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The ionization and radiation dynamics of dense magnetohydrodynamic plasmas has been modeled in a
fashion suitable for implementation in MHD computer simulation codes. It has been shown that more
restrictive LTE models such as those based on the Saha equation are inadequate to describe the rapidly
varying temperature and density regimes characterizing many such plasmas. Detailed collisional-radiative
models are developed which directly solve the time-dependent rate equations characterizing atomic
processes along with those equations characterizing the hydrodynamic motion of the plasma. These models
are applied to analyze high-density-helium Z-pinch and lithium exploding-wire plasmas, and they are
found to yield results which compare quite favorably with experimental data.

PACS numbers: 52.65.+z, 52.25.Ps, 52.55.Ez, 52.50.Lp

I. INTRODUCTION

An accurate theoretical description of the ionization
state and excited-level populations of a dense dynamic plas-
ma is necessary for the development of suitable diagnostics
and interpretation of data obtained for a variety of experi-
mental plasma studies. In the past, most models of the plas-
ma atomic state have been based upon equilibrium or quasi-
equilibrium assumptions. In this work, we will examine the
suitability of several of these models for incorporation into a
magnetohydrodynamic description of dense pinch plasmas.
We will first compare the results and validity of a Saha mod-
el (based on the assumption of local thermodynamic equilib-
rium' in the plasma) with a rate-equation calculation [based
on a collisional-radiative (CR) model?] for dense plasmas.
Particular attention will be directed towards the theoretical
study of an ultrahigh-density-helium Z-pinch and a lithium
exploding-wire experiment which are analyzed by coupling
the ionization modél and radiation dynamics into a standard
MHD simulation code. Comparison of these results with
experimental measurements taken in our plasma laboratory
will also be presented.

11. MODELS OF THE IONIZATION DYNAMICS
OF PLASMAS

A. Local thermodynamic equilibrium (LTE)
models

The assumption that a plasma can be adequately char-
acterized by an LTE state allows the use of the Saha equation
for calculating the various ion-state population densities.
Since this is an equilibrium model, it is only implicitly time
dependent (through the time variation of the state varia-
bles) and relies solely on the statistical law of energy equi-
partition and not on any specific knowledge of atomic colli-
sional cross sections. That is, while this model allows for the
variation of the local temperature, density, and chemical
composition of the plasma, it assumes that the ion-density
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populations depend only on these thermodynamic quantities
and not explicitly upon time.

The equations for LTE plasmas depend on the detailed
balancing of the dominant collisional processes in the plas-
ma: collisional (three body) recombination and collisional
(two-body) ionization between ion species, and collisional
excitation and deexcitation between levels within a single
species. Using equations for these processes given by Seaton®
and Griem,* we can write a generalized Saha-Boltzmann
equation in the form
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where n(z, j) is the ion population of charge state z in excited
level j, n, is the electron density, U is the partition function,
m, is the electron mass, T, is the electron temperature, k p is
Boltzmann's constant, y(z, j) is the ionization potential of
level j, and AE is the ionization reduction. The latter term is
defined by Griem® as
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where p, is the Debye radius,
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where e is the electron charge and ¢, is the permittivity of
vacuum. The partition function U (2) is defined as
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where S, and L, are the spin angular momentum and
orbital angular momentum of the ground state of the z+ 1
ion and E, is the ionization potential of hydrogen. The sum
is performed to the highest level /’ below the reduced ioniza-
tion limit x(z,0) — AE(z), but in our model, the sum was
truncated at the fourteenth excited level of the ion species.
This model was used in calculating the ground states of the
plasmas only, and it was employed in the description of both
helium and lithium plasmas.

The particular model for helium includes three equa-
tions of the form in Eq.(1), one each for the ground states of
He I, He 11, and He III, while the lithium model includes an
additional equation for Li IV. These Saha equations are
solved simultaneously with an equation expressing plasma
neutrality,

n,=Y zn(z,0), &)

where the sum is taken over all charge states of the atom.

B. Collisional-radiative (CR) model

A more sophisticated model which takes into account
nonequilibrium, collisional, and radiative processes was also
applied to analyze dense helium and lithium plasmas. This
model directly solves the rate equations describing the var-
ious atomic processes occurring in the plasma:

(i)collisional ionization

nz, ) +e'—n(z+1,0)+e +e,
(ii)collisional (three-body) recombination
n(z,0)+e +e—n(z—1,)+e,
(iii)radiative (two-body) recombination
n(z,0)+e—n(z—1, ) +hv,
(iv)spontaneous emission (radiative decay)
n(z,)}—n(z, j)+hv,

(v)collisional excitation

n@z, )+ e—n(zi)+e,

(vi) collisional deexcitation

n(z,) +e—n(z, +e.

It should be noted that the processes of photoioniza-
tion, excitation, and deexcitation have been ignored, limiting
the validity of this CR model to plasmas of sufficient optical
thinness that these processes are negligible. In addition, we
have chosen not to include the process of dielectronic recom-
bination in our rate equations. Although this process is a
major contributor to the total line emission in higher-Z plas-
mas,” it is believed to have a negligible effect on both the
radiation energy balance and the excited-state population
densities of the low-Z plasmas considered in this work.

Including only the processes described above, the CR
model equations® can be written as

g”_g;if_)=( nniz—1,j8z—1,j"z, p+n . .niz+1,5)
Xla(z+1,jz,)+n B@z+1,]2 )]
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where n(z, ) is the population density of ion species z in level
J, 8(z—1,j";z,j) is the collisional ionization rate (cm®/sec)
from n(z—1, j*) to n(z, j), a is the radiative recombination
rate (cm®/sec), B is the collisional recombination rate
(cm®/sec), A (i, j) is the spontaneous decay rate from levels /
toj (1/sec), X (7, j) is the collisional excitation rate from i to
(cm?®/sec), and X™'(i, ) is the inverse reaction collisional
deexcitation. The terms in the first set of large parentheses
on the right-hand side of Eq. (6) express the increase in
population density of n(z, /) from surrounding states, while
the terms in the second set of large parentheses give the rate
of loss from n(z, /). If we eliminate the terms describing exci-
tation and deexcitation, then Eq. (6) describes a model of
ground states only. This ground-state model was used for
both helium and lithium plasma simulations in a quasiequili-
brium mode, i.e., neglecting the time derivative on the left-
hand side.

Since the energy deposition in these plasmas occurs on a
time scale long compared to that of atomic processes, and,
often, no detailed information of the excited levels or line
emission was required, this shorter version of the model was
very useful. In addition, a version was also used for lithium
which included several excited states, as shown in Fig. 1, and
explicitly accounted for the time rate of change of the ion-
state densities.

The accuracy of the CR model in predicting the actual
plasma state will depend primarily on how well the rate coef-
ficients reflect the reaction cross sections in the various tem-
perature and density regimes during the plasma time evolu-
tion. The rates used in this study are similar to those used in
Davis and Whitney's’ work on higher-Z materials. The ion-
ization-rate coefficient was obtained from Seaton’s™* result
after integrating over a Maxwellian velocity distribution,

T1/2 _ 3
S(,jiz+1,00=2.420% 105 2 Le exp( X("’f)) o
¥z ) T sec

(7

(T, and x in eV), where £ is the number of outer shell elec-
trons. The radiative recombination rate is given by Seaton,’
and while it is derived for hydrogenic ions, it is used for all
ion species due to lack of a better expression,

a(z,0z —1,j)
=5.2X10"Z¢"*(0.43 +4 Ing +0.474™*) cm*/sec,
(8)
where Z is the jon charge and ¢=y(z— 1, j)/T,. The colli-

sional recombination rate can be calculated by using the
principle of detailed balance between ionization and recom-
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FIG. 1. Atomic states included in the rate-equation model for lithium.

bination due to electron collisions to find

B(z,0z—1,))

-1, 6
—8.051 10_2,§zg(2 ) 1 cm (9)

28(z,0) y(z—1,j’T, sec '

The coeficient for spontaneous emission is just the Ein-
stein coefficient and the values were taken from the NBS
tables.!® The rate coefficients for collisional excitation and
deexcitation were calculated using the semiclassical impact
parameter (SCI) method of Burgess'' and can be expressed
in terms of the oscillator strength £,

Si<8 v E;\ cm?
X3, )=1578Xx 10" 1= ¢ex (—-—’) —, (10)
@) E;T\? P T,/ sec
where (g, is a thermally averaged Gaunt factor and E 718
the term energy in eV. The deexcitation rates are given by
detailed balance with the excitation rate,

i ne i n8@D o (Eg) em®
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The value of the Gaunt factor g; was given as the threshold -

value of 0.2 by Seaton,” but Allen later recalculated it to
give higher values at higher energies. However, these univer-
sal values were shown to be incorrect for many transitions
(particularly, resonance transitions) by Oran and Davis."
Their expression for the thermally averaged Gaunt factor is

Egy= U: g, exp(—E/T,) dE]

© —1
><U exp(—E /T, dE)] : (12)
E

but a simple analytic expression fitted to their curves is given

by Davis, "
_ Y+1 0.4
i>=A +BY +C [ln( )— ] (13)
@ =4 +( G o
where A, B, and C are constants dependent on the transition
and Y=E/T..

The excited states used in the lithium model were cho-
sen so as to calculate line ratios which could be compared to
experimental measurements. Higher-level states were ne-
glected due to computer-time limitations and are not expect-
ed to greatly affect the overall Z ¢ of the plasma studied in
the magnetohydrodynamic calculations in any event. In ad-
dition, processes such as forbidden radiative decays, inner-
shell excitation, multiphoton processes, ion collisional exci-
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tation, cascading from higher levels, and direct double exci-
tation were all neglected because they play a secondary role
in the determination of the atomic spectra. However, the
nature of the model lends itself to the addition of these pro-
cesses if finer detail is required.

lll. MHD SIMULATION MODEL

The ionization-dynamics model described in Sec. IT was
incorporated into a one-dimensional two-temperature La-
grangian MHD computer code.'*'¢ The set of equations
solved by the code include the two-temperature hydrodyna-
mic equations for mass, momentum, and energy, Ohm's
Law, Maxwell's equations, and an equation of state,

—ll;—lt)=UV'“: (14)

Du

E=_vv(p+q)+v(J><H)» (15)

De, T=T0)

iis_-== __'l”e‘;7'|l‘+'lj‘;"('(e‘:7jzje) - R ( +5,
p y—1 t,

(16)
l)ei }Q (712__ ]})
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¢ y-—1 leg
(17)
dH
VXE= o (18)
nJ=E-+uxH, (20)
an=ZaRTa,
Z R .
ea=—a'1— Ta,

where a=ge, i, v is the specific volume, u is the velocity, g is
the usual artificial viscosity term, k is the thermal conductiv-
ity, ., is the equipartiation time, J is the current density, H
and E are the magnetic and electric field intensities, p is the
pressure, 7) is the resistivity, e is the internal energy, and Z is
the charge state. The term S contains the plasma energy
source and loss terms,
oE,

:;=== \l’ _—— 1?,
or (22)

where V¥ is the Joule heating, R is the radiation emission, and
dE,/dt is the energy lost due to ionization of the plasma. The
radiation-loss term contains contributions from bremsstrah-
lung, radiative recombination, and spontaneous decay pro-
cesses. These terms are defined by**

Rorem=1.53X 10T 203 z2n(z,) W/om’,  (23)
zj

R, ,=16X10"nY n@zpa@z+1,0; z))x(z,)W/cm’
N (24)
R jine=1.6X10"Y E ; A ()n(z)W/cm’. (25)

Line emission is set to zero when the ground state or Saha
model is used. When the Saha equations are used to calculate
ionization, an alternate form of the bound-free radiation
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term is used which does not require the rate coefficient,
R,_,=153X10TV?n Y z7n(z, j)x(,j) W/cm’,

zJ
(26)

The effective ionization Z 4 is calculated using Eq. (5)
and inserted into the various transport coefficients. The re-
sistivity and equipartition time (to allow for collisional
transfer of energy from electrons to ions) were taken from
Spitzer,'” while Braginskii's'® expressions were used for the
ion and electron thermal conductivities.

The magnetic-diffusion and ion-temperature equations
were solved implicitly while an explicit method was used for
the momentum equation. A modified predictor-corrector al-
gorithm was necessary to solve the electron-temperature
equation to avoid a numerical instability caused by the ion-
ization energy term 3E,/at in Eq. (22).

IV. NUMERICAL RESULTS
A. Validity of the ionization model

We began our studies by comparing LTE and nonequi-
librium ionization models for a range of plasma tempera-
tures and densities while ignoring (for the moment) hydro-
dynamic motion. In Fig. 2, we present a plot of the variation
of Z 4 with T, for various values of electron density »,, as
calculated by the rate-equation model (no excited states) for
a helium plasma.

The steep ascents between integral values of ionization
states reflect the exponential dependence of several of the
rate coefficients upon electron temperature. It is this feature
of these ionization calculations which can lead to an instabil-
ity in the numerical methods used to solve the electron-tem-
perature equation (16). The three different curves in Fig, 2
correspond to different ion densities, 10", 108, and 5 10*
cm”’; the higher-density curves yield lower effective ioniza-
tion. The reason for this is evident from the collisional re-
combination rate coefficient. Since this is a three-body colli-
sion, the number of reactions per second is proportional to
n 2; hence, as ion and electron density increases, more colli-
sional recombination takes place, causing lower ionization.
The effect is not as marked at lower densities since radiative
recombination becomes the dominant mechanism balancing
collisional ionization. However, at ion densities above 10'*
cm” in helium, for example, large deviations begin to be-
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FIG. 2. Effective charge versus electron temperature for helium, calculated
by the equilibrium-rate-equation model.
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FIG. 3. Effective charge versus electron temperture for lithium at »,= 10"
cm’, calculated using three models.

come noticeable. One aspect of this research that should be
stressed is the marginal accuracy afforded by using an LTE
model to describe dense Z-pinch and exploding-wire plas-
mas. As electron density increases, of course, one expects a
collisional-radiative rate equation model to predict values of
Z g that approach the LTE model describing collision-domi-
nated plasmas. However, the pinching and expanding hy-
drodynamic motion of these plasmas causes them to traverse
density regimes below that at which collisional recombina-
tion dominates over radiative recombination, and the Saha
equation becomes inadequate. In addition, models that are
suitable for less-dense plasmas, e.g., the coronal model,' do
not yield accurate results at dense pinch contractions.
Hence, a CR model must be used to describe dense dynamic
plasmas of this type. In Fig. 3, we have compared the predic-
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FIG. 4. Line ratio for 6104-A /5485-A lines of lithium at n,=10" cm™,
calculated using RATEX and Saha.
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tions of the Saha and CR models for the effective charge of a
lithium plasma at ion densities of 10"’ cm™. The curve la-
beled RATEX is for the set of rate equations including ex-
cited ion states, but neglecting the time derivative in Eq. (6),
while RATE refers to the same calculation using ground-
state densities only. These curves become identical at Z ;=2
since no levels of Li III were modeled. The discrepancy be-
tween the Saha and rate equations prediction becomes large
as the temperature (and ionization ) of the plasma increases.

The results calculated by these ionization models for
the lithium plasma show interesting variations from LTE
behavior in some respects. Graphs of two line rations, the
6104-A line, 1522p(*P)-15"3d (D), versus the 5485-A line,
1525(S )-152p(*P), and the 6104-A line versus the 6708-A
line, 1525(2S)-15"2p(*P), are shown in Figs. 4 and 5 as func-
tions of temperature. The graphs compare an LTE calcula-
tion with that of the equilibrium CR model (RATEX) con-
taining all the modeled excited states. The experimental data
from measurements taken in our laboratory* on an explod-
ing-lithium-wire plasma indicated electron temperatures of
about 8-12 eV extracted from measurements of the
6104/5485 line ratio and based on an LTE calculation.* As
seen from Fig. 4, the rate equations predict electron tem-
peratures approximately 5~15 eV higher for a given line ra-
tio, yielding as much as a 100% error in temperature if an
LTE argument is used. However, indications are evident
from Fig. 5 that LTE is an adequate description for the
6104/6708 line ratio. The excited levels of lithium I have
evidently reached the populations given by Boltzmann equi-
librium relations, while the states of lithium II have not.

Although the level structure of lithium used in this
model was relatively simple, no reabsorption or transport of

10
6104 A / 6708 A
10 -
LTE
RATEX
[en)
=
= 17
jxu}
=
-4
107
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0 7 § 10 1

ELECTRON TEMPERATURE (8V)

FIG. 5. Line ratio for 6104-A/6708-A lines of lithium at n,= 10" cm™,
calculated using RATEX and Saha. :
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FIG. 6. Plasma radius versus time calculated by helium Z-pinch MHD
simulation.

the radiation was included (optically thin approximation),
and no spatial resolution of the lines occurring from the two
different ionization stages was obtained experimentally, we
feel that the theoretical calculations give strong indications
of inadequacies of the LTE description for these dense low-Z
plasmas.

B. Helium Z-pinch simulation studies

The main objective in simulating a dense helium Z-
pinch plasma was to provide theoretical support for a series
of experiments of this type performed in our plasma physics
laboratory.?? The temperature of this plasma lies in a par-
ticularly difficult range for adequate measurement and diag-
nostic purposes, so accurate theoretical calculations were
particularly significant for the interpretation of experimen-
tal data. Moreover, the helium plasma produced in the labo-
ratory was prepared specifically for laser interaction experi-
ments. Hence, the simulation provided a large number of
additional virtually unmeasurable plasma parameters neces-
sary for effectively characterizing the plasma. In addition,
the strong correlation between the simulation model predic-
tions and those parameters which could be experimentally
measured served to confirm the accuracy of the model and
reaffirm its ability to generate realistic predictions corre-
sponding to actual initial conditions.

The results presented in this section are taken from a
typical simulation run, initialized to duplicate the corre-
sponding laboratory experiment as closely as possible. The
current driving the plasma dynamics was a sine wave withan
amplitude of 1.4 X 10° A and a period of 8.0 usec, although
simulation runs rarely were extended beyond the first pinch
time, which normally occurred at less than 0.8 psec into the
discharge. The initial plasma radius was set to 1.375 cm, and
the ion plasma density was assumed to be uniform and taken
to be 5.2 X 10' cm?, defined by the fill pressure of the actual
experiment and the law of mass conservation. The simula-
tion run was begun at 0.1 psec after initiation of the current
discharge, and the ion and electron temperatures were
initialized at 3.0 eV, while the effective charge was taken as
0.95 (determined by the equilibrium rate equations at these
densities and temperatures). Since our present model does
not describe the change of state from neutral gas to plasma,
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the simulation had to be initiated at this later time with ap-
propriate estimates of input parameters corresponding. In
fact, it was found that slightly changing the input parameters
T, and Z; caused no significant effect on the plasma
development.

In Fig. 6, the macroscopic fluid behavior of the plasma
is shown by plotting plasma radius against time. The plasma
remains at its initial radius until about 0.35 usec, at which
point the current has risen sufficiently to generate magnetic
fields large enough to cause pinching contraction. The elec-
tron density, predictably enough, reaches peak values at the
time of pinch which corresponds to minimum plasma radius.
The particle temperatures also vary in time similar to the
density, with electron temperature slightly exceeding ion
temperature, since Joule heating couples with the lighter
electrons more efficiently than with ions. Near the pinch,
however, where shock compression becomes the dominant
heating mechanism, the ion temperature exceeds that of the
electrons, especially for the inner zones of the plasma (see
Fig. 9). This shock heating process becomes dominant in
such a short time scale that the temperature equilibration
time is (relatively) too long to allow significant equiparti-
tion of this energy from ions to electrons.

Since no excited states were modeled in the helium plas-
ma simulation, bound-bound transitions were assumed to
contribute a negligible fraction of the total radiation emis-
sion. Hence, only bremsstrahlung and radiative recombina-
tion were assumed to determine the radiation energy loss. In
veiw of the fact that the code predicts complete ionization
during periods of maximum radiation loss (corresponding
to density peaks) and spectra obtained from experiments
indicate no discrete radiation above the continuum back-
ground, this assumption seems reasonable. The total radi-
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FIG. 7. Magnetic field versus plasma radius (at pinch time) calculated by
helium Z-pinch MHD simulation.
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FIG. 8. Electron density versus plasma radius (at pinch time) for helium:
MHD simulation and experiment.

ation loss at time of pinch was calculated to be only 1.5% of
the total energy addition to the plasma.

Various parameters of interest are plotted as functions
of plasma radius in Figs. 7-9. All profiles were taken at 0.76
psec, the time of the first pinch in this run. Figure 7 shows
the magneitc field profile, which drops to zero at the plasma
center while rising to 1.5 X 10° G at the periphery, where the
current density is the strongest. Figure 8 indicates that the
electron-density profile is seen to peak, not at the plasma
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FIG. 9. Electron and ion temperatures versus plasma radius {at pinch time)
calculated by helium Z-pinch MHD simulation.
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center, but at a radius of approximately 0.38 mm. The densi-
ty peak cannot penetrate further into the plasma because the
shock heating has caused such large temperatures in the
plasma interior that particle pressure drives the inner zones
back outward, “squeezing” the middle zones between the
pinching outer region and the expanding inner core. This
temperature gradient can be seen in Fig. 9, where tempera-
tures rise sharply near the center of the plasma. The high
temperatures near the outer radius are the product of strong
Joule heating of the electrons, coupled with low densities.
The intermediate high-density zones are, therefore, relative-
ly cold, as seen by the large dip in the curves.

As we noted earlier, comparison of simulation experi-
ments involving a helium plasma with actual experiments
done in our laboratory provided an excellent test of our com-
puter model’s accurcy. In particular, the electron-density
profile versus radius of the plasma at time of pinch was very
accurately measured in the laboratory using the techniques
of interferometric holography.? The measurements were
done with a frequency-doubled ruby laser at a wavelength of
3472 A and pulse width of 16.0 nsec (FWHM) at 0.625 MW
peak power. The data was reduced using standard Abel in-
version and fitted to a curve using a spline interpolation. The
ruby laser was synchronized with the plasma time evolution
to produce the hologram at a time corresponding to maxi-
mum radiation emission, which was believed to be the time
of the completely pinched plasma. The simulation results are
plotted in Fig. 8, superimposed over the experimental data
obtained from the holography. The agreement between the
predicted and measured density profiles is excellent. In addi-
tion, the position and value of peak densities are in excellent
agreement with experiment, corresponding to 4 X 10" cm™
at approximately the 0.36-mm radius. Also, the critical sur-
face for CO, laser light, defined by the critical electron densi-
ty n, at which the laser frequency equals the plasma frequen-
cy (n,=10" cm™), is calculated to occur within 1% of the
measured value of 0.81 mm. The only disagreement between
experiment and theory in Fig. 8 appears to be the existence of
a density shelf at about 1.5X 10 cm™, which was not pre-
dicted by the code. Defining the electron-density scale
length at the critical surface by

[ 1 (ane) ]“
L,= cm,
n, \dr /n.=n,

we find that this flattening causes the experimentally deter-
mined value for this parameter ( ~80 ) to be significantly
shorter than the value determined by simulation ( ~200u).
As yet, neither modifications in our theoretical model nor
further experimental measurements have been able to ade-
quately resolve this discrepancy.

@n

Although no other reliable accurate measurements
have yet been made on the Z -pinch plasma, it is interesting to
compare the temperatures at the time of the pinch which are
predicted by the code with those calculated by using a very
simple approximation, based upon the Bennett relation."
This gives the pinch current as

N, 87IAT/2) .

—- (28)
L o

16y =
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FIG. 10. Electron temperature versus plasma radius (at pinch time and 10
nsec. previous to pinch) calculated by helium Z-pinch MHD simulation.

where I is the current, L is plasma length, and N, is total
number of electrons. The electron temperature predicted by
Eq. (28), using /=8.05X 10* A, L=15 cm, N,=9.65 X 10*,
and Z=2, is about 21 eV (assuming 7,=T,), which is sig-
nificantly different from the electron temperatures predicted
by the simulation at the time of pinch, but surprisingly close
to those predicted by the profile at only 10 nsec before the
pinch time which is shown in Fig. 10. The dramatic rise in
temperature within a 10-nsec period, as predicted by the
code, is the product of strong shock heating that occurs in
the central region of the plasma during this period. Such
sudden rises in plasma temperature would not be predicted
by the Bennett relation, since it does not take shock wave
{viscous) heating into account.

V. DISCUSSION

We have attempted to demonstrate that the standard
LTE treatment of dense pinched plasmas using the Saha
equation is inadequate. Both the assumptions of thermody-
namic equilibrium in the plasma and the neglect of radiative
recombination in determining the effective plasma charge
state and density distribution of ions among the various
states are invalid for these plasmas. By direct comparison of
theoretical calculations based upon the LTE model with
those obtained from the more sophisticated model based
upon time-dependent rate equations employing atomic
cross-sectional data, and also by comparison of predicted
line ratios with actual experimental data, we have shown
that the latter model is necessary for an accurate estimate of
plasma ionization dynamics.

This nonequilibrium rate-equation model has been

coupled into an MHD plasma simulation and found to ade-
quately predicted the time evolution of dense pinch plasmas.
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Comparison of these predictions with experimental data
supports the validity of the theoretical simulation. Such cal-
culations have provided valuable information about these
dense plasmas which will prove useful in future laser-plasma
interaction experiments with intense CO, laser light.
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