘revision-
ist” derivation of WKB as well as a thorough treatment of
the method of matched asymptotic expansions and its many
uses. Because of its versatility and its familiarity to fluid dyn-
amicists the WKB/MMAE approach is adopted here.
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B. “Transition” points

Over most of the complex plane, Dickinson® showed
that the WK B approximation to the general sotution of {1.1)
is given by an arbitrary linear combination of W_(x) and
W __{x), where

W (x)= —iQ(x)”Yiexp[ — 2xi¢ (Ax) + in/4], (6.1)
W, (x) = Q ~*x)exp[2xip (Ax) — in/4}, {6.2)
where, as defined in (3.4), x = 4 ~"/>and
Ox) = 1/x — 4, (6.3)
v e
¢@)=L(;_1) dx (6.4)
=sin" Y2 4yl — )2 (6.5)

The exceptional regions are the neighborhoods of the *“‘tran-
sition points,” which are defined to be the points where Q (x)
is either 0 or co—both make the WKB approximation
singular.

The transition points thus play a central role in the anal-
ysis. Indeed, one can classify WKB problems according to
the number and type of transition points in the same spirit in
which one can classify a linear differential equation accord-
ing to the number and type of its singularities.

The Whittaker equation (1.1) has two transition points:
a simple pole at x = 0 and a “turning point” at

x, = 1/A. {6.6)

The quantum harmonic oscillator, which is used as an exam-
ple by most physics texts also has two transition points, but
both are turning points.

In the parlance of matched asymptotics, the neighbor-
hoods of the transition points constitute internal boundary
layers. The WKB approximation using (6.1) and (6.2) is the
“outer” solution; in the “inner” regions surrounding the
transition points, #{x) must be approximated using transcen-
dentals more complicated than the exponentials appearing
in (6.1} and (6.2). By matching the inner and outer solutions
together and using the boundary conditions, one obtains a
complete approximation to the problem.

When the differential equation has two transition
points, however, there are two ways to carry out this recipe.
The first is to define the inner region so that it simultaneous-
ly encloses bot4 transition points. In this case, the inner ap-
proximation involves a sum of Whittaker functions (one
turning point and one pole) or parabolic cylinder functions
{two turning points), since these are the simplest functions
with the required number of transition points. This would
seem to send us round in circles when we attempt to solve
(1.1) itself, but to apply asymptotic matching to fully deter-
mine the outer (WKB) solution of (1.1) and the eigenvalue,
we need only the asymptotic expansions of the Whittaker
functions given by (4.1) and (4.2) above, not the Whittaker
functions themselves. Requiring that the WK B (outer) solu-
tion vanish at x = B (and at 4 = — co) then gives the eigen-
relation (7.1) below.

The alternative is to define two separate inner regions,
one around each transition point. In this case, the inner solu-
tions both involve Bessel functions of different orders—or-
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der one near the pole and order one-third (Airy functions)
near the turning point. Though seemingly more complicated
than the jointly matched or “Whittaker” matching de-
scribed above, this separate or “double Bessel” matching has
powerful advantages. First, because Bessel functions are
simpler transcendentals than Whittaker functions, the dou-
ble-inner-region method gives a simpler eigenrelation (7.1 is
a function of two parameters, 7.4 only of one). Second, the
use of separate inner approximations permits deeper and
more precise insight into «(x) instead of lumping Loth near-
the-pole and near-the-turning point behavior together and
hiding them behind the mysterious, inscrutable veil of a
Whittaker function. Consequently, it is upon this *‘double
Bessel”” matching that our discussion will center.

Since the local analysis and the matching of inner and
outer solutions has already been done—for the pole, by
Dickinson,” and for the turning point by a number of inde-
pendent workers more than a half a century ago—we shall
merely quote their results. The challenge is to fit these two
local analyses together with the boundary conditions to ob-
tain a global description of the solution. The principle obsta-
clein completing this jigsaw puzzle is that while the “outer,”
WK B solution is always a sum of W _(x) and W _(x), the
coefficients of the sum are different in different portions of
the complex plane—Stokes’ phenomenon. Thus, in order to
make the final answer intelligible, it is necessary to digress
briefly and explain this.

C. Stokes’ phenomenon

If the WKB solutions W __(x) and W _(x) are written in
the symbolic form

Wix)=Q ~4x)e"™, {6.7)
then the Stokes lines are defined by, '®

Im[P{x)] = const, {6.8)
and the anti-Stokes lines by

Re[P(x)] = const. {6.9)

On the Stokes lines, which will be indicated on the
graphs below by solid lines, the WKB solutions grow or de-
cay exponentially without change of phase. The anti-Stokes
lines are curves of purely sinusoidal behavior: W (x) oscillates
without change of amplitude. To emphasize the oscillatory
character of the WKB solutions upon them, the anti-Stokes
curves will be graphed as wavy lines.

The heart of Stokes’ phenomenon is that while u(x) can
always be represented as

ux)~aW_(x)+ bW _(x) (6.10)

{except near a transition point}, the coefficients must be dif-
ferent in different sectors of the complex plane. Within the
sector bounded by adjoining anti-Stokes lines 4, and 4,, one
WK B solution (let it be W __(x) for definiteness) will be expon-
entially large (“dominant”) in comparison to the other,
which is said to be “subdominant” in that sector. It then
follows that b in {6.10), because of the smallness of W _ (x),
can be arbitrary without violating the formal asymptotic
equality because exponentially small quantities are com-
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FIG. 4. The Stokes lines {solid) and anti-Stokes lines {wavy) for A = 1/100.
The branch line is marked with crosscuts. Black dots mark the zeros of the
Whittaker function.

pletely ignored in Poincaré’s definition of asymptotic rela-
tions. On the anti-Stokes lines, however, b must assume defi-
nite (and usually different} values because W, is the same
magnitude as W _ upon them. Stokes established the con-
vention'” that the coefficient of the subdominant solution
Jumps from b (4,) to b (4,) as one crosses the Stokes line be-
tween them. This convention ensures that (6.10) will be nu-
merically accurate near, as well as on, 4, and 4,, and also,
since W ,_is smallest in comparison to W_ on the Stokes line,
that when b jumps, the corresponding jump in u(x)is as small
as possible.

The Stokes and anti-Stokes lines for the solutions of
(1.1) for A positive and real are shown in Fig. 4. Three Stokes
and three anti-Stokes lines radiate from the turning point,
but one of each ends on the branch line, so only two Stokes
and two anti-Stokes lines radiate to infinity. Their number
{two of each) is consistent with what one would have de-
duced directly from

u,, —Au=0, (6.11)

which approximates (1.1} as x| co; parenthetically, we
note that only these surviving pairs are relevant when per-
forming the joint or *““Whittaker” matching described above.

Making the simplifying assumption 4 = — oo, justi-
fied previously, let us look first at the Stokes line radiating
from the pole leftward to x = — oc. Since W (x) blows up
exponentially along this Stokes line, b in (6.10) must be zero
and u(x) proportional to W __ alone, so that the boundary
condition at x = — o can be satisfied.

Since the coefficient of W__(x) can only jump to a nonze-
ro value on a Stokes line, it follows that

u{x)~ W_ix) (6.12)

which is the anti-Stokes line connecting the two points. The
argument of the exponential in (6.1) is now pure imaginary,
implying sinusoidal behavior. Dickinson® shows that, phys-
ically, (6.12} correponds to a Rossby wave propagating to-
wards the pole and being absorbed there. So far so good, but
{6.12) brings us face to face with an apparent paradox: how
can a single complex exponential ever satisfy the boundary
condition?

The answer is that it cannot; Stokes’ phenomenon saves
the day by forcing b to jump to a new nonzero value on the

on A4,
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Stokes line S in Fig. 4. The new value of b is determined in
two steps. First, the proper Airy function approximation to
u(x) in the vicinity of the turning point is found by demand-
ing that it asympototically match to (6.12} along the anti-
Stokes line 4,. Then, b (4,} is determined by matching the
“inner” Airy approximation to the “outer” WKB solution
along the anti-Stokes line 4,.

The matching is routine, but the result is not. The Airy
functions Ai(x) and Bi(x) are both standing waves for x nega-
tive and real. This is fine for the quantum harmonic oscilla-
tor problem in which the other transition point is also a turn-
ing point; the two turning points reflect the wave back and
forth between them to create the standing wave. Here, how-
ever, as shown by Dickinson,” the transition point at x = 01is
a perfect absorber.

The function that correctly matches to (6.12) is
Ai(ze*™*) where z=A ?"*(x — x,), which has the asymptotic
approximations
pegr PR

2,”.1/2]z|l/4

cos| 3|z|*/* — w/4],

Ai(ze*™73) ~ , argz=rm{on 4,],

= |1

argz = 33-— fon 4,]. (6.13)
The reader can easily verify that these large |x| limits of the
“inner” solution are identical with the |x — x, |—0 limits of
the WK B approximations along A4, and 4,, where the former
is given by (6.12) and the latter is found by matching with
(6.13) to be

ulx) ~Q(x)~ e~ ™cos[ 264 (Ax) — km — 7/41.(6.14)

This plainly has an infinite number of zeros along the anti-
Stokes line 4, which are schematically denoted by the black
dots in Fig. 4.

Unfortunately, when A is real (as assumed for clarity
above), all theses zeros are in the upper half-plane and are
perfectly useless for satisfying the boundary condition at
x = B on the real axis. One can see now why the eigenvalue
must be complex: when 4 is moved into the upper half-plane
(as consistent with Theorem 3 above), the turning point x, is
moved into the lower half-plane. It is then possible to make
one of the zeros along 4, coincide with the real axis.

Figure 5 shows the Stokes and anti-Stokes lines of the
fourth mode for B = 100. The Whittaker function has three
roots below the real axis, an infinite number above, and its
fourth root along A, is real and satisfies the boundary condi-
tion at x = B.

We will see in the next section that “double Bessel”
matching gives extremely accurate approximations to the
low-order eigenvalues and eigenfunctions, but (6.14) must
fail as n— oo for fixed B, because as we have already seen
IA |—> co in this limit. In turn, this implies that |x, |—0, and
when the turning point and the pole become too close togeth-
er, it is no longer sensible—either physically or mathemat-
ically—to separate near-the-pole behavior from near-the-
turning point behavior. The “Whittaker” matching is free
from this defect and can in fact reproduce all the results of
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FIG. 5. The Stokes lines (solid) and anti-Stokes lines (wavy) for the fourth
mode for B = 100 (4 = 0.0050 + 0.0208:). As in Fig. 4, the branch line is
marked with crosscuts, and the zeros of the Whittaker function with black
dots. The fourth root is on the real axis at x = B so that the boundary
condition is satisfied.

Sec. 4 on high-order modes if one relaxes the assumption

A = — oo. In practice, however, as shall be seen in the next
section, the “double Bessel” matching gives acceptable accu-
racy when |4 | < 1, which turns out to include the range of n
and B which is of primary physical interest.

D. Simplification of the “double Bessel” eigenrelation

The vanishing of (6.13) at x = B is equivalent to the
eigenrelation

2x¢(/1B)——lm=(n-—§)7r, (6.15)

where 7 is a positive integer, the mode number. One can
eliminate the sin ™' implicit in ¢ {y) by letting

A =sin’r/B, (6.16)
which transforms (6.14) to
7+ sinrcosT — b = [ (n — 4) /B '*| wsinr. (6.17)

What is striking about (6.16) is 7 is not a function of Bor n
alone, but is rather a function of the single parameter

g=(n~14)/B'". (6.18)

This implies that, just as with (5.7), the solutions of {(6.17) are
identical for all modes with appropriate rescaling of axes,
i.e,

9 9B
A (B)= y) .
- (B) (4n —1)2 ‘[ (4n—1)2]

E. The “Airy” approximation

(6.19)

Equation (6.17) has the drawback that it is only an im-
plicit equation for A. When the parameter

o=e""’d,/B'? (6.20)
is small, however, where

d,=|3m(4n — 1)}27, (6.21)
one can solve (6.17) by a power series in o to obtain

A=(1/B){1 + o+ ), (6.22)

1583 J. Math. Phys., Vol. 22, No. 8, August 1981

or in exponential form
A =¢e/B. (6.23)

Equation {6.23) is the “Airy approximation” given in (5.7)
and the abstract; empirically (not systematically) it was
found that the exponential form was much more accurate
than the power series (6.22) for moderate o, but both are
exact in the limit B—> oo for fixed n, i. e., the limit 0—0.

The reason for the name “Airy approximation” is that
in the limit B— oo (5.7) shows that A—0, implying that
|x,|~> 0. Thus, the turning point and the pole move away
from each other in this limit, and the radius over which the
inner approximation, i. e.,

u(x)~ Aifze>™3), (6.24)
where
z2=A1%"x—x,), (6.25)

is valid, becomes larger and larger (in terms of |z]). Thus, the
first few zeros of (6.13) are really the first few zeros of the
Airy function {6.24). These are known constants, however,
and the d,, given by (6.21) are in fact the nth roots of

Ai{ — z).'® The approximation {6.22) is precisely what one
would obtain by determining A so as to make x = B coincide
with the nth root of the Airy function (6.24}—hence the
name “Airy approximation” for (6.22) and {6.23), the latter
being the form we shall actually use.

7. ACCURACY OF WKB

Much of the books on asymptotic approximations by
Dingle and Olver is almost morbidly concerned with formal
error terms and bounds, but this elaborate machinery is not
useful here. The error in our approximate eigenmodes is not
merely due to truncating an asymptotic series at lowest order
but also depends on the accuracy of the value of A which is
used to evaluate the WK B expression. In turn, the error in 4
may be large or small in comparison to the accuracy of the
WKB approximation at the boundaries. Thus, the simplest
and most reliable way to see how well WKB works is to
compare the approximate results with the exact answers ob-
tained by brute force numerical solution of (1.1).

The three eigenvalue approximations compared are

T + sinrcosT — I

(n—1}) . B1/? Whittaker
= msinT — iin .Q( . >
B2 2sinr matching
(7.1
where
2 (x) = (2m) P, +*e =*/I" (1 + k); (7.2)
sin’r
A= , (7.3)
. , (” _ %) double
7 + sinTcosT — I = W wsinr Bessel
matching
with A again related to 7 through (7.3); and (7.4)
A =(1/B)e’ (Airy approximation), (7.5)
7i/3
o= g limtn — 1)) 74
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TABLE I A com_parison of the exact and approximate eigenvalues A for the lowest mode with 4 = — o and various B. “Whittaker” refers to the WK B
approximation with coefficients determined by matching with the asymptotics of the Whittaker function; “Double Bessel” is the WK B determined through

matching the two local Bessel function approximations.

Relative Errors

Re(d) Im(4 } {4 Phase [A] Phase
B =100 |o} = 0.50
Exact 0.011 58 0.005 50 0.012 81 25.407
Whittaker 0.011 56 0.005 46 0.012 78 25.270 0.26% 0.54%
Double Bessel 0.011 61 0.005 47 0.012 83 25.231 0.14% 0.69%
Airy 0.011 66 0.005 39 0.012 &4 24,804 0.19% 24 %
B=40 |o] = 0.68
Exact 0.028 75 0.019 89 0.034 96 34.674
Whittaker 0.028 69 0.019 73 0.034 82 34.525 0.40% 0.43%
Double Bessel 0.028 92 0.019 83 0.035 07 34.444 0.31% 0.66%
Airy 0.029 21§ 0.019 45 0.035 10 33.664 0.40% 29 %
B=10 lo] =1.08
Exact 0.095 96 0.1400 0.1696 55.660
Whittaker 0.095 21 0.1389 0.1684 55.571 0.68% 0.16%
Double Bessel 0.097 62 0.1420 0.1723 55.494 1.6 % 0.29%
Airy 0.1021 0.1376 0.1713 53.439 11 % 40 %
B=4 lo}] = 1.46
Exact 0.1218 0.4960 0.5107 76.203
Whittaker 0.1200 0.4919 0.5063 76.288 0.86% 0.11%
Double Bessel 0.1252 0.5200 0.5349 76.465 4.7 % 0.34%
Airy 0.1559 0.4952 0.5192 72,527 1.7 % 48 %
B=1 lo| =2.32
Exact — 1.691 2.675 3.164 122.311
Whittaker — 1712 2.644 3.150 122.927 0.46% 1.1%
Double Bessel —2.269 3.311 4.014 124.426 27. % 37%
Airy — 1.355 2.888 3.190 115.130 3.82% 12. %
B=04 o] =318
Exact — 12.46 3.241 12.88 165.420
Whittaker —12.59 3.146 12.98 165.966 0.77% 0.33%
Double Bessel —22.73 8.838 24.39 158.753 89. % 45. %
Airy —11.05 4.861 12.07 156.255 62 % 63. %

The first two approximations are imp/ficit and (7.1) and (7.4)
must be solved analytically or by perturbation theory; the
Airy approximation is explicit. The Whittaker matching ei-
genrelation differs from that from double Bessel matching
by only a single term, but that term causes the solution of
(7.1) to depend on n and B independently instead of through a
single parameter formed of B and n. Thus, (3.10}is true of the
second and third approximations above (7.4) and (7.6) but
not the first (7.1).

Physically, one is primarily interested in n<3 and B>4
since smaller values of B would correspond to unrealistically
large {supersonic) winds, and n > 3 is rarely observed in the
stratosphere. Dickinson® thoroughly discusses the physics of
the atmospheric wave problem that motivated this work.
Some controversies have arisen and it has been argued that
Dickinson’s WKB reasoning is rubbish because WKB is not
sufficiently accurate to handle such singular SL problems of
the fourth kind. It is thus a matter of physics—not merely
numerical analysis—to examine the accuracy of our
approximations.

Tables I through III compare the exact and approxi-
mate eigenvalues for the lowest three modes. The Whittaker-
matched eigenrelation is the numerical star; the relative er-
ror is no worse than 1.1% for any of the values tabulated.
The price is greater complexity (a I” function of complex
argument) and loss of insight because the near-turning-point
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and near-the-pole behaviors are lumped together into a sin-
gle inner solution, and also because of the loss of (5.10) which
shows that the curves A, (B ) all have similar shape for small
n.

The double Bessel-matched approximation, though
poorer, is still quite acceptable. In the range of physical in-
terest, n<3 and B4, the error is no worse than 10% in
absolute value and 5% in phase. Both this and the Airy ap-
proximation—but not {7.1)—lose accuracy as o (and there-
fore |4 |} increase where ¢ is defined by (6.20). For fixed B, o
increases as n increases as noted in the tables; so the tables for
n = 2 and n = 3 are shorter than that for n = 1 to remind us
that (7.4) and (7.5) are useful for an ever narrower range of B
as the mode number becomes larger.

The Airy approximation {7.5) is the crudest of all, but it
is still amazing that an explicit approximation of this sim-
plicity can work so well for a problem whose differential
equation is singular. For n = 1, the errors are less than 12%
even for B = 1, s0{7.5) is a good description of the entire
hodograph in Fig. 3.

The approximate and exact eigenfunctions for the low-
est mode are compared in Figs. 6, 7, and 8. Again, accuracy
improves as B increases just as for A, but the agreement is stil]
remarkable.

Why does WK B work so well? The method of multiple
scales,’'* which is one of many alternative ways of justify-
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TABLE I1. A comparison of the exact and approximate eigenvalues A for the second mode with 4 = — o and various B.

Relative Errors

Re(d | Im{4 ) |4 Phase |4 Phase
B =100 lo| = 0.88
Exact 0.010 97 0.010 99 0.015 52 45.047
Whittaker 0.010 95 0.010 95 0.015 49 45.001 0.24% 0.10%
Double Bessel 0.010 99 0.010 98 0.015 33 44,972 0.04% 0.17%
Airy 0.011 23 0.010 71 0.015 52 43.635 0.00% 31 %
B =40 lof = 1.19
Exact 0.021 59 0.040 24 0.045 66 61.785
Whittaker 0.021 56 0.040 18 0.045 60 61.789 0.14% 0.34%
Double Bessel 0.021 70 0.040 42 0.045 88 61.769 0.47% 0.02%
Airy 0.023 23 0.039 01 0.045 41 59.222 0.56% 4.1 %
B=10 jo} = 1.89
Exact —0.050 Q9 0.2729 0.2775 100.400
Whittaker — 0.050 33 0.2725 0.2771 100.466 0.15% 0.08%
Double Bessel —0.052 92 0.2789 0.2839 100.743 23 % 0.43%
Airy —0.018 03 0.2572 0.2579 94.010 7.1 % 8.0 %
B=¢ lo] =2.57
Exact —0.8611 0.8200 1.189 136.398
Whittaker — 0.8625 0.8183 1.189 136.507 0.01% 0.25%
Double Bessel —0.9428 0.8704 1.283 137.286 79 % 20 %
Airy —0.5516 0.7165 0.9043 127.590 2. % 20. %
B=1 |o] =4.08
Exact —19.37 0.18%0 19.37 179.441
Whittaker — 19.38 0.1870 19.38 179.447 0.05% 1.1 %
Double Bessel —24.44 3.376 24.68 172.136 27. % 1300. %
Airy —7.11 —2.950 7.698 — 157.463 60. % Hopeless

ing WK B (away from transition points), provides an amus-
ing and ironic answer.
In brief, the multiple scale argument states that the fas-
ter the eigenfunction oscillates, i. €., the greater the ratio of
the “slow” scale on which the coefficients of the differential
equation vary to the “fast” scale on which u(x) itself is oscil-
lating, the better the accuracy of the WKB approximation.
The WKB eigencondition for a normal SL problem is that
the total phase change on [4,B ] is n, so the eigenfunction
obviously oscillates more rapidly as # increases. In practice,

this means that WKB is poor for the lowest mode, fair for
moderate n, and superb for large n.

For the lowest mode of a singular SL problem of the
fourth kind, however, the total phase change is usually great-
er than 7 and increases steadily with B. Figures 6 through 9
show that the real part of the lowest mode has no interior
zeros for B = 1, one for B = 5, two for B = 20, and no fewer
than four for B = 100. (The imaginary part oscillates simi-
larly, but its roots coincide with those of the real part only at
x = B). Because the eigenfunction graphed in Fig. 9 oscil-

TABLE II1. A comparison of the exact and approximate eigenvalues A for the third mode with A = — « and various B.
Relative Errors

Re(d) Im(A) |4 Phase |4 ] Phase
B =100 o] = 1.19
Exact 0.008 63 0.016 00 0.018 18 61.661
Whittaker 0.008 70 0.016 04 0.018 25 61.525 0.41% 0.22%
Double Bessel 0.008 73 0.016 08 0.018 29 61.500 0.64% 0.26%
Airy 0.009 34 0.015 53 0.018 12 58.980 0.33% 43 %
B =40 lo| = 1.61
Exact 0.005 20 0.058 13 0.058 36 84.886
Whittaker 0.005 22 0.058 11 0.058 35 84.867 0.03% 0.02%
Double Bessel 0.005 22 0.058 48 0.058 71 84.904 0.60% 0.02%
Airy 0.009 68 0.055 16 0.056 01 80.048 40 % 5.7 %
B=10 lo] =2.56
Exact —0.3559 0.3401 0.4923 136.300
Whittaker —0.3562 0.3398 0.4923 136.344 0.01% 0.03%
Double Bessel - 0.3698 0.3477 0.5076 136.766 31 % .1 %
Airy —0.2169 0.2871 0.3598 127.068 27. % 2. %
B=4 o] = 3.48
Exact — 3.086 0.7583 3.178 166.194
Whittaker — 3.087 0.7579 3.179 166.206 0.03% 0.01%
Double Bessel — 3.365 0.8694 3.475 165.513 9.4 % 4.9 %
Airy — 1.409 0.1866 1.421 172.457 55. % 45. %
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FIG. 6. A comparison of the exact {solid line), jointly (Whittaker) matched
WKB (dashed line), and separately matched (double Bessel) WKB (dotted
line} graphs for the real part of the lowest mode for 4 = — o, B=1.

lates as rapidly as the fifth mode (four interior zeros) of a
normal SL problem, the WKB approximation to it has the
same accuracy as for the fifth mode of a nonsingular equa-
tion—but it is the lowest mode nonetheless.

This increasing phase variation with B can be seen by
noting that as B— o0 and A—0 proportional to 1/B (from
7.5), one can approximate (1.1) over an increasingly large
interval by

u, +(/xju=0, (7.7

whose asymptotic approximation [matching to (6.12}] is pro-
portional to

X!/t =", (7.8)

The scale of the oscillation thus varies with x, but the total
phase changeon[0,B ]isobviously O (2B ' /%) [Using(6.1),0ne
can show more precisely that the total phase change is
(7/2)B '/? plus terms vanishing as B— o0 .] Thus, WKB must
inevitably improve for a given mode as B increases.

The Whittaker matched WKB, seen from the tables to
be very good for small n, does but improve for large #; as
noted earlier, it can—if we relax the restriction 4 = — o
inherent in (7.1)—reproduce all the results of Sec. 4 for high-
er-order modes as well. The double Bessel and Airy approxi-
mations fail for large n, but this is not the fault of the WKB
per se. Rather, we have obtained (7.4) from (7.1) by replacing

o9
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FIG. 7. A comparison of the exact (solid line), Whittaker-matched WKB
(dashed line), and double Bessel-matched WKB (dotted line} graphs for the
real part of the lowest mode for4 = — «,B=35.
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FIG. 8. A comparison of the exact (solid line), Whittaker-matched WKB
(dashed line}, and double Bessel-matched WKB (dotted line} graphs for the
real part of the lowest mode for 4 = — o, B =20.

the complex gamma function by its approximation for large
argument, and (7.5) from (7.4) by applying Taylor expan-
sions in o~—both non-WKB simplifications.

Thus, the Whittaker-matched WKB works for all »
here whereas WKB is successful only for large n for a Type I
problem. Thus, we are led to an amusing and ironic conclu-
sion: WKB actually works better for singular eigenproblems
of Type IV than for the conventional nonsingular Sturm-
Liouville equations of the classes so thoroughly studied in
the past.

8. THE COMPLETE SPECTRUM

So far, we have looked at the small # and large » modes
separately, the former with the additional assumption that
A = — . Itis now appropriate to tie these ideas together
by looking at a dozen chosen modes for a typical case
(4 = — 6, B = 6). The eigenvalues are listed in Table 4, and
Fig. 10 shows the lowest nine values of 1 '/2, which is
graphed instead of A itself for visual clarity. The modes can
be grouped into three categories.

First, the four modes marked by *’s in the second col-
umn of the table (and by triangles in Fig. 10) are shining
examples of the low-order modes discussed in Sec. 5. The
ratio of the coefficient of W _, , to that of M _, ,, tabulated
in the third column, is very large. The exact eigenvalues for

ol I 1 I It I il I )
70 80 90 100

0 10 20 30 40 50 60

FIG. 9. The real part of the lowest mode for B = 100.
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FIG. 10. The square root of A (not A itself) is shown for the lowest nine
modes on [ — 6,6]. The four modes marked with triangles are well approxi-
mated by the corresponding eigenvalues for [ ~ oo, 6]. The two eigenvalues
marked by circles are well approximated by {4.5). The crosses represent
intermediate modes for which no simple approximation is known.

A = — 6 are well approximated (to within 4%) by those for
A = — o, which are given on the second line of each entry
for these four asterisked modes.

The last five modes in the table (circles in Fig. 10) are
examples of the large n dikeric modes discussed in Sec. 4.
The second line of each entry for these five gives the approxi-
mate eigenvalues computed via (4.5) with that value of m
which is given in the second column. Note that in this case
m = n + 2, where n is the mode number determined by or-
dering the modes according to |4 |. For a normal SL prob-
lem, of course, m = n. Since (4.6) gives a purely real answer,
the relative error in Im(A ) is infinite, but the absolute errors
in both the real and imaginary parts are small in comparison
to |4, — A, . | and decrease algebraically [as does Im(A )
itself as n— o ].

The three modes marked “Intermediate™ in the table
(crosses in Fig. 10) are hybrids of the two classes above.
Whittaker-matched WKB would give an eigenrelation for
them, but it would be both implicit and messy. As noted in
the table, no simple explicit approximation is available for
these modes.

Mode 4is interesting because (i} it interrupts the pattern
of the low-order monokeric modes which are well approxi-
mated by their counterparts for 4 = — o and (ii) Im(d,) is
almost zero. As noted in Sec. 2, Theorem 3 shows that
Im(A ) = O is possible only when u(x) in effect satisfies three
boundary conditions which can occur only on a set of mea-
sure zero in (4, B, n) parameter space. Here, the fourth
mode—through sheer luck-—happens to be close to one of
these cases.

Modes 6 and 7 are interesting because, although they
are nearly degenerate (i. e., A4~ A,) here—in contrast to the
widely spaced eigenvalues of a normal one-dimensional SL
eigenproblem with nonperiodic boundary conditions—they
diverge wildly as the parameters are changed. For example,
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when |4 | is increased (with B fixed), the seventh mode—the
one with the Aigher n and smaller ratio of W /M initially—
rapidly becomes a pure monokeric mode like that illustrated
inFig. 12 {top). [At4 =7, W /M = 13.4and A, = ( — 4.855,
.5060), which differs little from its asymptotic (4 = — o)
value of ( — 4.931, .4375).] The sixth mode, which is closer to
a monokeric mode initially, behaves in a completely opposite
fashion: the ratio W /M decreases very rapidly until it falls to
zero at A = — 7.008 where A, = ( — 3.743,0). Thus, (n = 6,
A = - 7.008, B = 6) is one of the members of that set of
measure zero, where A is real and the eigenfunction, being
proportional to M _, , alone, is an entire function.

Thus, these intermediate modes show that thereis not a
monotonic transition from the limiting behavior for small n
to the limiting behavior for large #; rather, there can be some
interleaving of the two. It is for this reason that the terms
“monokeric” and “dikeric” were introduced earlier. Al-
though the # = 1 mode is monokeric, i. e., exponentially de-
caying for x < 0 (unless 4 and B are both too small to be
relevant to the original physical problem), and although one
can prove that as n— oo the modes must be dikeric, i. e.,
oscillatory on both sides of x = 0, modes of moderate n may
resemble either graph in Fig. 2 or some hybrid of the two.

9. SUMMARY: A COMPARISON OF NORMAL AND
SINGULAR STURM-LIOUVILLE EIGENPROBLEMS

The principal provable similarities between the first and
fourth classes of Sturm-Liouville problems are the follow-
ing. First, the eigenfunctions are orthogonal. Second, in the
limit n— o0, the eigenfunctions and eigenvalues are essen-
tially the same with or without the 1/x term in the differen-
tial equation. For finite #, there is (i) 2 small boundary layer
about x = O and (ii) a nonzero imaginary part of the eigenval-
ue if the pole is present, but these disappear in the limit.

The principal differences are the following. First, the
eigenvalues and eigenfunctions of a nonsingular, self-adjoint
Sturm-Liouville eigenproblem are always real. Here, how-
ever, in spite of the fact that the problem is still self-adjoint,
the eigenvalues and eigenfunctions are both complex.

Second, the modes of a Sturm-Liouville eigenproblem
of the first kind can be characterized by their nodes: the nth
mode has exactly (n — 1) zeros on the interior of [4,B].”
Here, however, the real and imaginary parts of the low-order
eigenfunctions have an ever increasing number of zeros as
B— o with n fixed. The real part of the lowest mode for
B =100, illustrated in Fig. 9, has no fewer than four interior
zeros, for example. Nor do the higher modes escape. The
integer m which appears in the asymptotic (n— oc ) eigenval-
ue formula (4.5) is generally different from the mode number
n, where the latter is determined by ordering the eigenvalues
according to |4 |. Thus, the n = 8 mode of Table IV has nine
interior zeros instead of the expected seven. As explained in
Sec. 7, this tendency of the singular modes of a given # to
oscillate more rapidly than their counterparts for a nonsin-
gular equation makes the WKB method actually work bet-
ter, sometimes much better, for Sturm~Liouville problems
of the fourth kind than for the nonsingular and seemingly
more amenable equations of the first kind.
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TABLEIV. Theeigenvaluesfor4d = — 6, B = 6. The mode number 7, the integer m which appears in (7.7} (if applicable), the absolute value of the ratio of the
coefficientof W, tothatof M _, ,, the approximate eigenvalues obtained by either setting 4 = — oo (for the purely singular modes) or using (4.5) for large

n modes, and the relative errors of the approximations are also shown. Monokeric modes are indicated by asterisk in the second column.

Relative Errors

n m W/M Re(d ) Imid ) Refd ) Imi{d )
1 * 1.06ES 0.1251 0.2850
(M= — x| 0.1251 0.2850 0.0% 0.0%
2 * 2.34E4 --0.2967 0.5203
(A= — ) - 90.2971 0.5204 0.2% 0.02%
3 * 141.4 -~ 1.218 0.5634
A= — x) —1.225 0.5626 0.7% 0.12%
4 — 0.402 — 1.602 0.0078
Intermediate—No Simple Approximation)
5 * 18.6 —2.726 0.4900
(A= — o} — 2,781 0.5101 2.0% 4.1%
6 s 4.61 —4.717 0.3324
Intermediate-—No Simple Approximation)
7 — 2.48 —5.224 0.2186
Intermediate—No Simple Approximation)
8 10 2.40 —7.156 0.2323
Eq. (4.5) — 6.85 0.0000 4.3% )
9 11 3.20 — 7.996 0.3123
Bq. (4.5) —8.2° (.0000 3.7% S
10 12 1.74 — 10.14 0.1813
Eq. (4.5) —9.87 0.0000 2.7% o
38 40 0.517 ~ 109.791 0.0333
Eq. (4.5) — 109.662 0.0000 0.11% o
98 100 0.241 — 685454 0.0076
Eq. (4.5) — 685.389 0.0000 0.01% «
Third, the eigenvalues—all eigenvalues—of a normal ACKNOWLEDGMENTS

one-dimensional Sturm—Liouville equation with nonperio-
dic boundary conditions are well separated. Here, however,
lim, . A, = 1/Bforallfixed n (see Sec. 5) so that the eigen-
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These differences and similarities are provocative, but a
number of important questions remain for future research.
First, completeness. It is plausible, especially in view of their
asymptotic identity with ordinary sine functions, to suppose
that the modes are complete at least for the original partial
differential equation which gave rise to this problem. The
possibility of expanding an arbitrary analytic function, how-
ever, in terms of a series of singular functions like the modes
of {1.1) raises fascinating questions that I will not attempt to
answer here,

Second, one may ask: would the conclusions given
above all hold if the first-order pole in (1.1) were replaced by
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APPENDIX A: CONFLUENT HYPERGEOMETRIC
FUNCTIONS

The Whittaker functions of Sec. 2 are related to the
standard confluent hypergeometric functions by the
identities

a second-order pole or some other species of singularity? M_ y)=e M1 +k2y), (A1)
(Olver'® has made a start on this). Clearly, a rich harvest e
awaits the future in these Sturm-Liouville eigenproblems of W obi=e U +x29) (A2)
the fourth kind. B which have the power series representations
= (14+«), pm 1+« I+K)2+K)
M +k2y)= — " = =14 S (A3)
(w2 ,,120 2y, m! 2 12
1 1
Ul +4x2y)= ———— (~— + kM (1 + k,2,y)logy
ra+ex)y\y
o (1 _+_ K)m "
K —-—~L[¢(1+K+m)-—w(1+m)—¢(2+m)]> (A4)
m=0 (2) m m' )
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where
() = X{x 4 1)eefx + m — 1), (AS)

and (x) is the logarithmic derivative of the gamma function
{(*digamma” function). The reason for the factor of " (1 + «)
in (3.6} is to eliminate the corresponding factor in (A4).

The corresponding asymptotic approximations for
fixed k, y— o0, are given by (4.1) and {4.2) above.

As a final note, the formulas of the paper require com-
puting two transcendental functions—sin ™ '(z)and I' (z)—for
complex argument. For the former, however, identity 4.4.37
of Abramowitz and Stegun®® reduces the task to evaluating
(1) the complex logarithm, which is a built-in library function
on most computers and (ii) the arcsine function for a real
argument between 0 and 1, which can be done via the poly-
nomial approximation 4.4.46 of Abramowitz and Stegun.?’
The complex gamma function can be evaluated by using its
well-knownrecursionrelation /" (z 4 1) = zI" (z)tomarchout
to large z, using its known asymptotic expansion, and then
marching back the same way. A FORTRAN program to do
this is given by Lucas and Terril.?!

APPENDIX B: THE DISCRETE AND CONTINUOUS
SPECTRUM

There are two fundamentally different ways of analyz-
ing the inviscid limit. The first, adopted by Dickinson” is the
continuum modes approach. This has the great advantage
that all the arithmetic is real, but it has the disadvantage that
any physically realizable solution is an integral over the real
eigenvalue A. For the special case of a §-function lower
boundary forcing, he was able to perform the integrals via
stationary phase.

Unfortunately, the need for A integration implies that a
continuum mode—i. e., a Whittaker function for some par-
ticular real value of A—is never a legitimate solution of the
original problem. [To put it another way, there is no sum of
M _ . {—x/k)and W_, ,( — x/«) which can satisfy both
boundary conditions (1.2) with « and A real.] It is therefore
exceedingly dangerous to infer the behavior of the integrated
solution from that of a single continuum mode, and this has
led to some confusion. For example, Dickinson proved that

the momentum flux ( #'v’ in meteorological parlance) is ev-
erywhere constant except for a jump at the singularity, and is

therefore nonzero on at least one boundary for a single con-
tinuum mode. Physically, however, this quantity must vary
with latitude so as to vanish (like the wave itself) on both

boundaries. Although this variability has been described® as
“contrary to a conclusion of Dickinson,” such criticism is a
comparison of apples and oranges. When the A integration is
performed, mutual cancellation of different values of A per-

mits 2’0’ to vary and the integrated wave to satisfy the
boundary conditions. Since the A integration cannot be per-
formed analytically, however, this need for integration limits
the amount of insight that can be obtained from the contin-
uum modes.

With friction, as in (2.7), be it ever so small, the contin-
uum spectrum breaks up into discrete normal modes which
have well-defined limits as the friction tends to zero. The two
advantages of this second approach are first, each mode is an
independent solution of the original problem so that no inte-
gration over A is necessary. Second, numerical calculations
normally incorporate weak dissipation to survive the singu-
larity, so discrete normal modes are what the computer pro-
grams actually calculate as in Simmons” and Boyd.” The
disadvantages are that now both the eigenvalues and eigen-
functions are complex and one must wrestle with Stokes’
phenomenon.

If no additional approximations or assumptions are
made, both approaches—in spite of their great dissimilarity
in form—give the same numerical answer. Dickinson (pri-
vate communication) has suggested a more familiar example
that makes this numerical equality more plausible. The
Fourier integral

oo iAx

Ix) = J' _e™di

— w cosh(Ax)

can be numerically evaluated by direct integration along the
real A axis via the trapezoidal rule. Alternatively, one can
complete the contour via a semicircle of infinite radius in the
upper half-plane and evaluate the integral as an infinite sum
of the residues at the poles of the integrand on the positive
imaginary A axis. These two options are the same as for the
singular eigenproblem: the integral over real A or the infinite
sum of discrete complex values of A, and both give the same
result.

This point, too, has caused confusion. Physically, verti-

(B1)

TABLE V. The coefficients of the Chebyshev series for BA, for the lowest three eigenvalues with 4 = — o« . The argument of the polynomials is
x =2°""/B'"* _ 1. The approximations are accurate for Be[4, «c ].
Degree Mode Number
of
Poly- n=1 n=2 n=3
nomial
Real part Imag. part Real part Imag. part Real part Imag. part
0 1.881 41 1.867 98 —0.444 47 3.436 86 — 5.638 86 4.006 26
1 - .237 46 1.0t1 37 — 2.067 50 1.769 41 —6.114 44 1.767 83
2 —.197 85 0.060 24 —0.989 17 —0.063 30 — 2.806 82 —0.507 14
3 —.019 13 —0.019 37 —0.152 78 —0.130 97 — 0.567 80 —0.273 23
4 0.000 41 —0.002 26 —0.010 63 —0.015 90 - 0.053 98 0.022 34
5 0.000 60 —0.000 15 —0.001 99 0.001 28 0.006 91 0.030 18
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cally propagating waves must decay exponentially with
height because of absorption at the latitude of the singular-
ity. In the discrete modes procedure, the decay rate is depen-
dent upon the imaginary part of A,. This might seem worri-
some because Dickinson’s formalism involves only real 4,
but in fact his A integrated solution® decays with height as it
should.

Nonetheless, it is obviously desirable to incorporate this
decay rate and other properties explicitly in the modes rather
than in a A integration which cannot be analytically per-
formed. For this reason, the discrete modes approach has
been adopted here. Because of its greater complexity (literal-
ly and figuratively), this procedure is complementary rather
than competitive with the continuum modes approach of
Dickinson? and others.

APPENDIX C: CHEBYSHEV EXPANSIONS FOR THE
EIGENVALUES

Although the eigenvalue relation—even when simpli-
fied via the WK B method—cannot be solved in terms of any
known transcendental, it is nonetheless possible to provide
analytic exact solutions in the form of Chebyshev series in
the parameters. The method is thoroughly explained in
Boyd,?? so it will not be repeated here. To provide a spring-
board for future work and a sample of the usefulness of the
Chebyshev technique, Table V gives the first six expansion

coefficients for the lowest three modes with 4 = — .
The form of the approximation is
5
w18 = —(Tar+ 3 arT, ) )
B 2 m—=1
where
X:25/3/BI/3—1. (Cz)

On the interval Be[4, « ], the error in (C1) is at most one part
in 4000 for n = 1, one part in 700 for n = 2, and one part in
200 for n = 3.

One can equally well obtain expansions accurate for
small B. Accuracy for a given number of polynomials can be
improved by choosing a meeting point between the large and
small B approximations which increases with #, instead of
taking B = 4 as the lower limit for all # as done here.

'The myth that as in a normal SL problem all the eigenvalues were of one
sign persisted until about 1965, when it was discovered that there was in
fact an infinite number of eigenvalues of the opposite sign. The eigenfunc-
tions themselves fall into two classes: one class which is oscillatory be-
tween the apparent singularities and exponentially smalil at higher lati-
tudes, and a second class which is oscillatory between the poles and
apparent singularities and exponentially small near the equator. Because
half the spectrum was left out, all atmospheric tidal calculations up to
1965 were completely wrong. Even then, doubts persisted about the com-
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pleteness of the eigenfunctions that were not resolved until a rigorous

completeness proof was given in 1970. The whole sordid mess is reviewed

by R. S. Lindzen, Lect. Appl. Math. 14, 293-362 (1971).

This history of confusion and error in such recent times for a relatively easy
problem should convince the reader that the subject of the present work is
far from trivial; because the eigenfunctions are analytic and the eigenvalues

are real, an SL problem of the third kind like the tidal equation is much

closer to normal SL problems of the first two classes than the singular fourth
kind studied here.
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