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The interaction of cylindrical sound waves with a stationary shock is investigated by a method
anslogous to that used by H. Weyl in his treatment of the propagation of radio waves over the
surface of a plane earth. The incident cylindrical sound wave is represented as a superposition of
plane sound waves of varying direction. Each of the plane waves in this superposition interacts
with the shock giving rise to a previously determined distortion of the shock front and reflected or
refracted wave field; the cylindrical wave causes a disturbance which may be written in integral
form as a superposition of these plane waves. The resulting interaction integrals are evaluated
asymptotically to give explicit formulas for the distortion of the shock, the sound field, and the

entropy-vorticity wave.

1. INTRODUCTION

HIS paper treats the problem of the interaction
of sound waves generated by a line source with
a stationary shock wave in an ideal, inviscid gas.

The methods developed here may be applied to
problems involving point sources and moving
shocks, but for the present we restrict ourselves to
the two-dimensional problem with a stationary
shock,

The interaction of plane disturbances with a
shock wave has been treated by various authors.'”*
Many parts of the problem which we shall deseribe
presently may be deduced qualitatively from the
work of these authors, yet several important
features, especially in the case of supersonic sources,
require detailed treatment.

We shall treat the interaction problem by an
adaptation of Weyl’s® treatment of the interaction
of electromagnetic waves from a dipole antenna
with a plane, conducting earth. The incident sound
wave is first expressed as an angular superposition
of plane waves of constant frequency. Each of the
plane waves in this superposition interacts with the
shock, giving rise to a reflected or a refracted wave
field as well as to a deformation of the shock. The
entire cylindrical wave will therefore produce
reflected or refracted wave fields and a deformation,
all of which are superpositions of the corresponding
plane disturbances.

To write down formulas for the various disturb-
ances, we must know the relations between the
angle of incidence and the angle of reflection or

3 H., 8. Ribner, NACA TN 2864 (1953).

2 F, K. Moore, NACA TN 2879 (1953).

3 (3. F. Carrier, Quart. Appl. Math. 6, 367 (1949).

1 (. T. Chang, thesis, Johns Hopkins University (1953).

5 J. M. Burgers, Koninkl. Ned. Akad. Wetenschap. Proc.
49, 274-81 (1946).

« H. Weyl, Ann. Physik 60, 481 (1919).

refraction for incident plane waves as well as the
amplitudes of the resulting disturbances. That is to
say, we must know the analogs of Snell’s laws of
reflection or refraction and the analogs of the
Fresnel formulas for the plane-wave problem.
Since these relations are not explicitly stated in the
papers on plane-wave interactions referred to
above, we must discuss them. But before we describe
the plane and cylindrical wave interaction problem,
let us briefly deseribe the differential equations and
boundary conditions to be satisfied by any dis-
turbance.

2. DIFFERENTIAL EQUATIONS AND BOUNDARY
CONDITIONS

Let us assume that the undisturbed state of the
gas consists of a uniform flow normal to a plane
shock wave which is at rest at 2 = 0. The flow
enters the shock supersonically from 2 < 0, and
leaves subsonically. The pressure, density, entropy,
and velocity on the right (P, Dy, 8,, U,) are given
in terms of the flow variables on the left (Po, Dy,

So, Us) by means of the relations,

Py = (Po/w)[(u + DM, — 1],

D, = DMy’ /IMy* + (» — D],

U = (Uo/wIMs* + (w — D], ey

Sy = 8o + ¢, In 1/ + DMy — 1]
+ ¢, In (1/uMA M + (u — D],
where
p = (1/R)(e, +¢) and Mo = Uo/Co
with
Cy* = ¢,Po/c, Dy.

Let us introduce a small disturbance into the
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uniform flow on either side of the shock so that the
flow variables become

pressure—p = P -+ DCUn,
density—p = D(1 + 9),

Ul + 8, @)
Un,

entropy—s = S + ¢,0,

z-velocity—u =

y-velocity—v =

where the increments m, §, £ 79, and ¢ have been
made dimensionless. The Euler equations become

1 E _

Il
=

1( + U )s+—

I
e
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w
=

1 /(8 3 or
5(&+Ua)"+5g

1{a 3
E(at"' U%)"_O’
= Mr — 0.

The subseripts 0 or 1 must be attached to all con-
stants and dependent variables occurring in Eqs. (2)
and (3) to denote the side of the shock being referred
to.

Disturbances on the subsonic side of the shock
will be related to disturbances on the supersonic
side by means of the shock conditions for a moving
curved shock. If we describe the distorted shock by
means of x = f(y, {), its normal, tangent, and
velocity vectors are given byn = (1, —f,), t = (f,, 1),
and U, = (f,y + f., ¥). The relative normal and
tangential velocities of the flow are Ug, = (U — U,):
n=Ul+¢%€ — fand Ug, = (U — Ut =
U(f, + n) — g. Using these relative veloeities in the
shock conditions, we find the linear relations between
the disturbances on either side of the shock and the
distortion of the shock. These relations may be
written:

(7"0\
m £
Bl = 4, @
T
a9
(4]
LfJ

where A is the 5 X 4 matrix with row vectors,

’1100 [(u - DM* — 1,20 — )Mo, 0

A1 =
19
—(u — DM, — 2(u — 1) 6;5?:"
_ 1 ﬂ[ P _
A, = #Moz U1 2M0; Mo (M 1); O; (ﬂ 1);
Lo 1_8_]
MO (”’ 1)(M0 + 1) CO ot ’
A = L 0,0,1,0 (5)
3 A7‘4’0 (]1 b H H
SN}
(& = DM — 1) ay]
1 CS 2 2
A = “2MOEE(:§ [_2M0(M0 - 15

20 — D(M,* — 1), 0,
M2M02 + 2(M02 + (ll - 1))(M02 - 1);

2 2 1 0
~I. w— DM — 1)+ at]

Disturbances in the flow propagate according to
Egs. (3) and satisfy the boundary conditions (4) at

= 0. We shall consider in the following section
plane-wave solutions of Eqs. (3) which satisfy
boundary conditions (4) at z = 0.

3. PLANE-WAVE INTERACTIONS

A plane-wave solution of the differential Eqs. (3)
is described by:

(7!‘, £ U)

where « and 8 are the direction cosines of the wave
normal. In the remainder of this section, the factor
¢ *“‘ will be omitted for the sake of brevity. Sub-
stituting this ansatz into Eqgs. (3), we find the
following possibilities for «:

k¢ = +k/(1 + Ma),

— (1!'0, fo’ 770; o,o)eix(az+ﬁy)—iut (6)

x = k/Ma,
where
k= w/C. )
Corresponding to the first choice of k, we have
™°, €%, 1°, 0% = (1, +a, 8,04, (8

where 4 is a constant. This wave is a longitudinal,
isentropic sound wave, convected downstream with
the flow. The wave corresponding to the second
choice of « satisfies:

(7"0: £,1°, g°) = (07 -8, «a, O)B + (07 0,0, 1)0 (9)
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where B and C are constants. This is an isobaric,
transverse wave called (after Carrier) the entropy-
vorticity wave.

Let us now turn to the plane-wave interaction
problem. A plane sound wave falling onto the shock
will give rise to a reflected and a refracted sound
wave as well as to a deformation of the shock. We
wish to show that when the sound is incident from
the subsonic side of the shock (z > 0), there can
be no refracted wave, while when the sound is
incident from the supersonic side (x < 0), there
can be no reflected wave. We have either reflection
or refraction but not both.

To prove these assertions, it will be necessary to
use the notion of the Poynting vector T of a dis-
turbance. X arises from system (3) and occurs in a
conservation theorem analogous to the electro-
magnetic Poynting theorem except that all time
derivatives must be replaced by convective time
derivatives. In particular £ = Clxt + (M/2)(x* +
£+ 1), ).

A. Subsonic Incidence of Plane Waves

To demonstrate that there are no refracted waves
in the case of subsonic incidence, let us consider
the Poynting vector E for sound. It may be shown
that the time average of this vector for plane waves
is related to the time average of the energy density
by means of £,, = E,,(Cn + Un’), wheren = (a, 8)
is the wave normal and n’ = (1, 0) is a unit vector in
the direction of the flow. It should be noted that if
the flow is supersonic, X,, always has a positive
x component, whereas if the flow is subsonic, X4,
has a positive z component if, and only if, &« > —~M.
The angle 6, = cos™' (—M) takes the place of the
7/2 grazing angle of electromagnetic theory.

With these facts in mind, we see that a sound wave
incident from the subsonic side has its wave normal
in the range = > 6 > 6,, while a reflected sound
wave has its wave normal in the range 8, > 6 = 0.
Refracted sound waves are clearly impossible, since
they would be waves in the supersonic flow, and
therefore would transport energy to the right or
toward the shock, not away from it. Refracted
entropy-vorticity waves are also impossible; since
such waves are always convected with the flow,
they could not be created at the shock and trans-
ported into the supersonic flow. Thus if we have a
sound wave incident from the subsonic side of the
shock, it will distort the shock and generate a
reflected sound wave and a reflected entropy-
vorticity wave.

JOHNSON AND OTTO LAPORTE

Since in the case of incidence from the subsonic
side of the shock there is no disturbance on the

supersonic side, we have my = & = 7, = ¢4 = 0,
and on the subsonic side:
m 1 1 0 0
Bl @ an —B 0
m Bo Bi a O
oy o 0 0 1

e exp [thi(aor + Boy)/(1 + M)l
|4 exp likaw + /(L + M| g

B exp [tk\(asx + B.y)/ M)
C exp [thi{az + B2y)/Mi0s)

where n, = (&, Bo) is the incident sound wave
normal, n, = (o, 8,) is the reflected sound wave
normal, n, = {a,, B;) is the reflected entropy-
vorticity wave normal, and ¢ = incident sound
wave amplitude, 4 = reflected sound wave ampli-
tude, B = reflected vorticity wave amplitude,
¢ = reflected entropy wave amplitude.

Let us assume that the distortion has the form
x = f(y, t) = ae**“", The linearized shock con-
ditions {4) give four equations for the unknown
amplitudes a, 4, B, and C in terms of the incident
amplitude e. In order that these equations have
solutions which are independent of y, we must
equate the coefficients of y in the exponentials. This
gives the analogs of Sunell’s law of reflection,

K = k132/M1a2 = klﬁl/(l + anx)

== }5150/[(1 + ann)- (11)
From (11) we find
a = —[(1 + M) + 2M,)/T,
B, = (1 — MPB/L*,  (12)
oy = (1 -+ Mla())/L; Bs = Mlﬁo/L: (13)

where L = (1 + M,® + 2M,a,)* Substituting
ansatz (10) into the linearized shock conditions (4),
and using {(12) and (13), one obtains

aA = i, N, — fo-Ny)e,
AA = [0y — KG358; — w15 Ny)Je,
BA = [kasslas — @) + was(Bo — B
+ wais(Biao — iBo)le,

CA = way(n;-n, — Ny Nyle,

(14
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Fic. 1. The reflection of a plane sound wave incident from the
subsonic side of a shock wave for My = 2, p = 6.

where A = wa,;(n,'n,) + kass8; — wdzsaz. The ay;
are the numerical components of the matrix 4 of
Eq. (5), and the e, 81, a,, (. are to be considered as
functions of ay, 8, given by Egs. (12) and (13).
Since « is proportional to «, the amplitudes A, B,
and C are independent of frequency, and a is
inversely proportional to frequency. Equations (14)
are the analogs of the Fresnel formulas for reflection.
An illustration of the reflected waves is shown in
Fig. 1, and a graph for the determination of the
angles of reflection is given in Fig. 2.

B. Supersonic Incidence of Plane Waves

If a sound wave is incident on the shock from the
supersonic side, a refracted sound wave and a

refracted entropy-vorticity wave occur but no
reflected wave. The truth of this statement may be
established by consideration of the Poynting vector.
In this case waves with normals in the range
0 < 8, < 7 must be considered as incident waves
since all these transport energy toward the shock.
On the other hand, the refracted sound normals
are restricted to the range 0 < 4, < 6, since only
waves in this range carry energy away from the
shock.

The incident sound wave on the supersonic side
of the shock has the form:

(‘ﬂ'o; &0, Mo, 00) = (1; a9, Bo, 0)5
-exp [tholaor + Bow)/(1 + Moao)l, (15)

where ¢ is the incident wave amplitude and n, =
(ats, Bo) 1s the incident wave normal. On the subsonic
side we have the refracted wave field:

™y 1 0 O

G| _jou =B 0
M B a 0
o) 0 0 1
(4 exp [iki(e + Bi)/(1 + Mia)]
- | B exp [iki(onz + B2y)/ M) (16)
C exp [thi(anz + B2y)/Mas]
where n;, = (a;, 8,) is the refracted sound wave

P2 Retiected
M9 Entropy -Vorticity
20
Bo
1+M, 2,
10 - |
1
| ] ‘ I
Fi1g. 2. The angles of 8 | | j
the reflected sound and 6 ” | iwvia | T | I
entropy-vorticity —waves =r A 0 RS i | \r 8,
are determined from the | ' 8, 6 EB, G |
graph for Mo = 2, u = 6. l | :
| m%‘ Reflected Llncidenl _f
| N Sound "1 Sound l
! -1ol-
Bo
I+Ma
P
M dg
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Ug>Co u<C,
—
4 Refratted
Sound Wave
Refrocted Entropy=-
Vorticity Wave
2
&
incident Sound
Wave
3

Fia. 3. The refraction of a plane sound wave incident from
the supersonic side of a shock wave for My = 2, p = 6.

normal, n, = (a, fB.) is the refracted entropy-
vorticity wave normal, and A = refracted sound
wave amplitude, B = refracted vorticity wave
amplitude, and C = refracted entropy wave ampli-
tude.

The waves (15) and (16) are related across the
shock by the linearized shock conditions (4). We
again assume that * = f(y, §) = a ¢ *“' and
demand that the shock conditions give solutions for
a, A, B, and C which are independent of y. We
therefore must equate the: coefficients of y in the
exponentials of (15) and (16),

K = leZ/Mlaz = lel/(l + M1011)

= koﬁo/(l + Moao)- (17)

Equations (17) are the analogs of Snell’s law of
refraction. Setting A = ko/k,, we find

[—M\%8," & (1 + Mua)N1/L?,

I

» (18)
B = Mol(1 + Myao) = M,N]/L?
and
a = £(1 + Moo)/L, B = MNo/L  (19)
with
L = M8 + (1 + Moao)')
and

N = [(1 + Moao)z b (1 - M12))\2BD2]§'

In Egs. (18) we must choose the positive sign for
(1 + Mya,) > 0 and the negative sign for (1 +
Moa,) < 0 to obtain refracted waves which carry
energy downstream when «, and B8, are real and
which are damped when o, and B, are complex.
This latter behavior occurs when Ago(1 — M,%)* >
(1 + Mea) > —M3o(1 — M,®)* This angular

JOHNSON AND OTTO LAPORTE

region is bounded by the two critical angles cor-
responding to ABo(l — M)} = £(1 + Ma,). In
this critical region the Poynting vector is directed
along the shock and the refracted sound field is
damped in the direction n’ = (1, 0) normal to the
shock. In Eqgs. (19) we choose the signs in precisely
the same way [+ or — according as (1 + M,a,) 2 0]
to achieve refracted entropy-vorticity waves which
are always directed downstream.

By a process exactly analogous to the steps which
advanced us from (10) to (14), we now obtain the
other set of Fresnel formulas:

ad = [(@s + aolzs)ay + BolssBs
— (@11 ¥ a@i)n; Dyle
AA = {a150[(a21 T+ onlaz)ar + BottzaBs]
+ (@11 + @0815)(AakBy — Gaswars) e
BA = {a;swla:Bots; — Bi(a + aolz)]

- [azswﬁoasa -+ asaK(an -+ aoalz)] (20)

+ (au + a0a12)(a25w61 + assKa1>}€
CA = [a45w(ﬁzassﬁo + a2(a21 + a(;azz)

-~ (a1 + opz)n, ny)
+ (@4, + ao@u)(a;50n; -0,
— Qgway + aas"Bz)]E

where A = wa,s(D,N,) + k0358, — wysas. The a;;
are given constants from Eqs. (5) and the oy, B84,
@, B are functions of a,, 8, by Eqgs. (18) and (19).
It should be noted that A, B, and C are independent
of frequency and a is inversely proportional to
frequency. An illustration of the refracted waves is
shown in Fig. 3, and a graph for the determination
of the angles of refraction is given in Fig. 4.

For a discussion of numerous cases—often strange
—of reflected and refracted plane waves, the reader
is referred to the monograph of F. K. Moore.? It is
interesting that in obtaining the analogs of Snell’s
laws and Fresnel’s formulas, the use of X was
indispensable.

4, CYLINDRICAL SOUND WAVES IN A MOVING
GAS

Now we wish to use the results obtained con-
cerning plane waves to determine the behavior of
cylindrical waves. For this purpose it is necessary
to decompose the incident eylindrical sound wave
into a “Weyl”’ type of superposition of plane waves.
A velocity potential ®(x, y, t), from which the flow
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variables are derived through ¢ = (8®/dx), n =
(0®/9y), # = —1/C[(8/9t) 4+ U(9/0x)]®, satisfies
by virtue of (3) a convective wave equation,
’d a <I> 1 2
2+ o Cz< + U= )‘1>=0-
The corresponding inhomogeneous equation for the

waves generated by an oscillating line source of
strength 4we located at the origin is

a P 1 ?
= 4mre 8(x) s(y)e ", (21)

The substitution ®(z, y, ) = ¢(z, y) exp [{(Mkx/
(M? — 1) — wt)] reduces (21) to a time-independent
equation,

(=) 25+ 25 + W/ -
= 4me 8(zx) 6(y). (22)
Setting
o =/l = MDY,y =y,
K= k/(IL = M, (23)
¢ =¢/(|11 — M,
Eq. (22) becomes, for M # 1,
(28 4 1) + 2% = axe 5@y o) @0
ox’® oy

where a + or — sign is chosen for M < lorM > 1,
respectively. A solution to (24) in the form of a
Fourier integral is

o', y) = x(/m)

+o ei(kz:’+k,,y')

f_ dk,, ~ dk, ‘]572 Fk 2 k2' (25)

The path of integration will be discussed presently.
Let us consider the k, integral first. In particular,
set

+o0 ikzz’
W) =+ [ pr—adh, K= 0" F Y. (20)

This integral is to be evaluated in the k, plane
along the real axis. The method of surrounding the
poles at =K must be specified in both cases (M < 1
and M > 1). For M < 1 we choose the path P,

ky - Plane
-K PLM<t g
- 7
g bl PZ,M>I\-/

Fic. 5. The path of integration for ¥(z’) in the complex k,
plane is P; for M < 1 and Py for M > 1.
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shown in Fig. 5 so that the Sommerfeld radiation
condition is satisfied at M = 0. For M > 1 we
choose the path P, to obtain a solution of the
equation which vanishes upstream of the source,
e, for x < 0.

Having specified the paths of integration, the
integral (26) may be evaluated

JOHNSON AND OTTO

LAPORTE
l,b(]},) — (W/ik)eik\:’l
for M > 1 (27)
Yla') = {“”/k)(e”‘*’ —e™), >0
0, 2’ < 0.

Using (27) the integral (25) may be rewritten:

for M <1 for M <1
poon - €[ exp [k = kN x| 4+ k)]
o(x’,y') = 7 j:m *° — kﬂz)g dk,
forM > 1 (28)
_& [ (exp (R 4 k) 4+ kg exp [—i((? + k) — k,y'1> o
o', y) = 1 f-m ( *” + k) *&” + k5 dk,; 2" >0
07 :IJ’ < 0

For M < 1 we transform (28) to the complex 6 plane
by means of k, = k' sin 6 to find

ik’ (cosflz’|+sinfy’) de
)

ol@’, y") = % f e (29)
P

where P is the path of integration shown in Fig.

6(a). For M > 1 we must use k, = <k’ sin ¢ and

(k* + k> = £k cos 0 for the first and second

parts of the integrand, with the result:

—E,f eik'(cosﬂ:'+iain01/') d0, x/ > O
(9(1:’7 y’) = Parfs
0, 2 <0

(30)

where P, and P, are the paths illustrated in Fig. 6(b).

The integral (29) is Sommerfeld’s representation
of H,", and therefore for M < 1 the line source
solution may be written:

M<1

(k[oc2 +1(1_—M12W2)y2]*>

e, v, 8) = 37 _‘“Mz) H,™

. Mk .
- exp (—’L '1—_'%[5 — lwt). 31

On the other hand, for M > 1 we must consider
two cases. For |y'| > 2/, we may close the paths
of integration since in the region 0 < Re 6 < = the
integrand — 0 as Im § — =+ o . Thus for |y’| > z’ the
integral in (30) = 0. However, for |y’| < a' the
paths may not be closed as the integrand is un-
bounded in the strip 0 < Re § < . We may
nevertheless evaluate the integral (30). We find
in this case that the integral is the Sommerfeld

representation for the Bessel function. Therefore:

M>1
2mre
M=)t J"(

k[z* — (M? — 1)1/2]*)
M -1

-ex (zﬂk—’f— — t)
q)(x: Y, t) = 4 P M -1 ) (32)

lyl < (Tpi_—ﬁs

0, otherwise.

Note that the disturbance (32) is confined to the
interior of the Mach wedge and has stationary
zeros, a property usually associated with standing
waves. It is also interesting to observe the 90°
phase shift of the sound circles across their point
of tangency with the Mach wedge. This is analogous
to the 90° phase shift of light waves passing through
a focal line predicted by Debye.” The waves de-

& 8-Plane

N — —— — —

(o) SUBSONIC FLOW (b} SUPERSONIC FLOW

F1c. 6. The path of integration for ®(z, y, t) in the complex
¢ planeis Pyfor M < 1 and P, + P.for M > 1.

7 A. Sommerfeld, Lectures on Theoretical Physics, Vol. 4,
Optics, translated by O. Laporte and P. Moldauer (Academie
Press, Inc., New York, 1954), p. 319.
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scribed by Eqs. (31) and (32) are illustrated in
Fig. 7.

for M < 1,

The corresponding formulas for the case of a

point source may be found by a simple extension

of the above arguments. They are

exp (i ke’ + A = i‘[?(y];j_ OF = Mz _ iwt)

‘I’(ZIJ, Y, %, t) = TE

for M > 1,

@+ (1 — M) + O]

33)

x .
1~ 'Lwt)

J2e
q>(x) Y, %, t) =

0, otherwise,

The decomposition into Weyl type of integrals is
accomplished most easily directly from Egs. (29)
and (30). The integral (29) may be transformed to
the 6, plane by means of the aberration formulas

cos B = cos 0 + M
y = —— PR
1+ M cos 8 (34)

. (1 — M»sing

sm o = 14+ M cos 8
to give (for x < 0, the region of interest to us):
®(x, y, ¥

exp [ik (x4 Bu) _ iwt]

- i Po 1 + Mao o

where P, is the image of P under the transformation
8 — 8, and a, = cos 8,, B, = sin 6,.

The integral (30) is transformed to the 6, plane
by means of

cos g, — — 208 6+ M
%= I ¥ Mcoso’ 36)
. iM = Disin g
S0 = =TT 3 cos 6
to give [for x > (M* — D} [yI]:
(@, y, t)
exp [ik (o2 + Bo) _ iwt}
1 Po1+Poa 1+ MOlo o

where P, and P,, are the images of P, and P,,
and where o, = ¢0s 8, 8o = sin 8,. From expressions

[2" — (M* — D@ + 2P
x> M = DI+

(35) and (37), one may calculate the pressure =
and the velocities £ and 5 of the disturbance. When
doing this it is seen that in the subsonic case we
may identify (35) with a weighted superposition of
plane waves, the weighting function being ¢*(6,) =
—(ek)/[(1 + May)?®); and similarly (37) may be
identified with a plane-wave superposition with
weight function €*(6,) = (ek)/[(1 + May)?].

Each of the plane waves occurring in these
integrals gives rise to a reflected or refracted plane-
wave field of known amplitude and direction,
and therefore the integrals (35) and (37) give rise
to a superposition of such wave fields. We shall in
the following section set up and evaluate the inte-
grals for the resulting disturbances.

5. INTERACTION PROBLEM FOR CYLINDRICAL
WAVES

A. Source on the Subsonic Side of the Shock

If a line source is located at z, > 0, the incident
sound wave will be described by Eq. (35) with z
replaced by £ — x,. The resulting distortion and
the reflected wave fields may be written down
immediately,

U, <C,
—

Source S0° Phase Leod
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\
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\ \
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- "7‘()&~U°t)2+y2=c§fz
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(o) SUBSONIC FLOW {b) SUPERSONIC FLOW

Fre. 7. The surfaces of constant phase for cylindrical waves
in a moving gas.
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The expressions defining a, 4, B, and C are given
in Egs. (14) and those defining «,, 8, and a,, 8, are
given in Eqs. (12) and (13). The path of integration
is that defined for the integral (33). The function
x:(z, ¥, £} introduced in (38) for the sake of brevity
to describe the vorticity field is defined by
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To evaluate these integrals, it is convenient to
transform the path of integration to the Sommerfeld
path P of Fig. 6(a) by means of the relations inverse
to (34). Equations (38) thereby reduce to:
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a(a), A(e), B(a, 8), and C(a) being the appropriately
transformed Fresnel formulas.

We shall use the saddle-point method to evaluate
the integrals in Egs. (40). To use the standard
saddle-point formula it is first necessary to verify
that the integrands are slowly varying functions of
the independent variable near the saddle point.
That this is so may be seen by examining the poles
of the various integrands and verifying that they
are isolated from the saddle point. It may be seen
by direct calculation of a, 4, B, and C that all the
integrands have poles at the points where

M02a2 + ZMOZZVLO' '+ 1=0
or at
—M, £ (M? — 1/M).

o ==

It is easy to see that these poles lie outside the strip
—7/2 < Re 6 < x/2 and are indeed isolated from

[ 0+ Mace e [zk arz
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— MH
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the saddle points of the integrands. The integrands
for {(y, ©) and o,(, y, t) have no other poles, while
the integrand for &,{z, y, t) haspolesat 1 — M,a = 0
and the integrand for x:(z, y, #) has poles at
1 + M,a = 0. The first of these possibilities,
1 — M,a = 0, gives poles on the imaginary axis,
which can be disregarded since M; < 1. The second
possibility, 1 + M, = 0, gives poles outside the
strip —#/2 < Re § < /2 and also may be elimi-
nated from further consideration.®

We may immediately write down the first term
in the asymptotic series for the integrals in Eqs.
(40) as

8 If the poles had not been isolated from the saddle points
of the integrands, we would have been confronted with the
difficulties of the sort which Ott and Van der Waerden
encountered in electromagnetic diffraction. No surface waves
were found in this investigation. See H. Ott, Ann. Physik
43, 393 (1943); B. L. Van der Waerden, Appl. Sci. Research
B2, 33 (1951).
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where p = [2,° + (1 — M,*)y’)  and p, = [(z + 2,)*
+ (1 — M,®y*]* and the functions a, 4, B, and C
are the Fresnel coefficients evaluated at the saddle
points of the integrands. It is important to realize
that a, 4, B, and C are functions of the transformed
variables « and 8 in Eqgs. (41) and not functions
of the original variables a, and B, as in Eqgs. (14).

The surfaces of constant phase for the reflected
sound potential are given by

1 —

(@ + 2 — U1t1)2 + y2 = Clztlz (42)
with
fo— o — 2M sz,
' Cl(]- - M12>

These are, of course, circles originating at the
virtual source —x, and carried downstream with
the flow. The surfaces of constant phase for the
reflected entropy and vorticity waves, on the other
hand, are:

Mlzxo )2
<x+1—M12— Uit
M2 M2 2
1 — }le y2 = 1 __1 j;;lz s (43)

which represent a family of hyperbolas transported
downstream with the flow. The waves discussed
here are illustrated in Fig. 8.
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F1a. 8. The reflection of cylindrical sound waves incident
from the subsonic side of a shock wave for Mo = 2, u = 6

B. Source on the Supersonic Side of the Shock

If our line source is located at —ux,, the incident
sound wave will be described by Eq. (37) with z
replaced by ¢ + x,. The corresponding distortion
and refracted wave field may be written down
immediately as:

&z, y, ) = % s (—fﬁ%f—) A exp <z N i"‘ﬂ;a + ik, ‘ff,_*;lfay - iwt) déo, »
i@, y, ) = ko fP L (1—:}‘4—0&55 C exp (i - fr"‘]‘;oao + ik, "‘“”Mf afzy - w) 6.
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Fia. 9. The paths of integration for ®(z, y, t) in the complex
¢’ plane for supersonic incidence.

The Fresnel coefficients a, A, B, and C are given
in Eqs. (20), and the expressions for «a;, 8, and
a,, B, are given in Eqgs. (18) and (19). The paths of
integration P, and P, are, of course, those used
in Eq. (37).

It is convenient to transform the paths of inte-
gration to the Sommerfeld paths P, and P, of
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Fig. 6(b) by means of the inverses of Eqgs. (36) to
evaluate the integrals for f(y, ), x:(z, y, t), and
a1z, ¥, t), but this procedure is not particularly
helpful for the sound potential &,(z, y, t). However,
the sound integral may be reduced to a convenient
form by transformation to the ¢ plane by means of:

ao = [—MyB8” £ N1 — MPIN']/L7,
Bo = B'IN1 — M) =+ MN']/L7,
with

(45)

a’ = cos ¢, B8’ = sin ¢,
where
L' = N — M) + M7
and
N’ = N1 - M + (M — 1),

where the + and — signs are chosen for the paths
Py, and Py, respectively. The images of the paths
Py, and Py, which we denote by P, and P,’ are
illustrated in Fig. 9.

The transformed integrals may be written
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where a(a, 8), B(a, 8), and C(«, 8) are the Fresnel
coefficients of Eqs. (20) transformed to the 6 plane
by means of the inverses of Egs. (36), while

D.(a’; 6’)

= o'N1 — Mlz)* + MN'(’, B8

N g o
= (1 — Mla')N'(a', BI) A(a , B ) (47)

axq + 7«6(M02 - 1),}y
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T,

Here A(«’, B') is the transform of the Fresnel
coefficient for sound under (45). In Eq. (47), the
+ sign is to be used when integrating along the
path P,’ and the — sign is used along the path P,’.

We shall discuss the integrals for f(y, ©), x:(z, ¥, t),
and o,(z, y, t) first since these integrals are defined

- exp [iku
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in the same plane. It may be verified that the
integrands of f(y, t) and &,(x, ¥, {) have no poles and
that the integrand of x,(z, y, ) has poles at
(M2 — 1) = M,°»\°8°. In addition to these poles,
all the integrands have branch points at M," — 1 =
(M, — 1)N\°°. Because of the presence of the
branch points as well as of poles in the plane of
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where p = [2,° — (M,® — 1y*]% It is important to
remember that a, B, and C are to be regarded as
functions of the transformed variables « and 3
according to Eqs. (20).

For |y > (M,* — 1)%,, outside the edge stream-
lines, we may close the two paths of integration as
in the discussion of the incident sound wave. Since
there are no poles in the integrands for the functions
1(y, ©) and e,(z, y, ), these functions immediately
reduce to zero in the region under consideration.
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with p = [ + (1 — M,2°]! and D* as given by
(47).
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integration, considerable care must be exercised in
the discussion of the behavior of the integrals.

Inside the streamlines emanating from the inter-
section of the Mach wedge with the shock, we may
use the saddle-point method again to evaluate the
integrals. There are two saddle points now, one on
P, and another on P,.

For |yl < (M, — 1)'z, the integrals reduce
asymptotically to
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___kop . E)jl
MrF—1T'%

i(Moz ‘p- 1)*2/]

M02 ks 1 + 1,4

; b (x — Ult):]

P
o[ el
o —
}COP _i"__r)
MOZ_']. 4:
) p exp zM02_1+z4

. koM
-exp [%—]‘f)’g“{i@i (x — sz):l;

(48)

M,

+2M‘1

It may also be easily verified that in this region the
funetion x,(z, ¥, ) is exponentially damped in the
-y directions.

The integral in HEgs. (46) deseribing the sound
potential is in a form amenable to a saddle-point
expansion. There are again two saddle points and
various branch points and poles (which can be
shown to contribute nothing to the integral) to be
accounted for. Having done this, we may write the
resulting asymptotic expression for the integral as:
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the surfaces of constant phase for these refracted

Equations (48) and (49) describe the behavior of waves. For the entropy and vorticity waves of Eqs.

‘the refracted wave field. It is of interest to examine

(48), the surfaces of constant phase are seen to be
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F1c. 10. The refraction of cylindrical sound waves incident
from the supersonic side of a shock wave for My = 2, u = 6.

Source

incident
Sound Wave

ellipses tangent to the edge streamlines blown
downstream with the flow. There is a phase differ-
ence of 90° between the front and back surfaces of
these ellipses as in the case of the incident sound
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circles, The refracted sound wave has surfaces of
constant phase which are approximately described
as circles blown downstream with the flow. The
deviation from circularity is of the order z,/p as
p — . The refraction of cylindrical waves incident
on the shock from the supersonic side as illustrated
in Fig. 10.

As was mentioned in the introduction, these
methods may be easily extended to discuss the
interaction of spherical waves with a shock if we
use the appropriate Weyl expansion corresponding
to incident waves of the form described by Eqs. (33).
The extension to moving shocks presents greater
difficulty, for the saddle points of the various inte-
grands become quite complicated functions of
position and time.
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