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On the basis of a small-signal, one-dimensional analysis, a set of basic macroscopic differential equations,
governing the fluctuations in quantities such as the electron-beam temperature, the mean velocity, and the
current density, has been derived by taking moments of the Liouville equation with respect to the velocity
variable. This set of differential equations expresses the conservations of charge, momentum, and energy, and
is valid for an arbitrary amount of velocity spreading and includes the effect of heat conduction.

A system of differential equations, governing the correlation among the fluctuations in the mean velocity,
current density, and beam temperature, is also derived. The relationship among the various noise parameters
along the electron beam is obtained in the form of a system of differential equations whose solution gives
detailed information on the variation of the noisiness parameter along the beam. The solution of the system

of differential equations thus derived is also discussed.

1. INTRODUCTION

HE analysis of a multivelocity electron beam by
the density-function method has been discussed
by Siegman,! and using this method of analysis the noise
propagation in a one-dimensional space-charge-limited
diode has been investigated numerically by Siegman,
Watkins, and Hsieh.? The result of their numerical
analysis shows that the noise parameters defined by
Haus® do not remain invariant as the beam passes
through a multivelocity region, which suggests that
both the self-power and cross-power density spectra of
shot noise fluctuations can undergo considerable modi-
fication in propagation through the potential minimum
region. In particular, the quantity (S—II), which
determines the theoretical minimum noise figure of a
beam-type amplifier, decreases considerably below its
value at the cathode.

Although the microscopic density-function method of
analysis of Siegman ef al.? is rigorous, it is also intricate,
and depends upon solving a complicated partial dif-
ferential equation for representative solutions. On the
other hand, there exists a simpler macroscopic “hydro-
dynamical” model of an electron beam introduced by
Hahn,* which may also describe at least the first-order
effects of velocity spread. This model has been used by
Parzen®® and Goldstein® in a discussion of traveling-
wave-tube gain, and later by Berghammer and Bloom?”
in their discussion of the nonconservation of the noise
parameters in a multivelocity electron beam with
sufficiently small but nonzero velocity spread. These
latter authors have demonstrated the possibility of
obtaining an equivalent transmission-line equation for a
beam with a small velocity spread and have also dis-
cussed the case of a drifting beam in some detail.
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Center under Contract No. AF30(602)-3569.
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In this paper an attempt is made to develop a method
of analysis of noise in a multivelocity electron beam
based on a hydrodynamic model, which adequately
takes into account the effect of heat conduction as well
as temperature fluctuations along the beam.

Based on a small-signal, one-dimensional analysis, a
set of basic differential equations governing the fluctua-
tions in the mean electron beam velocity, the current
density, and the electron beam temperature is derived
by taking the moments of Liouville’s equation (collision-
free Boltzmann equation) with respect to the velocity
variable. The relationships among the various noise
parameters along the electron beam are derived in the
form of a system of ordinary differential equations
whose solution yields the desired information on the
variation of noise parameters. The solution of the
system of differential equations, thus derived, is dis-
cussed briefly.

II. DERIVATION OF THE BASIC DIFFERENTIAL
EQUATIONS GOVERNING A MULTI-
VELOCITY ELECTRON BEAM

The Boltzmann equation for a one-dimensional,
nonrelativistic, collision-free electron beam is written as

OF (x,u,t)
+nE(x,) =0, (1)
ot dx ou

6F(ac,u,t)l AF (x,u,1)
U

where E(x,) is the longitudinal electric field intensity
and 5 is the charge-to-mass ratio, with s being the elec-
tronic mass and e the electronic charge which is
taken as a negative value. The distribution function
F(x,u,t)dxdu denotes the charge density in the interval
dx at the instant ¢ due to electrons with velocities be-
tween # and #+du. Taking the zero-, first-, and second-
order moments of Eq. (1) with respect to the velocity
variable #, then integrating by parts, with the as-
sumption that F(x, &, £)=0, and in view of the fact
that # and « are independent variables, yields the
following three macroscopic equations. These express
the idea of conservation of charge, conservation of mo-
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mentum, and the conservation of energy, respectively;

dp/0t+9dJ/9x=0, (2)
d 0
—(p)+—(p{u?))—npE=0, 3)
at ox
and
0 e
—(p{u*))+—(p(u*)) — prE=0, 4)
ot 0x

where the macroscopic charge density, mean velocity,
and convection current density of the electron beam are
defined, respectively, as

p(x,t)=/ Fdu,

1 o0
v(x,t)=—/ uFdu,

pJ
and

](x,t)=[ uFdu=pv; (5)
and the mean values of #» are defined by

1 L)
(u")=—/ u"Fdu. (6)

p
It is to be noted that

(u)y=v, (7a)
(w)=v~+((u—v)?), (7b)

and
(#*)=1"43v((u—0)%)+ ((u—2)*). (7c)

In view of the fact that the electron beam temperature
T(x,8) is related to the mean-square deviation of the

velocity by
kT (w,8)/m= ((u—0)?), (8)

where £ is the Boltzmann constant, Egs. (2)-(4) can be
written as follows:

dp/dt-+3J/dx=0, ©)

0 a a7 kT
~<pv>+—<fv>—an=——(p—), (10)
ot ox

dx\ m
and

i} ] a7 kT
—(ev*)+— () —MJE= ——(p—)
a¢ dx M\ m

_%[31(55)+p«u—v>3>]. (11)
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It is noticed that the right-hand sides of Egs. (10) and
(11) indicate the effect of the presence of beam velocity
spreading and they vanish as the velocity spread ap-
proaches zero, leading to the familiar form of the equa-
tion of motion and the kinetic power theorem of the
single-velocity theory. Furthermore, the last term on
the right-hand side of Eq. (11), when it is divided by a
factor (—2), represents the divergence of the energy
flow density. The first member of this term represents
the internal energy carried by the average velocity which
is often referred to as convection and the second
member corresponds to the energy carried by (heat)
conduction.

For convenience, let us define the thermal current
density Q (i.e., the rate of transfer of kinetic energy
associated with the random motion per unit area per
second) as follows:

1 1 w0
Q) =——p((u—0)})=—" (u—v)*Fdu.
_21’ — &N J

(12)

Then, by multiplying Eq. (10) by (2v) and subtracting
from Eq. (11), with the aid of Eq. (9), Eq. (11) can be
written in the following manner:

s KT\ 9/ KT\ 0/ kT\ 90
) )

Ix\ m A\ m ox\ m ox

(13)

Assume that all quantities of interest have the following
form:
G(@,0)=Go(x)+Gr(x)e™", (14)

with w being the angular radian frequency. Equations
(5), (9), (10), and (13) yield the following set of dc
equations:

Jo= poto, ' (15)
d d kT,
"—(Jovo)—ﬂpoE(): ——<Po—>, (17)
dx dx m
and
d kTo d kTo dQ[)
2v0——(p0——) = 3—(]0—) —2p—, (18)
dx m dx m dx

and the following set of ac equations (under the small-
signal assumption) :

J 1= pov1+vop1, (19)
jwpr+dJ:/dx=0, (20)
d
ij1+d—(Jov1+]1’Uo) —n(poE1+ p1E0)
%
d kT kT,
= “"—'(Po—“'l'Pr—); 21
dx\ m m



and
dt kT, dy kT, kT,
2v1——<po——)+ 2vo—(po—+ Pl—)
dx m dx m m
) kT kT, d kT kT,
= ]w(P0—+ Pr‘—>+3_<]o—+]1~—>
m m dx m m
Q.
—2—. (22)
dx

The set of dc equations can be solved with the aid of the
electrostatic scalar potential function, which satisfies
Poisson’s equation, and the dc density function. The
ac quantities, vy, p1, J1, T4, Q1, and E; are of interest to
us in the study of noise in the electron beam.

For a one-dimensional beam (or in an open-circuited
diode) the total alternating current density may be
considered to be zero, so that the alternating convection
current density J, and the ac electric field E, are related
by

E1= —]1/jw€0, (23)
where € is the dielectric constant ¢n vacuo.

Let us now assume that the alternating thermal cur-
rent density Q; is invariant along the beam, i.e.,

dQy/dx=0 (24)
so that it is only necessary to use three ac quantities to
characterize the ac behavior of the beam, in view of
relations (19), (23), and (24). In the present paper it
has been decided to work with the quantities v, J,
and T and for convenience consider the ratio of the ac
to dc quantities, namely, (J1/J0), (v1/v0), and (T'1/T).

After some algebraic manipulation, the following set
of differential equations is obtained (see Appendix A
for the details):

dX;(x) 3 N
=3 Gmx)X(x) 1=1,2,3,

dx m=1

(25)

in which the symbol ~ denotes a complex quantity and
thus X (%) and @, (x) are complex quantities although
the independent variable % is real. In the system of Eq.
(25) the dependent variables X ;(x) are defined as

N #1(x)

~ Tl(x)
2(x)= ), and X;(x)=

fl(x)

X 1 = y
(%) I

(26a)

Vo(X ol
and the coefficients &@;.(x) are given by

6lm(x)=blm(x)+jClm(x), I= 1, 2, 3 m= 1, 2, 3, (26b)
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with
dll= _jﬂey dl2=j6e, 613=07
o B Wyl
da= ——+]—<h+'_);
A A w?
2 B
dge= ——— Invg— j—(14-4),
dx A
3 d " Be
623=_‘ — ll’l?)o‘l’]"—]’l,
A dx A
8 _ZBe Wil
TR
A A w?
4 d 28.
#ge=—— Invo+ j—(1-+4)
Adx A
and

1 d Be
A dx A

with

Ax)=1-3h(x). (26¢)

The wavenumbers S.(x), plasma angular frequency
wp(x), velocity spreading parameter k(x), and heat
conduction parameter 8(x) are defined as follows:

Be(®)=w/ve(x), w,’(®)=npo(x)/es,
h(x)=FkTo(x)/moo*(x),

and
5(x)= _2"(—"‘—)@. (26d)
Jo \kT,/ dx
Now let the function &;,(x) be defined as follows:
F.x)=Xx)X.*&) [=1,2,3 »n=1,2,3, (27)

where the symbol * denotes the complex conjugate. It
is to be noted that, in a language of the generalized
harmonic analysis,® ®;.(x) represents the spectra of the
correlation; for example, if /= it represents the spec-
trum of the autocorrelation of a random function,
e.g., the current-, velocity-, or beam-temperature
fluctuation in our case, and if J# » it represents the spec-
trum of the cross-correlation of the random functions.
These spectra and their respective correlation functions
are related by a Fourier transform pair.
Since &;,(x) is a complex quantity it can always be
expressed in the following form:
Bia(2) = Min(2)+ jA1a(2), (28)
where II;, and A,, are real quantities. Then the func-
tions &, (x), H;.(x), and A;.(x) can be shown to have

8Y. W. Lee, Statistical Theory of Communication (John Wiley
& Sons, Inc., New York, 1960), Chap. 2.
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the following properties:

&Sln:: (&Snl)*7 Hln= Hnlg
for

Ap=—An

I=1,2,3, n=1,2,3,

qJ”:Hu and Au=0 for Z“—“‘l, 2, 3. (29)

Upon differentiating Eq. {27) with respect to the real
variable x and using Eqgs. (25) and (29) one obtains

dfi;,‘(x} 3 - -
=2 [@m(®)Pma(2)FBnm* (@) Pmr* (x) ]

dx m=l1
1=1,2,3 and #=1,23.

(30)

The following system of first-order ordinary real differ-
ential equations is then obtained with the aid of Eq. (28):

dﬂln 3
= Z [(blmnmn‘i'bnmnml)” (ClmAmn+CnmAml)J

dx m=1
1=1,2,3, n=1,2,3 (30a)
and
dAin 3 .
P == E [(Clmnmn_cnmnml)+(blmAmn_bnmAml)]
X m==1

I#n. (30b)

It is observed that there are nine correlation functions
which need to be considered, namely auto- and cross-
correlation of the current fluctuations, velocity fluctua-
tions and temperature fluctuations. Although there are
18 parameters II;, and Ay, for /=1,2,3 and =1, 2,3
involved, since Eq. (29) represents nine conditions of
constraint, it is necessary only to use nine parameters
to specify the correlations. Consequently, the conditions
are to be imposed on Eq. (30) in such a way that Eq.
(30a) gives six equations and Eq. (30b) gives three
equations.

It is interesting to note that in the case of a single-
velocity beam there are only four parameters needed to
specify the correlation; however, nine are needed here.

The conventionally defined noise parameters, ¥, &,
11, A, and S, introduced by Haus® are related to the IT;,
and Ay, as follows (on the basis of per unit bandwidth
and per unit beam cross-sectional area):

V= (47!‘)_1.]021111,
= (4m) 1 (v¢"/n*) Mzg,

= (4r)~" (v’ o/n) 112y, (31a)
A= (4r) (w2 o/n)An,
S= (dx) (vt o/m) S,
where
Sor=[Maalls1— As* (31b)

and the noisiness parameter N (x) can be expressed as

] =—(§5—1)= = — |——n(x). a
V(x ; ) nx n

kT, 2e/ h(x)
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The dc kinetic voltage V, the direct beam current 7y,
and the dimensionless parameter #(x) are defined by

Vo= —1v2/2n,
Iy= "‘Jo
and
n(x)=Sa(x)— Mz (). (32b)

The theoretical minimum noise figure for a beam-type
amplifier may be written as

Fmin‘: 1+ (VBIG/kTO)n(x)7

where To(x) is the dc electron beam temperature.

In order to know how N (x) varies along the beam, it
is necessary to find out the variations of IIyy, Ise, Moy,
and Aq with distance by solving the system of differ-
ential equations given by Eqs. (30a) and (30b), with
the coeflicients @;» being given by Eq. (26c).

It is also of interest to note that, upon differentiating
Eq. (31a), and with the aid of Eq. (30a) and (30b), and
using the fact that Ay=0 for /=1, 2, 3, bin=0 for
m=1, 2, 3, and Cy;3=0, the following relationship is
obtained governing the spatial rate of change of the
conventionally defined noise parameters:

dV/dx=— (J/2w)CrAn,

(33)

de 4 d‘vo ‘1)04
—= <— —)¢+—-[521H21+522H22+C a1lhgy
dx \vy dx 2r?

~+basllss— CasAse ],
dn

2 dug (2
P (_ ._> I+ [bglnxx+bz2n2l
dx b} dx 47”3

4 (C1i— Ca)Aar+basllai—Cashs ], »

dA 72 dvg ve?J o
— (—— —)A+ [Cally—Cuollss
dx  \vy dx dar

4 (Cas— Cro) Mo+ baoA oy +Coslla+basAsy ]

It is observed that the rate of change of ¥, &, I, and A
does depend upon the functions ®3; and ®3», whichrepre-
sent the spectrum of the cross-correlation of the beam
temperature fluctuations and the current fluctuations,
and that of the temperature fluctuations and velocity
fluctuations, respectively.

(34)

III. DISCUSSION OF THE SOLUTION OF THE
SYSTEMS OF DIFFERENTIAL
EQUATIONS DERIVED

The systems of ordinary linear differential equations
(23) and (30) can be solved if the coefficients @, (x) are
known, and the fluctuation in the quantities such as the
current, the velocity, and the beam temperature, and
their correlation along the electron beam can be deter-
mined when the input-plane boundary conditions are
specified. Since vo(x), po(®), and To(x) are obtainable
from Fo(x,u), the coefficients &;,{x) can be determined
once the dc density function Fo(x,u) is known.
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For an electron beam in a drift region, where
dve/dx=0, the coefficients @;» become independent of
the position variable x, and é also becomes zero. Conse-
quently, the solution to the systems [Eqgs. (25) and
(30)] is obtained by a standard Laplace-transform
technique, which is rather straightforward and simple.
On the other hand, for a beam in an accelerating region,
once the coefficients &;.(x) as functions of the position
x are known, a numerical method, such as the Runge-
Kutta method,? can be employed for solving the systems
Egs. (25) and (30).

Case I. Drifting Beam

For a drifting beam, the system of Eq. (25) has a
traveling-wave solution, which can be easily shown as
follows: After taking the Laplace transformation of the
system (25) with respect to the spatial variable x, the
following set of algebraic equations is obtained:

= D=0 1=1,2,3, ()

where .
yi(p)= / Xi(x)edw (36a)

and ’
Dim(p)= Gump—aim) , (36b)

in which & is the Kroneker delta, equal to one for
I=m, and to zero for I7#m. The term X;(0) appearing in
Eg. (35) denotes the values of X,(x) at x=0, the input
plane to the drift region.

From Cramer’s rule the solution of the set of Eq. (35)
can be expressed as follows:

3 ]Vlm(P)
(P)=3
S =T

Xl(O) m=11 2) 37 (37)

where D(p) is the determinant of the set of the trans-
formed Eq. (35) with an order of 3, and N;.(p) is the
cofactor of the element Di, in the determinant D(p),
which is formed from D(p) by striking out the row and
column containing the element Dy, and prefixing the
sign factor (—1)#m,

After taking the inverse transformation of the system
(37), it is found that

3 3Nlm k
Xn(x)=23 X:(0)2 (P)em 0<x

=1 D'(
LD (p) m=1,2,3 (38)

D (Pk) = dD/dP l P=2k (38b)

provided that the rational fraction [N (p)/D(p)] has
only a first-order pole, where p; is the root of the charac-
teristic equation D(p)=0.

where

9 J. B. Scarborough, Numerical Mathematical Analysis (The
John Hopkins Press, Baltimore, Maryland, 1962), 5th ed., p. 301.
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In view of the fact that in a drift region, dv,/dx=0,
and from Egs. (17), (18), and (26d), é must be zero, so
that the coefficients @;. become purely imaginary
quantities, and it can be easily shown that the charac-
teristic equation has the following form:

D(p)=p+ap*+bp+c=0, (39)
in which
a=jB.A, b=(jB.)B, and c=(jB)°C, (40a)
with
A=142/A,
B=A"1(3—w,/w?), (40b)
C=A"1(1—wy/e?).
Now by letting
X P= ]'.397; (4-'1)
Eq. (39) becomes
Y+ dvi+By+C=0, “2)

which can be arranged in the following form, when 4,
B, and C are given by Eq. (40b),

(r+ DAY +2v+ (1—w,?/e?) ]=0. (43)

Note that Eq. (43) has three distinct roots and conse-
quently Eq. (39) has the following roots:

1= _jBe
pe=—3B./ 01— {1-A(l—w/”)}}] (44a)
ps=—3 B/ A1+ {1-A(l—wg/w?)}].

Furthermore note that as 7 — 0, A— 1 and

p2— — jB.(1—wp/w)= —~j(Be—B5),
ps— _jﬁe(1+wp/w)= _j(ﬂe'l‘ﬁp):

which are the familiar expressions for the single-velocity
theory, where 8,=w,/v is the plasma wavenumber. In
view of the fact that the time harmonic variation has
been assumed in the present discussion with the aid of
Eq. (44a), Eq. (38a) represents the superposition of
three propagating waves, all in the positive x direction,
but with different phase velocities. There is one kine-
matic wave with phase velocity equal to the dc beam
velocity, and the other two corresponding to the fast-
and the slow-space-charge waves. Thus it can be con-
cluded that a drifting beam, with an arbitrary amount
of velocity spread, can support one kinematic and two
space-charge waves.

(44b)

Case II. Space-Charge-Limited Diode

It is obvious, from Egs. 5 and 14, that the density
function F(x,u,) is of the form

F(xup)=Fo(x,u)+ F1(xm) - e/,

It is well known that the dc density function Fo(x,u)
which satisfies the dc part of Eq. (1) and at the same
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time meets the proper boundary condition at the cathode
has the following form:

Fo(xm)=20J S (u—w)e—awi=w?) (452)
where

a=m/2kT,
and

Jo=Jo(xm)=J, exp[ —epo(xn)/kT.], (45b)

in which J, is the saturation or total value of emission
current density, and T, is the cathode temperature (in
degrees Kelvin) and ¢o(xm) is the dc potential at the
potential minimum, x= %.

The function S (#—w) is the usual unit step function:

S(u—w)=0 for
=1 for

(u—w) <0

(u—w)2>0. (45¢)
The function w(x) is defined and related to the dc
electric potential function go(x) as follows:

w(x) = Fwo(x)

wo(x) = [— 2n{ ¢o(x) — po(xm)} ]

In Eq. (45d) the upper sign is to be used for the a
region, which is between the cathode and potential
minimum, and the lower sign is for the 8 region, which
is between the potential minimum and the anode.

Having assumed the form of the dc density function,
the quantities po, v, (8To/m), and Qo can be obtained
and expressed as follows:

(45d)
with
(45¢)

po(x)= / ) Fodu= (ma)tJpee’[1—erf(atw)],  (46a)

1 |’ eav? ]
(ra) i 1—erf(atw) S

vo(x)=i/w uFod’M= (46b)

o

kT 1
’ (x) = / (M—“ vo)zFod'M
m PO Y —o
= (kTc/m)—v+vow, (46c)
and
1 ]
Qo(w)=— (u—vo)*F odut

TN Y -0
= (Jo/—211)[(1/0:)—{—702—1!02—3kT0/m],

where w(x) is given by Eq. (45d) and the error function
erf(¥) is defined as

2 Y
f(¥V)=—- / ~dy,
e ) e

(46d)

(46e)

m

It is to be noted that in the above equations, po, %o,
(ETo/m), and Q, are expressed essentially in terms of the
dc potential function ¢o(x) through Eqgs. (45d) and
(45e) and these quantities are continuous at the poten-
tial minimum %= #%m, where w=0. On the other hand,
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eo(x) must satisfy Poisson’s equation:
B o/ dxt=— (ra)(J o/ es)e*’[1—erf (atw)]

which has been solved numerically by Langmuir.1?

In view of the fact that the electrostatic field intensity
E(x) is derivable from the dc potential function ¢o(x)
by ‘

(47)

Ey (x) = —d(po/dx (48)

which is consistent with the requirement that go(x)
must satisfy Poisson’s equation, and upon substitution
of Eq. (48) into Eq. (17), it is found that

d(p() d‘U(] —14d kTo
n~+vo-=-~(po—), (49)
dx dx po dx m
which is equivalent to the following equation:
dvy/dw=20(vo—w)v0, (50)

in which , is considered to be a function of w, since
po, (RTo/m), and ¢ are expressible in terms of w.
Similarly upon substitution of Eq. (46d) into Eq. (18),
Eq. (50) is again obtained. ,

It is important to observe that the function vo(w)
given by Eq. (46b) does satisfy the differential equation
(50). Thus it indicates two interesting facts:

1. The form assumed for the dc density function
Fo(x,u) given by Eq. (45a) is consistent with the
assumption that the dc potential function must satisfy
Poisson’s equation.

2. The quantities po, vo, (To/m), and Qo do satisfy
the differential equations (16), (17), and (18).

These facts, in turn, ensure that once the potential
function ¢o, which satisfies Poisson’s equation, is
specified, the quantities po, vo, (kTo/m), and Qo are
properly determined and are given by Egs. (46a—d),
respectively, in such a way that the laws of conservation
of charge, momentum, and energy are satisfied.

Therefore, once the dc potential distribution in the
region under consideration is specified, the functions
h(x) and 8(x) are determined from Eq. (26d), and so
are the coefficients @;.(x) in the systems (25) and (30).
Having determined the coefficients @ (x), the systems
(25) and (30) can be solved by the Runge-Kutta
method with the properly imposed input-boundary
conditions.

IV. CONCLUDING REMARKS

The heat conduction along the electron beam has
been properly taken into account in the present paper
by introducing the heat conduction parameter &(x),
which is defined in Eq. (26d). The parameter &(x) is
related to the velocity spreading parameter k(x) and
the dc mean velocity zo(x) by the following relation,

10 I, Langmuir, Phys. Rev. 21, 419 (1923).
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from Eq. (A7):
§(x)=—[d/dx Ink(x)-+4d/dx Inve(x)], (51)

which is due to the law of conservation of energy, and
8(x) does depend upon the spatial rate of variation of
h(x) and v(x). On the other hand, the thermal current
density Qo(x), which has a dimension of joules per sec
per unit area, may be put in the following form:

Qo(®)=—Ao(a)[dTo(x)/dx], (52)

where Ao is the thermal conductivity of the electron
beam, which in general depends upon the collision force,
poand T, and is governed by Egs. (18), (26d}, and (52).
It is to be observed that for an adiabatic flow Ay can be
set equal to zero so that & will be zero also. However,
for an isothermal flow, Ay becomes very large and 3
need not be zero. It is interesting to note that for an
adiabatic flow, since 8(x) can be set equal to zero,
Eq. (51) implies that the quantity (hve®) or (BTo/m)ve?
is invariant along the beam, which suggests that the
quantity (To/pd?) is also invariant.” On the other hand,
in a drift region, since Qo(x) is independent of x, §(x)
will be zero from Eq. (26d). Thus it suggests that the
thermal effect (heat conduction effect) in a drifting
beam can be neglected.

It should be pointed out that no specific assumption
has been made with regard to the input-plane boundary
conditions in deriving the systems of equations (25)
and (30). However, for a special case in which §=0, for
instance, in an adiabatic flow, and when it is further
assumed that the following relation holds at the input
plane, for example, at the cathode surface,

Ty/To=2p1/po (53)

the system of equations is reduced to that obtained by
Berghammer and Bloom,” which is demonstrated in
Appendix B.

While the density-function method involves solving a
rather complicated partial differential equation, which
must also deal with the Dirac delta function, the present
method of analysis of signal and noise propagation along
the electron beam involves solving a system of linear
ordinary first-order differential equations, whose solu-
tion is obtainable by relatively simple and straight-
forward methods.

at x=0,
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APPENDIX A. DERIVATION OF THE SYSTEM
OF EQUATION (25)

First note the following identity:

dC dD d/C C aD
£ O
dx dx dx\D D dx

(A1)

H. C. HSIEH

From Egs. (15) and (19)
J1/Jo=11/v0+p1/ po. (A2)

Subtraction of Eq. (16) from Eq. (20) with the aid of
Egs. (A1) and (A2) gives

Jl N d J1
()22 ()=,
}Q k4] dx ]()

Be= w/vﬂ-

 (A3)

where

Subtraction of Eq. (17) from Eq. (21), with the aid of
Eqs. (A1) and (23) gives, after using Eqs. (16), (17),
and (A2):

. J1 d o Jy ayTy Ji own
DL
]0 dx Ty J() dx Tg Jo Vo
2 dvo k45 1 4 kTu T1
SO )
Yo dx Jovgdx m To

where

(A4)

(.-Jp2= 'I1p0/€0, b= kTo/mv()2.

Similarly, first subtracting Eq. (18) from Eq. (22), and
with the aid of Eq. (A1), then dividing it through by
the factor Jo(kTo/m) yields, after using Eqs. (18) and
(A2),

d(]1+ 27!1 T1)+ 'ﬂ (Tl J1 '[)1)
dx ]Q Vo Tg IPe TQ jo Vg
m \dQoyT1 J m \d
e S
]okTo dx Tg ]0 ]okTo dx

Defining the heat conduction parameter 3(x) as
—2 < m )on
Jo \RTo/ dz’

Eq. (18) can be written as follows, after it is divided

0. (A3)

(A6)

- through by a factor Jo(kTo/m):

d [ ET, d
e In( po‘“—') = —§(x)— 3— Inv,. (A7)
dx m dx
After making the following definitions
Xi(@)=T1(x)/To(x), Xa(®)=101(2)/00(2),
and  Xs(x)=T1(x)/To(x), (A8)

Eqgs. (A3), (A4), and (A5) can be arranged into the
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following system of equations with the assumption (24) :

Xm 3
— Z Alme,
dx m=t
1 dX, dX3 3
(1+h\ +(1'—k} +:’2 = Z A2me,
dx dx dx m=1
dX: dX, dX; 3
— —t—= Z ASme, (A9)
dx dx dx m=1
where
Wy 2
A11=—jﬁe, A21=_‘j6 (1__2—) A31"6 ]Be;
w
d a
Are=jBe, App=—2—Invy, Ag2= 7B, -
dx
d .
A13= 0, A23=5h+3h?d— lnvg, A33=5—]ﬂe. (AlO)
X

Upon solving algebraically for (dX:/dx), (dXs/dx),
and (dXs/dx), in terms of X1, X5, and X3, from the
system (A9), with the aid of Cramer’s rule, one obtains

dX1 3
—= Z almey
dx m=1

dXz 3
—=2 a2nXm,
dx m=1

(Al1)

aX; 3
—_—= Z aame,
dx m=1

where

d1m=A1m;
dom= A_IEA 2m ™ hA 3m_A lm],
a3m=A" (1= 1) Asm—243m+ (14+38) A 1],

A=1—3k for m=1,2,3, (A12)

and upon substituting Eq. (AlO) into Eq. (A12), Eq.
(26¢) is obtained.

APPENDIX B. DISCUSSION OF THE SYSTEM
OF EQ. (34) FOR A SPECIAL CASE

For the case =0, Eq. (A9) becomes

2dX2/dx+dX3/dx=—]69X3 (Bl)

2421

and from Eqs. (A2) and (A3), one has

dX, . P1 d P1

el 20)

dx Po dx\ pq
After combining Eqgs. (B1) and (B2), the following is
obtained:

d /T, P1 T, P1
(—— —)+]ﬁ (——2—)=o, (B3)
dx To Po To Po

which has a solution of the form

T1 291 . ?
—— =Kexp —]/ Be(y)dy),
To Po 0

where K is a constant of integration, which is to be
determined by the input-plane boundary conditions.

Suppose that K=0, as has been used by Berghammer
and Bloom?; then

Ty/To=2p1/po

(B2)

(B4)

(BS)
or equivalently

Now from Egs. (27) and (28), the following relations
are evolved :
g=2[T1;— ey,

B7
Ap=—2Ayn (BT)

and
Ilgo=2[TI5— ],
A= —2A0.

Upon substituting the relations (B7) and (B8) into the
system of equations (34), with the aid of Eq. (31a)
and using the fact that by, =0 for §=0,

d¥/dx=—2BA,
d®/dx= — LM B+ 2RI+ 2X oA,

(B8)

dll/dx=Ro¥ — M JI4+NoA, (B9)
dA/dx=X ¥ — B— Noll— Mo,
where
Bo= (Ji/v)C1s,
Moo= — (2/v0) (dvo/dx)— baa+2bs3,
Ro= (2v¢?/nJ 9)b2s, (B10)

Xo= (ve¥/0J0) (C21+2Cs3),

No= (Cuu—C2+2Cy3).
When the coefficients b and Cin given by Eq. (26¢)
are substituted into Eq. (B10), our Egs. (B9) and (B10)

become Egs. (22) and (19) of Berghammer and Bloom,?
respectively.



