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ERRATA FOR EDG TECHNICAL REPORT NO. 13

Part 1

pg. 10 The notation Ag(k) means an optimum criterion such that P (Ag(k))
This notation is defined on page 16.

pg. 11 Line 3, The sentence should read "If at any point (P (A) (A))
7 L

on curve (1) a line is drawn with slope B, given by the operating
level graph, it will be tangent to the curve and will intersect the

axis at the value Pgy(A) - ByPgy(A)."

pg. 24 The seoond line from the bottom of the page should start
1" n
PSN(A2 - Al) =0

Pg. 35 Omit the x, between lines L and 5.

pg. 40  Line 6, This should read "measurable set B, contained in A such
that P(B,) =y ."

Part 11

pPg. 5 Footnote 2 should read "If EXP o o+ « « « o ete."

2N
rg. 37 Line 3, should read "times the amplitude squared of its envelope, etec.

"

pg. 64 Line 1, replace "when" by "for which".

Note: An introduction to the theory of signal detectability, using as little
mathematics as possible and including discussions of the applications of
sequential analysis as well as the types of optimum criteria discussed in
Part I, has been prepared as EDG Technical Report No. 19. Enough theoretical
material will be included so that this report could be used in place of

Part I as an introduction to Part II.
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ABSTRACT

PART I

The several statistical approaches to the problem of
signal detectability which have appearcd in the literaturc are
shown to be essentially equivalent. A general thecory based on like-
lihood ratio cmbraces the criterion approach, for either restricted
false alarn probability or minimum weighted error type optirmum, and
the a posteriori probability approach. Receilver reliability is
shown to be a function of the distribution functions of likelihood
ratio. The existence and uniqueness of solutions for the various
approaches is proved under general hypothesis,

PART IT

The full power of the thecory of signal detectability can
be applied to detection in Gaussian noise, and several general re-
sults are given. O3ix special cases arc considered, and the
expressions for likelihood ratio are derived. The resulting opti-
mm receivers are evaluated by the distribution functions of the
likelihood ratio. In two of the special cases studied, the uncer-
tainty of the signal ensemble can be varied, throwing some light on
the effect of uncertainty on probability of detection.
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THE THEORY OF SIGHNAL DETECTABILITY

PART I. THE GENERAL THEORY

ISSUED SEPARATELY :

PART II. APPLICATIONS WITH
GAUSSIAN NNOISE

1. Concepts and Theoretical Results

1.1 Imtroduction

Random interference plays the key role in the theory of signal dctec-
tability. It not only places a limit on the energy which a signal must have to
be detected reliably, but if also limits the bandwidth of a receiver for strong
signals, or generally the variety of signals which can be detected consistently
in a given receiver. DPart I of this rcport presents the basic theory of detecting
signals in random interference and Paxrt IT applies it to some simple problems in
design and evaluation of receivers.

The signal detectability problem ie represented schematically in
Fig. 1.1. The operator has awailable a voltage varying with time, which will be
refcrred to as the receiver input. This voltage iz in some way different when

a signal is present from when there is noise alone.
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TRANSMITTER NOISY CHANNEL RECEIVER OPERATOR
RECEIVER
INPUT
FIG. 1.1. BLOCK DIAGRAM OF SIGNAL DETECTION PROBLEM.

The receciver 1s the operator's tool or analyzing system; it enables him to study
the input to the receiver by observing the receiver output. IHe can use the
receiver input to his adventage only if (1) the receiver input is differcnt
when there is a signal than when there is no signal, and (2) he knows enough
about the signals and the noise to analyze the input so as to recognize the dif-
ference. The operator can do better than random guessing in deciding whether or
not there is a signal present only when he has information about the signals,
the noise, and his receiver; this must be recognized before treating this prob-
lem. The information about the signel and about the noise is usually of a
statistical nature because of the random nature of noise, and the uncertainty as
to the exact signal that will be transmitted.

Simnal detcctability has been recognized as a statistical provbilem by

1 C s
a nunmber of authors. Therc have been two distinct approaches to the problen.

The first, the criterion approach, is Tirst presented in Threshold Signals by

[»]
= 3 . . .
J. L. Lawson and G. I. Uhlenbeck. The second, using a posteriori probability,

lLawson and Uhlenbeck, Ref. 1; Woodward and Davies, Refs. 2, 3, h, and 5; Reich
and Swerling, Ref. 6; Middleton, Ref. T; Slattery, Ref. 8; Hanse, Ref. 9;
Schwartz, Ref. 10; North, Ref. 1ll; Kaplan and Fall, Ref. 12.

2Lawson and Uhlenbeck, Ref. 1.

xe]
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was studied by . M. Woodward and I. L. Davios.l The difference between the

two methods lies mainly in the approach. DBoth are presentcd in this report,

and the very closc connection between the results of the two will be demonstrated
in Section 2; namely, the basic receiver required can be the same Tor either
case, only the final manner of analysis and presentation of the output is differ-
ent. The criterion approach requires less of this analysis, and has been given

more attention in this report because 1t is somewhat simpler.

1.2 Detectability Criteria

Suppose the operator is required to guess whether or not there is a
signal present. He will, for certain receiver inputs, say that a signal is
present.2 Such receiver inputs will be said to satisfy the criterion, or to be
in the criterion. Those receiver inputs which lead him to guess that there is no
sipnal present are not in the criterion.

There are two distinct kinds of errors which the operator may make.

He may say there is a signal present if there is only noise; this is a false
alarn. He may say there 1s only noise when signal plus noise is present; he
misses the signal. One of these errors may be more serious then the other, so
that they must be considered separately.

It will be convenient to use the ordinary notation of probability
theory. Ivents will be represented by letters, and in particular, the following

symbols will be used for the following events:

lpavies, Ref. 2., and Woodward and Davies, Ref. 3.

[n)

“We shall assume the operator is, scicntifically logical, i.e., for the same
receiver input he will always give the same response. An alternetive approach
is described in Appendix A.
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=

There is signal plus noise

There is noise alone

The operator says there is a signal, i.e., the rcceiver input
is in the criterion

CA The operator says there is only noise, i.e., the receciver
inpul is not in the criterion.

P

== wm

If B and C are events, P(B) is the probability of occurrence of event
B, P(B-C) is the probability of occurrence of events B and C together, and Pp(C)
is the (conditional) probability of occurrence of event C if event B is known
to occur.

From the svatistical information given about the signal and the inter-
ference it turns out to be convenient to calculate Py (A) and Pg.(A), because
these quantities do not depend upon the a priori probability that a signal is
present. This will be done in Part II of this report for some interesting ceases.
If these probsbilities, Ij;(A) and Pgy(A) are given as well as P(SN), the a priori
probebility that a signal is prcsent, then the probability of any combination of
the events in this discussion can be calculated. In fact, any three (algecbrai-
cally) independent probabilities can be used to calculate all the others. That
there are just three (algebraically) independent probabilities can be scen by
noting that all of the events discussed are combinations of the four events SN-A,
+A, SN-CA, and H-CA, and any probabilities can be calculated from the probabili-
ties of these four. But the sum of the probabilities of these four is unity, so

only three of these are independent. Thus, for example,

P(SN-A) = P(SH) Fgp(A)

P(-A) = [1 - P(SN)] Py (4) 5

P(SN-CA) = P(SH) Pgy(CA) = P(SH) [1 - PSN(A)] s (1.1)
P(A) = P(SN.A) + P(-A),

Py(sm) = E(SI-A) s cte.

P(A)
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1.3 A Posteriori Probebility and Signal Detectability

As an alternative to requiring the operator to say whether a signal is
present or not, the operator might be asked what, to the best of his knowledge,
ig the probability that a signal is present. This approach has the advantage of
getting more information from the receiving cquipment. In fact Woodward and
Davies point out that if the operator makes the best possible estimate of this
probability for each possible transmitted message, he is supplying all the infor-
mation which his equipment can give him.l The method of making the best estimate
of the a'posteriori probability that a signal is present will be discussed in
this report. A good discussion of this approach is also found in the original
papers by Woodward and Davies.2

It is shown in Section 2 that the a posteriori probability is given by

the following equation:

—— L(x) B(SN) o
P (80 = 2x) P(S%) + 1 - P(SN) (1.2)

where PX(SN) is the a posteriori probability for the receiver input denoted by
x and _Q(x) is the likelihood ratio for the same receiver input. Likelihood
ratio for a particular receiver input is usually defined as the ratio of proba-
bility density for that receiver input if there is signal plus noise to the
probability density if there is noise alone. t 1s a measure of how likely that
receiver input is when there is signal plus noise as compared with when there is
noise alone. It is a random variable; its value depends upon what the receiver

input happens to be. If a receiver which has likelihood ratio as its output

lRef. 3.

2Ref. 2, 3, &, and 5.

A\
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cen be built, and if the a priori probability P(SN) is known, a posteriori proba-
bility can be calculated easily. The calculation could be built into the receiver
calibration, making the receiver an optimum receiver for obtaining a posteriori

probability.

1.4 Optimum Criteria

An important question is whether or not it is possible to find the
optimun criterion for a given situation. A first step toward the answer is to
define what is meant by optimum, and this definition depends upon the situation.

t may be possible to put a numerical value upon the correct responses and a

nunerical cost on the errors. Suppose

Voy.n = Value of the correct response SH-A
VW.ca = Value of the correct response N-CA
(1.3)
Kgy.cp = Cost of the error SH-CA
Ky.n, = Cost of the error N-A
Then
= N A 'E - K . ‘A‘ R e . .
v Vo aB(SW'£) + ¥ P(N-CA) = K. . P(SN-CA) - K P(N-A) (1.14)

is the expected wvalue of the response of the equipment for a given criterion.
An optimum criterion then would be one which would maximize this expression.
Since the later sections will calculate PN(A) and Pg:(A), it will be an advantage
to express the expccted value V of the response in terms of these quantities.
= 3 E - an -
vV = VSN-AP(SH) PSN(A) F VN-CA [l P(DII)] [l PH(A)]
- - - K - QN
Kopr. caf (B1) [ 1 PSN(A)] I\N-A[l P (SN )] Ry (A)

Vo= Pgy(A) B(SN) (Vg o+ Kgy,cn) = Pp(8) [l } P(SN)] (My.ca * E.a)

F Vg L - BED)] - Ky o, (M) (1.5)
6
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Thus maximizing V is equivalent to requiring that

PSN(A) -B PN(A) is a maxinum, where
) (1.6)
g e
SN.A  SN.CA

Note that P(SN) is the a priori probability that there is a signal present.

In another case it may be required to limit the probability of a false
alarm and to minimize the probability of a missed signal with this restriction.
In symbols, it is required that,

P(N-A) S Po
(1.7)

P(SN-CA) is a minimum.

' This also can be expressed in terms of PN(A), PSH(A)’ and the a priori probability

P(SN):
Po
N e = - _<_ S e od -
P(N-A) [l P(SN)] PN(A) S Po, or PN(A)__ k 1-pEm and
P(SN+CA) = P(SN) [1 - PSN(A)] is a minimm, i.e., Pg(A) is a maximm.

1.5 Theoretical Results

Both of the above problems of finding an optimum criterion will be
discussed in later sections, and it will be shown that under very general
conditions both problems have essentially the same solution. The optimm cri-
terion consists of all receiver inputs with likelihood greater than some number B.
For the first type of optimum criterion, p is the parameter in Eq. (1.6), and for
the second type of criterion, B can be determined from the value of the parameter
k in Eq. (1.8). It has already been mentioned that a posteriori probability is
the simple function of likelihood ratio given in Eq. (1.2). Thus a receiver which
could calculate the likelihood ratio for each receiver input can be used as an

a posteriori probability typec receiver or as either of the criterion type

7
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receivers. Part II of this report, which treats some specific cases, deals

only with the likelihood ratio.

1.6 Receiver Evaluationl

Usually a receiver is judged on the basis of probability of false
alarm if no signal is sent, i.e., PN(A), and the probability of detection if a
signal is sent, PSN(A). The reliability of any receiver in any given situation
can be summarized in one graph, called the receiver operating characteristic, on
which PSN(A) is plotted against PNCA). For any criterion and any fixed set of

signals, there is fixed value for P.,.(A) and a fixed value for PN(A). Thus the

SH
criterion can be represented as a point on the receiver operating characteristic
graph. A criterion-type receiver may operate at any level (i.e., any value of
B or any value of K), and hence is represented by a curve. Two types of optimum
criteria have been discussed, and the graph points up the relation between
the two. In Fig. 1.2 curve (1) is based on optimum operation for which PSN(A) is
maximized for PE(A) fixed. Thus, no recceiver can operate above the first curve.
The third curve is a lower limit in operation found by rotating the optimum
curve about the center point of the graph; it would result if an optimum receiver
operator minimized PSN(A), i.e., said no whenever hc should say yes, and vice
versa. No receiver, no matter how poor,can be made to operate below the third
curve. The diagonal could be achieved by turning the rcceiver off and guessing,
in which case Poy(A) = Py(4).

In the next section it will be shown that the derivative of curve (1)
sketched in the lower plot, is the operating level B of the optimum receiver;

that is, if the slope at some point is B, then the corresponding optimum criterion

1 . . . . o qa .
Only evaluation of criterion type receivers is discussed here. Evaluation of an
a posteriori probability type receiver is considered in Section 2.5.

8
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is made up of all inputs which have likelihood ratio greater than or equal to (.
The relationship between the first and second types of optimum criteria is
graphically illustrated in Fig. 1.3. If at any point (PN(A)’ PSN(A)) on curve (1)
a line is drawn with slope B, it will be tangent to the curve and will intersect

the axis at the value P__(A) - B PT(A) . This is the quantity to be maximized

S

N

for the first type of optimum criterion, and il a linc with the same slope is
drevwn thrdugh any other point on or between curves (1) and (3), it will cut the
axis below the point where the tangent cuts the axis. Thus, curve (1) is not
only the curve for the optimum of the type when PN(A) is bounded and PSHCA)
maximized, but also the curve for the optimum criterion when values are placed
on the operator's responses.

A non-optirmm receiver can be evaluated in a given situation if its
recelver operating characteristic is drawn together with that of the optimum.
One receiver is better than another over a range if it is closer to the optimum
than the other. In some instances the optimum curve for a given situation will
nearly match another receiver's operation in the same situation except that the
optimum will require less signal energy. In this case, the non-optimum receiver
can be given a db rating for that situation.

Fach application of the theory treated in Part II of this report is

accompanied by the receiver operating characteristic of the optimum receiver.

11




—  ENGINEERING RESEARCH INSTITUTE -+ UNIVERSITY OF MICHIGAN —

2. MATHEMATICAL THEORY

2.1 Introduction

The method for handling the signal detectability problem mathematilcally
is described in this section. The first step is the presentation of the appro-
priate mathematical description of the signals and noise. In these terms the
signal detectability problem is restated in several forms discussed in Section 1
of this report. It is then shown that in each case, if the likelihood ratio can
be determined for each receiver input, the problem is essentially solved. Thus
the conclusion is that the receiver design problem should be treated in terms of

likelihood ratio; this is the approach used in Part II.

2.2 Mathematical Description of Siznals and Noise

Any receiver input, noise or signal plus noise, is a voltage which is
a function of time. Thus we shall be considering a set of functions. In this
report it will be assumed that the receiver input is limited to bandwidth W, and
that the observation is of finite duration T. By the sampling theorem,l any
such function is completely determined when its vaelucs at "sampling" points spaced
1/2W seconds apart through the observation interval are known. There are 2WT
sanmpling points in all. Thus a receiver input can be considered as a point in a
2WT dimensional space, the values at the sample points being taken as coordinates.
Let us call the space R.

If there is noisc at the receiver input, the receiver input voltage
may usually be any of an infinite number of functions, i.e., any of an infinite

number of points in the 2WT dimensional space R. With Gaussian noise any point is

lShannon, C. E., '"Communication in the Presence of Noise,"” Proc. IRE, Vol. 37,
p. 10, January 1949; also Appendix D of Part II.

12
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theoretically possible. It is a matter of chance which one occurs. Thus it
appears that the appropriate way to describe the noise is to give the probability
density for points in the space of receiver inputs.l The same is true when there
is sipgnal plus noise, so that we shall deal with the space R and two probability
density functions, fN(x) for the case of noise alone, and fSN(x) for the case of
signal plus noise. Here x denotes a point of the space R.

In a practical application, information will be given about the signals
as they would appear without noise at the receiver input rather than about the
signal plus noise probability density. Then fSH(x)’must be calculated from this
information and the probability density function fN(x) for the noise. The noise
and the signals will be agsumed independent. If the signals can be described by

a probability density function fg(x),

£ (%) =f £,(x-s) £g(s) a5, (2.1)
R

where the integration is over the whole space R. The receiver input x(t) could
be caused by any signal s(t), and noise x(t) - s(t). The probability density
for x is the probability that both s(t) and x(t) - s(t) will occur at the same
time, summed over all possible s(t).

If the signals cannot be described by a probability density function, a
more general form must be used, in which the signals are described by a proba-

bility measure, Pgs5 the formula for this case is

fo(x) = ./~ fﬁ(x-s) d Pg(s) . (2.2)
R

This is what is called a Lebesgue integral, and it means essentially to average

lWe shall assume that the probability density function exists. See Appendix A.

13
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fN(x-s) over all values of s in the whole space weighting according to the

probability PS of the points s appearing as signals.l

2.3 A Posteriori Probability

The approach of Woodward and Da.vies2 to the signal detectability
problem is to ask the operator, "What is the probability that a signal is pre-
gent?" He is to give the probability, using.knowledge of the receiver input,
i.e., he gives the a posteriori probability.

If the probability density functions are continuous, the a posteriori
probability PX (SN) can be found for any particular receiver input x. Bayes'
theorem3 is used, but not directly, since PSN(X) and PN (x) are both zero.
Consider a small sphere U with radius r and center x. Then PU(SN) can be ob-
tained by Bayes' theorem, and Px (SN) can be defined as the

PX(SN) = lim PU(SI-I) . (2.3)
r—+>0
Denote by P(SN-U) the probability that signal plus noise will be present and
the receiver output will be in U. Then

P (SN*U)

i

P(SN) * Pgy(U) = Py(SN) + P(U) (2.4)

P(U)

Pey(U) B(SH) + P(U) (1 - p(sw)) (2.5)

Solving for Py(SN),
P(SN) Pgy(U)

P(8N) Pop(U) +[1 - P(SN)] PN(U)

P (sm)

Pgy(U)
P(SN) ==t
( Py (U)

= (2.6)

P(SH) i;ﬁ(’g) + (1 - P(SN))

1 _ .
Cramér, Ref.lk, pp. 62, 188. 2Woodwexrd and Davies, Ref. 3. 30rame’r, Ref.1k, p. 507.
14
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By the definition of probability density function,

(W) = [ foplx) ax
U

@ = [ &) e (2.7)
U

where the integral is reelly a multiple integral over the volume of the sphere
U in the n-dimensional space. Then

j~ £, (x) dax

SN
Pg (V) v_o-

= . ’ (2.8)
P (0) Uj () &
and if fgy(x) and fF(X) are continuous,
P(“ (U) fc"\ X
1 SR - }’NEX; = L(x) . (2.9)
r—o Fu(0) N

The ratio of probability densities fSN(X)/fN(X) = f(x) is called the likelihood

ratio. It follows that

lim P(sn) L(x)
= r—o TulM) = FEW) o) + J[Kl - P(SN)]

P_(SN) (2.10)

X

This is the existence probability as defined by Woodward and Davies.l
Notice that the likelihood ratio £(x) is the all-important quantity. PX(SN) is a
simple monotone increasing function of the likelihood ratio. Therefore if P(SN) is

known and if the receiver produces ﬂ(x), a calibration will convert this to PX(SN).

2.4 Criteria and the Optimum Criteria

2.4k.1 Definitions. Suppose the operator is only required to guess

whether or not there is a signal present. For certain receiver inputs he will

guess there is a signal present. These receiver inputs form a subset of

1Ref. 3.

15
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the space R of all possible receiver inputs. Let us call this subset the
criterion and denote it by A. That is, a point x is in the criterion A if the
operator will say there is a signal present when x occurs as receiver input.

It will be convenient to have a symbol for each of the two types of
optirmmm criteria described in Section 1.4, The first type will be denoted by
A;(B); that is, Al(B) is any subset of R such that for fixed B 2 0,

Poy [Al(B)] - BBy [Al(B)] is meximum. (2.11)

The second type will be denoted by Aé (k); that is, Az(k) is any subset of R

such that

Py (Rp(k)) € X, and
(2.12)
Payy (An(k)) is meximum,

The likelihood ratio £ (x), which is defincd as ratio of the proba-
bility density functions, fgy(x) /:E‘N(x) plays an important role in the following
discussion. It is a measure of how much more likely the receiver input is to be
if there is signal plus noise than if there is noise alone.

2.4.2 Theorems on Optimm Criteria. The optimum criterion is closcly

related to the likelihood ratio. For the first type of criterion the comnection
is given by the following theorens.

Theorem 1: Denote by A the set of points for which the likelihood ratio £(x)2 B.
Then A 1s an optimum criterion A, (B).

Proof: The condition that A be an optimum criterion A, (B) is

that Poy(A) - B PN(A) is maximum; i.e., for any other set B of

receiver input - 2 -
pucs PSH(A) ﬁ PN(A) = PSN(B) B PN(B)'

16
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Pog() - B Py(a) = [ fgpx) ax-p [ fy(x) ax

A A (2.13)
= A[ [fSN(x) -B fH(x)] ax |,

where the integration is over the set A, and so is really a multi-
ple integral over a part of the space R which has 2WT dimensions.
Let B be any set different from A. Denote by A-B the set of
points which are in A and not in B, by B-A the set of points
which are in B but not in A, and by BNA the set of points which
belong to hoth A and B. Then since A is the union of A-B end

ANB, and A-B and ANB have no points in conmon,

Pgy(A) - B Py(a) = f [fSN x) -8 fN(X)] dx
A
- f [ fon(x) - B fN(X)] ax (2.14)
ANB
+ f[fSN(x) -B fN(x)] dx
A-B
Likewise

i}

Py(®) - B hy(8) = [ | () - b )] ax

ANB (2.15)
* f[fsn(x) - P fm(x)] ax
B-A
Thus
Por®) - B Py(a) - [y (3) - By(B)]
(2.16)
f[fSN(X) -B fN(X)] x - /[fSN(x) -B fN(x)] dx

A-B B-A

17
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The points in A-B arc in 4, and so for thenm fSM(X)/fN(X) =
L (x) 283, so that fSN(X) - B fr(xj > 0, and the first integral

in Eq. 2.16) is not less than zero. The points in the set B-A

are not in A, so T (x)/fN(x) < 3, and the second integral in

o

Eq. (2.16) is no greater than zero. Thus
A) - DB 2k -3 F 2.
P A) - BB (A) 22 ) - p 2 (B) @17

POH(A) - B Py(A) is a maximum, and A is an optimun criterion Ay (8)
b k)

There is not a unigque optimum criterion Al(ﬁ) . In the Tirst placc
"optimum" was defined in terms of probability. Thus a change in Al(B) which
would not cha.nge]?{SH [Al(a)] or 1%1 [Al(B)] would result in an equelly good
criterion. Such a change might consist of adding or taking out a singlc point,
a Tinite number of points, or generally any set of probability zcro.l More
insight into the uniquencss is given by the following theorem.
Theorem 2: If A is an optimum criterion Al(ﬁ), then the set of points in A for
which _Z(x) < B has probebility zero, and the set of points not in A for which
£ (x) > B has probability zero.
Proof: We will show that any criterion which does not have these
ﬁwo properties is not an optimum criterion. Consider any cri-
terion B with a subset C, of non-zero probability, such that the
likelihood ratio of each point in C is less than 3. There is a
positive number € and a subset C. of C, having non-zero probability,
such that £(x) £ 8 - € for the points in Ce - If this were not

true, then for any positive small number € , the subset C. would

have probebility zeroc. These subsets C are nmonotone, that is
P ) ’

1) set T will be said to have probability zero if both PSN(E) and PN(E) are zero.

16
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if €5 < €1, then 062 contains Cel, and, since C contains no
points with likelihood ratio equal to B, the union of all C, 1is C
itself, and would have probability zero.l

As in Eq. (2.14),

Pay (Ce) - B Ppy(Ce) = f [fSN(X)—B fN(X)]d_x - f fN(x)[ﬁ(x)-B]dx
Ce Ce

and since L (x) < p - €or L(x) -p= - €,

Pon(Ce) - B B (Ce) € - f r(x) &x = - €B(C) . (2.19)
Ce

Therefore, if PN(%-) >0,
Pey(Ce) - B Pp(Ce) <0 (2.20)
But C¢ is a subset of A, and therefore

Pg(B - C¢) = B Py(B - C¢) > Pgy(B) - B Py(B) (2.21)

and B is not an Al(B). It can be shown in an analogous manner

that if there is a set D of non-zero measure outside of criterion

B such that £(x) > B in D, then there is a subset D¢ of D such

that
Py(De) = B Byp(Dg) >0 (2.22)

and therefore

Pey(BYDe ) - B Py(BYD¢ ) > Pgy(B) - B By(B) (2.23)

and B is not an Al(B).

lCramér, Ref. 1%, p. 50, Eq. 6.2.3; and p. 77, paragraph 8.2,
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This theorem says nothing ebout the points for which £Z(x) = p. It
is not hard to show that PSN(A) - B PN(A) is not affected by including or ex-
cluding points where £(x) = B. Thus a criterion Al(ﬁ) must include all points
for which £ (x) > B (except perhaps a set of probability zero), none of the
points where £ (x) < B (except perhaps a set of probability zero), and it may or
may not include a point for which £(x) = 3.
In the most general case, when the noise is Gaussian, the following
two theorems show the uniqueness of Al(fs).
Theorem 3: If the probability density function for noise alone, fﬁ(x) s is an ana-
lytic function, then the set of points for which .4x)= g has probability zero.t
A function is said to be amalytic if it is analytic in the ordinary
sense when considered as a function of each single ccordinate. The proof of the
theorem is quite involved, and so it is given in Appendix B.
Theorem 4 follows immediately from Theorem 2 and Theorem 3.
Theorem 4: If the probability density function for noise alone fN (x) is analytic,
any two optimum criteria Al(B) cen differ only by a set of probability zero.
Now let us turn to the second type of optimum criterion.
Theorem 5: Let A be a set such that if x is in A, the likelihood ratio L(x) 2 8,
while if x is not in A, L£(x)< B. Then if PH(A) = k, A is an optimum criterion
Ay(k).
Proof: An optimum criterion Ag(k) must satisfy the conditions
Py(A) € k, and Pgy(A) is maximum. The first is satisfied by
hypothesis. Suppose B is any other set such that PN(B) < k.

Denote by A-B the set of points in A which are not in B, by B-A

4 little more is needed in the hypothesis for Theorem 3 than that fy(x) is

analytic. See Appendix B,
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the set of points in B which are not in A, and by BNA the set of
points common to B and A. Since A is the union of A-B and ANB,

and since A-B and ANB have no points in common,

Py(d) = [ fN(x) ax = ffN(x) ax + f fN(X) ax
A A-B AOB
(2.2h)
= Py(A-B) + PN(AﬂB) = k

Likewise

PN(B) = Py(B-A) + PN(AOB) < k, (2.25)
and thus

PN(A~B) 2 PN(B-A) . (2.26)

Also,

PSN(B'A) = ffSN(x) ax |, (2.27)
. : : Fon(®)
and since any point x in B-A is not in A, L(x) = <pB and

&)
Ty (%)
N
paen) = Jee p@e s [awe

B-A B-A

or
PSN(B—A) <B PN(B—A) . (2.28)
Likewise
Poy(A-B) 2 B Py(A-B) . (2.29)
Collecting Egs. (2.26), (2.28), and (2.29),
Poy(B-A) S B P (B-A)S B P y(A-B) < P (A-B) . (2.30)

2l
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As in Eq. (2.24),

Pop®) = / fop(®) & = ffsm(x) ax + ffSN(X) ax
A A-B ANB
= Pgy(a-B) + B (aMB) (2.51)
and
P (B) = Pgu(B-A) + Po (AOB) . (2.52)
Therefore
Poy(A) - Pgy(B) = Fgy(A-B) - Fgy(B-A). (2.33)
From Egs. (2.30) and (2.33) it follows that
Pap(®) 2 Pg(®) 5 (2.34)

and PSN(A) is a maximum.

It follows from Theorem 5 that every optimum of the first type, Al B),
is an optimum of the second type. More precisely, if set A is an optimum of the
first type it is associated with the fixed B for which it is an Al(ﬁ). By
Theorem 2, the likelihood ratio in A is not less than B, and outside A the
likelihood ratio is not greater than 8, except on a set of probability zero. But
the introduction or omission of such a set has no effect on PSI\T(A) or PN(A).
Since Py(A) has some velue, call it aj A will be an A,(a) by Theorem 5.

Theorem 6: For every k between O and 1 there is an optimum criterion of the
first type Ay, such that PN(Ak) = k.
Proof: TFor each value p we consider the maximal Al (8); by Theorem
2 this is the set consisting of all points of likelihood ratio
not less than B:

My = {x , 2(x) 2 5} . (2.35)

22
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Jow if for k there is a B such that PH(MB) = k, then because MB
is an Al(ﬁ) the proof is complete.

lext we point out that M, is the whole space R and Mgy 1is
the empty set, and thercfore PN(MO) = 1 and PN(McD ) = 0. For
any velue of k, if there is no Mf3
Pr(ig) 2 k} = gdb {B IPH(MB) < k} that is,

such that PN(Mﬁ) =k, let

B* = nin { B
PN(MS*) >k and if B > p¥%, PN(Mﬁ) < k. Thus the jump in Py is due
to those points in MB* for which X (x) = p*.

Because the probability density functions exist, every point
has probability zero and therefore there is a subset S of these
points with £(x) = B* for which Py = PN(MB*) - k. This is shown
in Appendix B (Lemma 4).

Removing this subset from M_¥*, PN(MB* -8) = k . (2.36)

Because Mﬁ* - S satisfies Theorem 1, it is an A, (B¥*). Of
course, by Theorem 5, it is an Ag(k) also.

The following theorem completes thisg circle of proof.
Theorem 7: TFor any k there is a Py such that every.Ae(k) is an‘Al(Bk).
Proof: Let A be any Az(k).
By Theorem 6 there exists a Bk and an Al(Bk), vhich we will denote

by A¥, such that EN(A*) = k. Then by Theorem 5, A¥ is also an

As(k), and hence for both A and A¥, Py is maximum and Py < k.
Therefore
P.(A%) = k2P (a) (2.38)

Multiplying Eq. (2.38) by - Py and adding gives

Po(A%) - B P (A¥) = Fap(A) - B, B (8) . (2.39)

L
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Since A* maximizes this expression, the equality must hold, and
A is also an Ay (B ).

In summary, these theorems show that B can be written as a multivalued
function of k and that k can be written as a multivalued function of p. These
relations can be sharpened somewhat.

Theorem 8: Let a < b be two values taken on by £(x). If no set of the form
{x | Ll < L(x) < ,22} for a < £l < £2 < b has probability zero, then Bk
is a single valued function of k on some interval I, with a < Sks b, and
d Pgpy (4 (B)) /dk exists and equals B, for every k in I.
Proof: 1) In general, if a function is monotone on an interval
and its range of values is also an interval, then it is con-
tinuous. If it were not, then at some point the left and right
hand limits would be unequal, which would introduce a gop in the
range of values, contradicting the hypotheses.

2) If Bkl > ﬁk2 and if the interval from {Bkl to Bke
contains a subinterval of [ a, b] of length greater than zero,
then k, > k). There are, by Theorem 6, criteria of the first type
Ai (for i = 1, 2), which, by Theorem 2, may be chosen so that Ai
contains all points for which £(x) > By and no points for which

i
L (x) < Bki. Also PN(A i) = ki, by Theorem 5. By applying

Py to the equation A, = AlU (A2 - Al), one obtains

2
ky = kl + PN(A2 - Al). If PN(A2 - Al) = 0, then from Egs. 2.7

and the fact that £(x) is bounded on A, - Al s it follows that

2
Pgy(Ap - A;) - 0 also. But, by hypotheses, A; - Ay cannot have

probability zero. Hence k2>kl.

2k
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3) Let I be the set of points k for which at least one
By is in the open interval from a to b, and let Bk denote the
possibly multivalued function defined on I. Then 2) says that Bk
is both single velued and monotone, and Theorems 1 and 6 imply
that the range of values of Bk is the interval from a to b.
Hence I is an interval, for if it were not, there would exist
three values k, < k, < k3 with only the middle one not in I.

1 2
Then {3k1< Bk2 < 51:5 and f3k2 would not be in the interval

from a to b, yet the other two would be--a contradiction. Thus
1) can be applied to Bk and ka is therefore continuous on I.

L) To form the derivative, let

D = A(B) - Al(Bko) if B, < Bko
(2.42)
= Al(ﬁko) -A ) IEB 2B .
o
Then
Poy®y (By)) - Py, By ) P (D)
lim = lim (2.43)
k—=k* k - kg k—+k+ K-k

3 > < < P
Since k2 k , B < sko, end in D, Bk_ £(x) < fsko, aka(x)

< £ (x) < akofN(x). But
Py (D) = ffSN(x) ax = fﬂ(x) £.(x) ax  (2.4k)
D D

and

P(D) = k-k - Df £ (x) ax (2.15)

n)
\A
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end therefore 8 P_(D) € P (D) £ B, P_(D). Similarly if k< k
3] I‘u‘ bI\I h’o II o

1 < p,.(D)<BP . Thus
Pre Fy(D) < Bgy(D) < ByPyy(D). Thu

= {31: > (2-“'6)

lim v
L—»k o)
o)

by virtue of the result that 3 1is a continuous function of k.

a~

2.5 Evaluation of Optimum Receivers

2.5.1 Introduction. This section treats the problem of determining

how well a given receiver will perform its task of detecting signals. For the
criterion type receiver, the probability of false alarm if no signal is sent,

PN(A), anG the probability of detection if a signal is sent, P_ _(A), give a

STI(
good measure of receiver performance. For the a posteriori probability type
receivers, the average or mean a posteriori probability with signal plus noise
and with noise alone describe the receiver's ability to discriminate between

signal plus noise and noise alone.

2.5.2 Evaluation of Criterion Type Receivers. For simplicity, let us

restrict this discussion to the case in which the probability density function
for noise alone, fN(X) is analytic.

Denote by FSN(a) the probebility that the likelihood ratio £(x) is
equal to or greater than 8 if there is signal plus noise, and similarly, let FN(B)
be the probability that £ (x) is equal to or greater than B if there is noise
alone. These are the complimentary distribution functions for £(x). Then for
any Al(ﬁ):

PSN (AI(B)) (2.)4-7)

!
)
n
=
~
wW
g
.
o)
o)
o

PN (Al(ﬁ)) = FN(ﬁ)’ (2-48)
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because the set of points for which £ (x) 2 B, and differs from any Al(B) only by
a set of probability zero (Theorem 4). By Theorem 7, every Ay (k) is an Al(B). The

By corresponding to k cen be found from Eq. (2.48)

Py (B))

Then

Po(hp(®)) = TFgy(By) - (2.50)

Thus, if the distribution functions Fgy(B) and FN(B) are known, any criterion
type receiver can be evaluated.

It turns out that not both I*‘SN(B) and FN(B) are necessary. Theorem O

states that

d Fay(B)

—_— . = 2.51
e T P (2.51)

gince PSN(AJ_(BK)) = FSN(Bk), and k = FN(Bk). Thus, if FN(B) is known, FSN(ES)

can be found by integrating Eq. (2.51).:L

0]
Fg®) = - [ var) . (2.52)
p

As an alternative, Fgy(B) might be given as a function of FN(B); this is the
receiver operating characteristic graph. Then B can be found from Eg. (2.51);

i.e., p 1is the slope of the graph.

Trhe change in sign is because the functions Fgy(p) and FN(S) are complimentary
distribution functions. If the density function associated with Fy(B) is g(B),

d Fy (B) @
then-Eg—— = - g(p) and Fgy(B) = 5f g(B) 4 B.

a7
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A corollary of Theorem 8 is the following: The nth moment of the

distribution for noise alone is the (n-1l)st moment of the signal plus noise
distribution.

@® @® ®
[ warm = [ P warne) = [ YT arge @)
- - _

As an example of the application of this corbllary, note that the mean value of

likelihood ratio with noise alone is always unity. If the variance with noise

alone is olfx the second moment of FN(B) is 1 + Gﬁ?; then the mean of the

2
signal plus noise distribution is 1 + Cﬁy s and the difference of the means is

Oﬁ?. For detection corresponding roughly to Fig. 2.1, the difference of the

means Of the two distributions must be of the order of the standard deviation of

the distributions, so that

2 o
o ~ 0 ’ (2.54)
N N
I
L
/ FIG. 2.1
/ | REGEIVER OPERATING
CHARAGTERISTIC
Fbrcr; = |,
4

Psn (A)
\\\\

o
\\

Py (A) |
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or the variance of the distribution with noise alone must be of the order of

2
unity. For better detection, TN must be greater.

2.5.5 Evaluation of A Posteriori Probability Woodward and Davies Type

Receivers. Davies proposes the mean a posteriori probability as a measure of

the efficiency of a receiver. The mean a posteriori probability is defined as:

oy BeEM) = [ By(em) 2(x) ax (2-55)
R

Py (sM) = fPX(SN) £, (x) ax (2.56)
R

These can be evaluated if the distribution functions FSN(B) and FN(B) for likeli-

hood ratio are known. Since

P(sw) L |
Py (sW) = P(SN) ,QL(X)) +(X% - p(N)  ’ (2.57)

the mean a posteriori probabilities are

P(SN
Fen(®, (1)) = f Y P(Sl\g E» % ~FEN ¢ Fon(¥), end (2.58)

y P(SH)
Fy(Be(SM)) = f TTEN + I-rEm ™ - (2.59)
Davies presents the formula

pey [ Beem]  + l—%(—g%’m pr [EEm] =1, (2.60)

which enables one to calculate easily either one of the mean a posteriori proba-

bilities once the other has been calculated.

29
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2.6 Conclusions

It is possible to combine the most common statistical approaches to
the theory of signal detectability into one general theory. In this theory
likelihood ratio plays the central role: the result of the theory is that a
receiver built so that its output is likelihood ratio can be adapted easily to
accomplish the task gpecified in any of the well-known approaches to signal
detectability. If the probability distribution of likelihood ratio is known,
then the recelver reliability can be evaluated.

In Part II of this report, likelihood ratio and its distribution
functions are calculated for a number of specific cases, and the problems of

recelver design are discussed.

h—
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APPEIDIX A

It was assumed throughout the discussion of the criterion approach to
sipgnal detectability that for any given receiver input, the operator would always
give the same response., This is certainly not the case with threshold signals
and a human operator. A more realistic approach might be to assume that for any
receiver input x, the operator would say with probability p(x) that there is
signal plus noise, Finding the optirmum receiver would then consist of finding the
optimum p(x). This approach does not lead to any interesting new results; if
p(x) = 1 on an optimm criterion and zero on its compliment, then p(x) is
optimumnm,

The theorems on signal detectability are proved in Section II in more
general form than has yet been found necessary in an application., However, they
can be generalized somevhat, and this appendix discusses some of the possibili-
ties,

It is certainly possible to consider more general spaces of signals. Any
space on which a probability measure can be defined might be used. In order to
prove the theorems on optimum criteria, however, some sort of likelihood ratio
seems necessary. One possibility is to assume the measure PN(A) and the random

variable £ (x) are given and to define P

SNLA) through the integral

Py (A) = fﬂ(x)dPN(A) . (B.1)
A

The mean value of £(x) mst be unity, of course.
I the space is a Ruclidean space of finite dimension, then it is possi-

ble to define an arbitrary measure through distribution functions. These
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functions, being monotone, have a derivative almost everywhere, and thus afford

a means of defining likelihood ratio. For any point which has measure zero, the
likelihood is the ratio of the derivatives of the distribution function for signal
plus noise and for noise alone. Poinfs which do not have measure zero can always
be treated separately. There can be only a countable number of these and like-

lihood ratio for such a point x can be defined as

Pay (%)
j(X) = g:;(x) (A.g)

Any point with infinite likelihood ratio belongs in the criterion, of course, and
such a point has a posteriori probability unity. Then likelihood ratio is defined
except for a set of points of measure zero.

In any case where likelihood ratio is defined and satisfies Eq. (A.l),
Theorems 1 and 2 can be proved. The lemma (Appendix B, Lemma 1) which is needed
Tor the proof of Theorem 5 can be proved for any space and measure for which sets
of arbitré.rily small measure can be found containing each point. If this holds

and likelihood ratio is defined, then Theorems 5, 6, 7, and 8 can be proved.
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APPENDIX B

This appendix contains the proof of Theorem 3 and the lemma required to
complete the proof of Theorem 6. It is convenient to prove three lermas from

which Theorem 3 will follow directly.

Lemma 1: Let S be a sphere (i.e., the set of all points whose distance to a
fixed point is less than or equal to a fixed positive number) in n-dimensional
Buclidean space E. Let f(x) be a continuous real function defined on S. Then
the graph G = { [x ’ f(x)]} of £(x) in En-"l has (n+l)-reasure zero.

Proof: Let the volume (the n-measure) of S be V. Since £(x) is uniformly continu-
ous on S, for cvery € >0 there is a O > 0 such that whenever the distance between
% and x, is less than & it follows that | £(x,) - f(x2)| < ¢/hv.

Moreover, for each d > 0 there is a decamposition of En into pairwise
disjoint congruent n-dimensional cubes each with its greatest diagonal of length
less than 3/2. This decomposition may be chosen so that, if {Ci} i=1, 2,..4k
are the cubes that touch S, then
Z (volume Ci) <2v . (B.1)
Thus I, = f(Ci) is an :Lnte;"val of length less than 2(e /4V) = € /2v.

Now, let Ci*be the (n+l)-cube formed by the Cartesian product Ci X Ii ;5 by
construction, the graph G is covered by the (n+l)-cubes Ci*. Also
S [(n+l)-volmne Ci*}f 3 [(n)-volwne ci]e/evszv. € /2Vv=¢€ . (B.2)
1 i
Thus for each € > O there is a covering of G by (n+l)-cubes whose total

(n+l)-volume is less than € . This means (n+l)-measure of G is zero.
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Lerma 2: Let D be an open set in Fuclidean n-dimensional space E and f(x) a
real function defined for all points x in D which has continuous partial deriva-
ti&es of all orders such that at each point x in D at least one partial deriva-
tive (of any order) does not vanish. Then, if b is some velue taken on by T,
the set f'l(b) of all points x such that f(x) = b has n-measure zero.

Proof: A point x in D is said to have "order zero" if some first order deriva-
tive of f does not vanish at x; x has "order r" (r a positive integer) il all
partial derivetives of f of order £ r vanish at x, but at least one partial
derivative of f of order r+l does not vanish at x. By the hypothcses, every
point of D has finite order.

For each integer r 2 0 let Cr be the set of points in f—l(b) of order

o0
r; then f“l(b) = U Cr' The theorem is proved if it is shown that the n-measure
r=0

of Cr is zero for each r. This will be donc in two steps.
I. At each point x° in C.., there is a sphere S(x°) centered at x° such
that S(x°) () ¢, has n-measure zero.
IT. There is a countable collection {S(xi)} sy 1=1,2, ..., of such
spheres such that C. is contained in the union it?l S(xi).

Steps I and II together show that n-measure of C, 1is zero becausc

@ .
i
0 € n-neasure Cr < 5 n-measure [S(x )f]Cr] = 0 . (B.3)

i=1
Step II is an application of the Lindeldff theorem which asserts that every col-
lection of spheres contains a countable subcollection whose union is equal to the

union of all the original spheres.
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The proof of I follows:
Since x° is of order r, one of the derivatives of order r of f(x), say
w (x), has a Tirst order derivative which does not vanish at x°. By a change

in notation, this can be written as: 9w - W does not vanish at

b4
J n

-}

X
x° = (X°l, ceey x"n). The implicit function theorem can then be applied to w,

yielding these results:

[+]

1) there is a sphere S5(x°) centered at x° and contained in D.

2) writing x for the projection of S(x°) onto the Xyg eves X
"coordinate plane," n is an (n-1) sphere. There is a real valued
continuous function X(Xl 3 eeey Xn_l) defined on n whose graph
G = {[xl, e X s X(Xyy oeey Xn-l)]} is the set of all points
x in S(x°) such that w(x°) = w(x); that is G = S(x")ﬂw':L [w(x°)] .

Note: 2) says that, in particular, w [Xl’ ceer E 90 X(xl, ceey Xn-l)]
= w(x°). This is the usual way of stating the theorem.

By Lemma. 1, the n-measure of G is zero. Thus step I is proved if S (x°)( CrCG.

Case 1: r = 0. If x is in S(x°)N C,» then x is of order r = 0 and

f(x) = £(x°). But in this case w must have been chosen to be f, so w(x) = w(x°®),

which implies that x is in G.

Case 2: r > 0. If x is in S(x°)N C.s then x is of order r, which

means that in particular all r-order partials of f vanish at x, Hence @W(x) = 0.

Also, by the same argument w(x°) = 0, and w(x) = w(x°) implies that x is in

G. This completes the proof of Lemma 2.

Lemnma 3: If fN(xl 3Xpy ey xn) is an analytic function defined on n~-dimensional
Tuclidean space En, and if P(Sl ,82 3 esey Sn) is a probability measure on E® such

that there exists a bounded set in E" vhose probability is unity, then
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Lo (Xys eees x) = /. fN(xl-sl, ooy X.78,) AP(815 «uey 8p) (B.14)
n
exlists and is analytic.
Proof: Let B be a bounded set such that P(B) = 1. Then B, the closure of B, is
such & set also; it is certainly bounded, and it can be assigned the measure
unity, since
BcBCcE end 1 =P(B) £ P(B) £ P(E) = 1 . (B.5)
The probability of the complement 6f B is zero, and hence the integration can
be restricted to the set B rather than to the whole of E .
For a fixed (xi, coey xn) and for (sl, vees Sn) in B, fN(xl-sl, ceny
Xn"sn) is bounded, since fN is continuous and B is closed and bounded. The

function £

w 18 also measurable, since it 1s continuous. (This assumes open sets

are measurable.,) Then the integral exists.”
The function £ (x_, ..., X_) beid alyti ans that T cos
e functio H( 17 , n) eing analytic means N(xl, , xn)
is an analytic function in the ordinary sense when considered as a function of
any single coordinate xi. Let us forget about the other coordinates for the
present. Then fN(xi) has a power seriles expansion at each point x°i, vhich

converges in & neighborhood of the point (x°i, 0) in the complex plane. Thus

fﬁ(xi) can be extended for complex values of Xi in a region containing the real

axis,
Formally,
h)-f (3
) Lo () ~-Tgp(x;)
X5 h—0

lCraméf, Ref. 1k, Section 5.2, p. 37.
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- 1 :—L- ‘[ a
- lm h fIJ(Xl-sl, L ] xi+h-si, esey Xn"'sn) d:P(ul’ *s0 0y Sl)

h 0
- D (B.7)

- jﬁ fH(xl-Sl, ssey Xisi’ seey Xn-s dP(Sl, es ey sn)]

3

o)

1
= lim f X -S e e @ x ‘i'h-s es e x "S
. B/E [N( 1750 » i" » n)

3 ey Xi-si, eesey X ‘Sn) dP(Sl, se0y Sn)]

(B.8)

-f (x
I\I( n

1781

~

1 .
lin & l:fH(Xl_sl’ ceey xi-i-h-sn, coes }‘n"sn)

h—0
B (B.9)
- II(xl—Sl, ey Xi, ce0ey Si-Xn-Sn) dP( 1, LI ] Sn)]
af
= /axIJ dP(Sl, cvny Sn.) . (B'lo)
B i

The only question now is whether or not it- is permissible to interchange the order
of integration and taking the limit of the difference quotient at step (B.9).
Thig is permissible if the difference quotient converges uniformly, which tumms
out to be the case.

The function fN(xi) is analytic in a domain which extends to complex
values of x; near the real axis. The function fI‘I(Xi +h - si) can be considered
ag a function of h - ) and is analytic for complex values of h - 8 in a damain

containing the real axis. Since the values of s = (sl, ceey 8,) in B are a

closed bounded set, and the values of h can certainly be bounded, the set V of
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velues h - 8 is bounded. V can also be taken as closed, and it can be chosen
so that no point 84 is on its boundary. Then there will be a minimm distance

hy > 0 from points si to the boundary of V. Consider the function

il

l - ~ . o -
\lf(sl, seer 85 h) & l}ﬁ'(Xl oi,xi-ih By eeey X sn)
-fN(Xl—Sl, seecy Xl-'S 3 ceey Xn"on)]

if h # 0, and

of
asN’ ifh=0 |,
i

defined for ' hl b ho s and 8 in B. V is continuous at every point s and it is

defined for all points (h, 8) with h = u+iv and s = (sl, ceey 8 ) Of a compact
n

subset of En+2. \lf ig therefore uniformly continuous, and its convergence to
3% as h approaches zero along any complex valued path is uniform in s. Thus
i

the difference quotient converges uniformly.

Lemma 3': Let fN(xl y seey xn) be a function of n complex variables, and supposc
that for cach i, there is a domain Di in the complex plane and a number ho such
that the domain Di contains all points within a distance of ho of the real axis,
and fy(Xyy eesy Xy ++0, %) is an analytic function of x; in D; for all real
values of the other coordinates, Then, if P(sl, ceey sn) is a probability
measure on the n-dimensional X¥uclidean space En,

Toy(Eys eees Xy) = f fN(xl—sl, evey Xp=8p) AP (81, 4.uy sn) (B.11)

e
4y

is analytic if it exists.l

bre fy is bounded, the integral must exist, as in the previous case.
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The proof will be omitted. The idea of the proof is as follows: one

must form the difference quotient for f

s (F1s e e Xyp) Tor each coordinate x

5

L r.

T [LSN(Xl, ooy Xgthy oy x,) - fSN(xl, ceey Xgy eeey xn)]
and show that the limit as h - 0 exists, and is equal to what is obtained by
differentiating under the integral sign. The space can be divided into two
parts such that one will have arbitrarily small measure and contribute an arbi-
trarily small amount to the integrals, while the other will be closed and bounded
and hence on it the order of integration and taking the limit as h—»0 can be
interchanged, as in Lerma >. The domain Di is required so that differentiation
in the complex plane will be possible.

How let us discuss Theorem 3., Suppose fN(x) is analytic, and suppose
either Lerma 5 or Lemma 3' holds. Then fSH(x) is analytic, and their ratio

E(X) = ;SIL%:')‘ )
(=

is analytic except where fH(x) = 0. This is a set of nmeasure zero, by Lemma 2.
Since £(x) is analytic, the points where £(x) = p form a set of measure zero,
by Lemma 29‘ This proves Theoren 3.
Theorem 3: IT the probability density function for noise alone, fN(x), is an
analytic function, (and if either Lemma 3 or Lemma 3' holds,) then the set of
points for which £(x) = p has measure zero.

The restriction that Lemma 3 or Lemma 3' holds is not at all serious.
If the signals have bounded energy, Lemma 3 holds. Lerma 3! would be expected
to hold for most analytic probability density functions, and in particular it

does hold if the noise is Gaussian.

lNote that Lebesgue measure zero implies probability zero, since the probability
is defincd throurh density functions.
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The following lemma is needed to complete the proof of Theorem 6.

Lerma 4: Let f'(x) be a probability density function defined on the n-dimensional
Buclidean space E. Denote by P(A) the value of the integral f f(x) dx for all
subsets A of E® for which the integral exists. If AO is any P%measurable set
whose measure P(A ) is finite, and if 0 < y < P (A ), then there is a P-
measurable set B, such that P(B)) = 7.

The following proof makes the theorem valid for any measurc on any
space M with the property "C" defined below.

Proof: Under the hypotheses above, the measure P has a special property relative

to the space ER.

Property "C": There is a countable class [Ci] , 1=1,2, ..., of P-neasurable
sets such that if x is a point and € > O then there is a Cy
containing x such that P(Ci) < € .

One can obtain such a class by choosing all (n-dimensional) spheres
of rational radius centered at points whose coordinates are rational. This
class is countable because the rational numbers are countable. Its menbers are
P-measurable because Aj f(x) dx exists for any sphere A. That it has property
"c" is a way of stating a fundemental property of integrals.

The desired sct BO will be constructed as the union of a special
sequence [Di]of P-neasurable sets. Define Dl to be ClnAo if P(Clﬂ Ao) < ¥
otherwise define D, to be empty. If Dn has been defined, define Dn+l
= Dy U[Cnﬂ_ﬂAo] if P{ D, U[cmln A o]} £ 7; otherwise define D ., =D .

Since D €D -, P(Dn) < P(Dn-'rl) < Y . Ience the sequence [P(Dn)] of real
nunbers converges. A general property of measures yields the result that

@
|l U py| = mr(). uriteB_ = U o;tenr@) - 1m po) s 7.
n=1 n-so = n=1 7 ° n-+0 :

Lo
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It remains to be shown that P(BO) =Y. Suppose P(Bo) < Y; then
writing € = Y - P(Bo) > 0, one has P(BO) = ¥y -é€. Since P(Bo) < P(Ao), there

is a point x in AO but not in B,. By property "C", there is some Ck containing

x such that P(Cy) < € . Return to the definition of Dk' Ifp {Dk-lU [CkﬂAo]}é)’,

then D was defined to be Dy U[CkﬂA O] . Here
P{Dk_lu [Ckﬂl\.o]} < P(Dk_l) + P(Ck) < P(Bo) + P(Ck) < (y-€)+e=7vy.
Thus it was the case that Ckﬂ AOCIDkC B,- But CkﬂA contains a point x not in B,.

o

This contradiction shows that P(B,) is actually equal to ¥y and not less than as

we.g supposed.

by
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APPENDIX C

The following theory was developed as the preparation of the text of
this report neared completion. The suhject matter is appropriate to this report,
and sc it is included.

The purpose of this material is to characterize uniformly best tests,
or criteria. If there are a family of signal distributions (or hypotheses, in
statistical terms), and if a criterion A is an A2 (k) for each of them, then A is
a uniformly best ‘test.l Theorem CL states that if all distributions in a family
of signal distributions are k-equivalent, all optimum criteria are uniform best
tests, and Theorem C2 states the converse.

In the first three cases considered in Part II of The Theory of Signal

Detectability, the signal known exactly, the signal known except for carrier

phase, and the signal a sample of white Gaussian noise, two signal distributions
differing only in signal energy are k-equivalent. Thus, by Theorem Ci, a signal
distribution with fixed signal energy and one with the signal energy having an
arbitrary distribution are k-equivalent in these three cases, These three cases
have for the boundaries of their optimuum criteria, planes, cylinders, and spheres,
respectively. For the other cases, with more complicated criterion boundaries,

k-equivalence cannot be expected when energy is changed.

1
Definition: If fSN( ) (x) and fSN(Q) (x) and fN(x) are defined on E , and if

there exists a set X of probability zero such that for any two points x and y in
in En, but not in X,
Zl(x)é,él(y) if and only if £,(x)2 £,(y) ,

then fSN(l) (x) and foy (2) (x) are said to yield k-equivalent distributions.

lI\Ieymza.n and Pearson, Ref. 13. }o
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Theorem Cl: If fSI‘I<l) (x) and fSN(E) (x) give k-equivalent distributions, then a

criterion is an A, (k) for the first if and only if it is an A,(k) for the second.

Proof: Suppose A is an 1'\.2 (k) for the first distribution. Then by Theorem 7,
there is a f such that A is a Al (3). By Theorem 2, A contains all points for
which £(x) > B and none for which £(x) < B, except for a set of probability
zero. Ixcept for a set of probability zero, if x and y are any two points such
that x is in A and y is not in A, then ,@l(x) 2 fl(y). By definition of k-
equivalence, there is a set X of probability zero, such that if x and y are also
not in X, I,g (x)2 £L5(y). Then there must exist a number B, such that for any x
except a set of probability zero, ,22 (x) 2 B, if x is in A and ,22 (x) & ,82
if x is not in 52. If follows that A is an Al(Bg) with respect to the second
distribution. Furthermore, PN (A) = k, for either distribution since the proba-

bility density with noise alone is the same for both distributions. It follows

by Theorem 5 that A is an A o (k) for the second distribution.

2
Theorem C2: If f“II( ) (x) and fSN( )

every k, any criterion A is an A (k) for one if and only if it is for the other

( )

(x) lead to two distributions such that for

also, then fg (l) (x) and f (x) lead to k-equivalent distributions.

Proof: Consider the family of sets A, where Aa = {X I ,ﬁl (x) 2 o:} » and o takes
on all rational number values greater than zero. ZIach A, is an As(k) for some k
with respect to the first distribution, by Theorem 5. Then it is for the second
also, by hypothesis. ZIach Ao: is an Al [B(&)] for some B(x), by Theorem 7. TFor
each A , the set of points C, such that x is in A, and £(x) < B(@) or x is not
in A, and £(x) > B(x) has probebility zero, by Theorem 2. Let X, be the union

of all the sets Cys and since cach C, has probability zero, and the rational

numbers and hence the family Cy is countable, it follows the the set Xl has proba~

bility zero. 43
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Now consider the family of sets

A, = M A, = {AI ﬁl(x)é r} (C.1)
alla<r

defined for every positive real nwiber r. Also define

gr) = L. u. b. ) (c.2)
all a<r

Then for any point x not in X5 if x is in Ar, 12 (x) 2 g(r). Also consider the
family of sets

A% = allLS)> rAs = {X ,El(x) > r} (C.3)

defined for every positive real number r. If x is a point not in Xl s and if x
is not in A*r ’

Ly(z)& g L. b. g(r*) . (C.k)
all r*>r

Tor any value of r at which g(r) is continuous,

Cglr) = g. L. b, glxx) . (€.5)
all r¥>r
Any point x which is not in X, end for which ﬁl(x) =7 is in A but not in
A¥*r, and therefore
() S L,(x) £ g(r), L., £,(x) = a(r) - (c.6)

Clearly g(r) is a monotone increasing function of r, It can therefore
have at most a countable number of discontinuities. Let ro denote a discontin-
uity in g(r) and suppose that the set of points B = {k' ﬁl(x) =7 } has proba-

o}

bility greater than zero. Define

h(ry) =,€.u.b.{B|P{xlx€ B and fa(x)<ﬁ} = O}
(c.7)
h*(ro) = g. L. b.{ﬁ l P({x lxe B and Eg(x)> 3}) = O} .

The claim is made that h(ro) = h¥* (ro). Suppose h(ro)yl h¥* (ro). Then there

L
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exists a nunber y such that h(r ) <y < h*(r ). Define

{x Ih(ro)i- £y (%) =Y )’}

«Q
It

(c.8)
C,

~

it

{xlr< Lyue)S e )} -

both Cq and 02 have probability greater than zero, by Eq. (C.7). Now consider
the set 4 - C?.' It is an Ay (k) for the first distribution, by Theorem 5.
Clearly, by Theoréms T and 2, it camot be an A2(k) for the second distribution.
The contradiction leads us to conclude that h(ro) = h*(rd). Then for each
discontinuity Ty there exists a set of probability zero, say S(ro), such that 1if

/l(x) = r, and x is not in S(xr ), ,ég(x) =h(r_). Let X, = allUr S(r,). Then
o

Xp hes probability zero, since there arc only a countable number of points of
discontinuity r . Now define X = XlU X5 X also has probability zero. Let the
function h(r) be defined as follows:

h(r) g(r) if g(r) is continuous at r

1l

(C.9)

]

h(r) h(ro) at r = r,a discontinuity of g(r).

The function h(r) has the following properties: (1) h(r) is a monotone
increasing function of r, and (2) if ﬁl(x) = r, and x is not in X, then
[2 (x) = h(r). The first assertion is an obvious consequence of the way in
vhich h(r) is defined, and the fact that g(r) is monotone. The second assertion
has been shown separately first for points where g, and hence h, is continuous,
Eq. (C.6), secondly for the points of discontinuity of h, in the preceding para-
graph.

Now suppose x and y are not elements of X, and ﬁl(x)% ﬁl(y). If

fl(x) =r_and [l(y) =Ty then r_ 2 Lo It follows from the fact that h(xr)

1

is monotone increasing that h(r,) 2 h(ry), end since £ (x) = h(r,) and

b5
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£, (y) = h(ry), Ly(x) 2 E2 (v). Since X has probability zero, this completes the

proof.

Theorem ¢5. If fSN(l) (x) is k-equivalent to fSN(l) (x) for each vaelue of 1
between 2 and n, (or between 2 and ), and a; are positive real numbers such that

5 ! (3)

- - (1) 1y
a; =1, (or % a, = 1), then Lo (x) and % a, Ty (%),

M

@ .
(or 2. a; fSN(l) (x)) yield k-equivalent distributions.
The set X (in the definition of k-equivalence) for the distribution

given by the sum is taken as the union of the sets X for the individual distri-

butions. Then the proof is obvious.

a . -
Theorem Ch: If fSI‘I( )(x) is a continuous function of ¢ in an interwval [a ’ o] ’
o . : (@)
if for any two numbers oy and Oy, fSN( 1) (x) is k-equivalent to fSN 2 (x), and

if F(a) is & monotone function which is zero at the left end of the interval and

1 at the right end of the interval, then

fb £ @y a
P e

a

is k-equivalent to any fSN(a) (x).

Proof: Choose any G, in the interval [a, b] . Then for each rational value of
« in the interval [a, b] ’ fSN(a) (x) and fSN(aO)(x) are k-equivalent. There
is a set X,, which has probability zero, such that if x, y are not in Xos
ﬁa(x);ﬂa(y) if and only if z%(x)éﬁ%(y). The union X of all X with
rational @ also has probaebility zero, since the rational numbers are countable.
Furthermore, i1f x and y are not in X, then ja(x)éﬁa(y) for any rational value

of « implies E%(x);ﬁ%(y), and L g, (x)2 Lo (y) implies Lg(x)Z Ly(y) for

L6
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all retional values of ¢. Since fSN(a) (x) is continuous in «, Ea(x) must be
continuous in o also, and it must follow that for any real ¢ in [a ’ b] and for
any X, y not in X, ﬂa(x)é ﬁa(y) if and only if ﬁao(x) éﬂao(y). Then it is

easy to show that if x and y are not in X,

b
- (o) 2
af [£a(x) - 24)] @®@) 20
. . > b (@) . .
if and only if ﬁao(x)=£ao(y), and hence f oy @ (x) &F(x) is equivalent
a

to fSN(ao) (x).

b7
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LIST OF SYMBOLS

The event "The operator says there is signel plus noise present,"
or a criterion, i.e., the set of receiver inputs for which the
operator says there is a signal present.

Any criterion A which maximizes Pay@) - B PN(A)’ i.e., an opti-
mm criterion of the first type.

Any criterion VA for which P

(A) £ k, and Po(A) is maximum, i.e.,
an optimum criterion of the »

Nsecond. type.
The event "The operator says there is noise alone."

A parameter describing the ability of a receiver to detect signals.
(See section 5.1 and Fig. 5.1.)

The signal energy.
The n-dimensional Euclidean space.
The probability density for points x in R if there is noise alone.

The probability density for points x in R if there is signal plus
noise.

The complementary distribution function for likelihood ratio if
there is noise alone, i.e., FN(B) is the probability that the

likelihood ratio will be greater than p if there is noise alone.

The complementary distribution function for likelihood ratio if
there is signal plus noise.

A symbol used primarily for the upper bound placed on false alarm

probability PI‘-I(A) in the definition of the second kind of optimum
criterion.

Ty (x)
The likelihood ratio for the receiver input x. £(x) = _f_l\(%_)_ .
A

The dimension of the space of receiver inputs. n = 2WT .

The event "There is noise alone," or the noise power.
The noise power per unit bandwidth. XN o = I\I/W .

The probability that the operator will say there is signal plus
noise if there is noise alone, i.c., the false alarm probsbility.



PSN(A) The probability that the operator will say there is signal plus
noise if there is sipgnal plus noise, i.e., the probability of

detection.

PX(SN) The a posteriori probability that there is signal plus noise
present. (See Sections 1.3 and 2.3.)

PS(S) The probability measure defined on R for the set of expected
signals.

R The space of all receiver inputs. (The set of all possible sig-
nels is the same space.)

s A signal s(t), which may also be considered as a point s in R
with coordinates (sl, VIR sn).

SN The event "There is signal plus noise.”

t Tine.

T The duration of the observation.

W The bandwildth of the receiver inputs.

X A receiver input x(t), which may also be considered as a point x
in R with coordinates (xl, Xny o o e xn)

B A symbol usually used for the likelihood ratio level of an optimum
criterion.

FLSN(Z) The mean of the random vaeriable z 1f there is signal plus noise.

;LH(Z) The mean of the random variable z if there is noise alone.

O'NQ(Z) The variance of the random variablc z if there is noise alonc.

g&fz The variance of likelihood ratio if there is noise alone.
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ABSTRACT

PART I

The several statistical approaches to the problem of
signal detectability which have appeared in the literature are
shown to be essentially equivalent. A general theory based on like-
lihood ratio ecrmbraces the criterion approach, for either restricted
false alarm probability or minimum weighted error type optimum, and
the a posteriori probability approach. Receiver reliability is
shown to be a function of the distribution functions of likelihood
ratio. The existence and uniqueness of solutions for the various
approaches is proved under general hypothesis.,

PART II

The full power of the theory of signal detectability can
be applied to detection in Gaussian noise, and several general re-
sults are given. Gix special cases are considered, and the
expressions for likelihood ratio are derived. The resulting opti-
rurt receivers are evaluated by the distribution functions of the
likelihood ratio. In two of the special cases studied, the uncer-
tainty of the signal ensenble can be varied, throwing some light on
the effect of uncertainty on probability of detection.
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THE THEORY OF SIGNAL DETECTABILITY

Part II. APPLICATIONS WITH
GAUSSIAN NOISE

ISSUED SEPARATELY:

Part I. THE GENERAL THEORY

3. INTRODUCTION AND GAUSSIAN NOISE

3.1 Introduction

The chief conclusion obtained from the general theory of signal detec-
tability presented in Part I is that a receiver which calculates the likelihood
ratio for each receiver input i1s the optimum receiver. The receiver can be
evaluated (e.g., false alarm probability and probability of detection can be
found) if the distribution functions for likelihood ratio are known. It is the
purpose of Part II to consider a number of different ensembles of signals with
Gaussian noise. For each case, a possible receiver design is discussed. The
primary emphasis, however, is on obtaining the distribution functions for like-
lihood ratio, and hence on estimates of receiver performence for the various
cases.

The special cases which are presented were chosen from the simplest
problems in signal detection which closely represent practical situations. They
are listed in Table I along with examples of engineering problems in which they

find application.
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TABLE I

Section

Description of
Signal Ensenble

Application

L2

k.3

L4

k.5

4.6

4.8

4.9

Signal Known Exactlyl

Signal Known Except for
Phasel

Signal a Sample of White
Gaussian Noise

Video Design of a Broad
Band Receiver

A Radar Case (A train of
pulses with incoherent
phasge)

Signal One of M Orthogo-
nal Signals

Signal One of M Orthogo-
nal Signals Known Except
for Phase

Coherent radar with a target of
known range and character

Ordinary pulse radar with no inte-
gration and with a target of known
range and character.

Detection of noise-like signals;
detection of speech sounds in
Gaussian noise.

Detecting a pulse of known start-
ing time (such as a pulse from a
radar beacon) with a crystal-video
or other type broad band receiver.

Ordinary pulse radar with inte-
gration and with a target of known
range and character.

Coherent radar where the target is
at one of a finite number of non-
overlapping positions.

Ordinary pulse radar with no inte-
gration and with a target which
may appear at one of a finite
numnber of non-overlapping posi-
tions.

—

10ur treatment of these two fundamental cases is based upon Woodward and Davies'
work, but here they are treated in terms of likelihood ratio, and hence apply
to criterion type receivers as well as to a posteriori probability type

receivers.

2
This is egsentially the case treated by Middleton in Ref. 7.
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In the last two cases the uncertainty in the signal can be varied, and some
light i1s thrown on the relationship between uncertainty and the ability to

detect signals.l

The variety of examples presented should serve to suggest
methods for attacking other simple signal detection problems and to give insight
into problems too complicated to allow a direct solution.

It should be borne in mind that this report discusses the detection of
signals in noise; the problem of obtaining information from signals or about
8ignals, except as to whether or not they are present, is not discussed. Fur-
thermore, in treating the special cases, the noise was assumed to be Gaussian.2

The reader will probably find the discussion of likelihood ratio and
its distribution easier to follow if he keeps in mind the connection between a
criterion type receivei and likelihood ratio. In an optimum criterion type
system, the operator will say that a signal is present whenever the likelihood
ratio is above a certain level B. He will say that only noise is present when
the likelihood ratio is below B. TFor each operating level 3, there is a false
alarm probability and & probability of detection. The false alarm probebility
is the probability that the likelihood ratio ,Z(X) will be greater than p if
no signal is sent; this is by definition the complementary distribution function
FN(B). Likewise, the complementary distribution FSN(B) is the probability that

£ (z) will be greater than p if there is signal plus noise, and hence Fgy(B) is

the probability of detection if a signal is sent.

lThe only discussion in the literature on the effect of uncertainty on signal de-
tectability which has come to our attention is in Davies, Ref. 2, where the effect
upon sipgnal detectability of not knowing carrier phase is shown quantitatively.

ESee the footnote on page 4 with reference to the spectrum of the assumed
noise.
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5.2 Gaussian Noise

Throughout Part II, receiver input voltages, which are functions of
time, are assumed to be defined for all times t in an observation interwal,
0L t£ T. They are also assumed to be limited to a band of frequencies of

1 each receiver input can be thought of as

width W. By the sampling theorem,
a point in a 2WT dimensional space, the coordinates of the point being the value
of the function at the "sample points" t = é%? , Tor L £ 1S 2WT. The notation
x(t), or simply x,denotes a receiver input, and X, denotes the ith sample value,
or coordinate. The signal as it would appear at the receiver input in the
absence of noise is denoted by s(t), or simply s, and the coordinates, or sample
values, of s are denoted by 8y The receiver input, which may be due to noise
alone or to signal plus noise, is random because of the presence of noise.
Therefore, only the probability distribution for the receiver inputs x(t) can
be specified. The distribution must be given for the receiver inputs both
when there is noise alone and when there is signal plus noise. The probability
distributions are described in this report by giving the probability density
Tunction fgy(x) and fN(x) for the receiver inputs x in the 2WT dimensional space.
The noise considered In Part II is always Gaussian noisc limited to
the bandwidth W, and having a uniform spectrum over the band.2 This is ordi-~
narily called white Gaussian noise. The probability density function for white

Gaussian noise, and hence for the receiver inputs when there is noise alone, is:

a Y.2
f.(x) = L ex . or (3.1)
il I1 xp s |t .

1=1 / 2aN

d=

lSee Appendix- D.

2If the noise spectrum is band limited, but not uniform, the noise and signals
cen be put through a filter which makes the noilse uniform, and then the theory
can be applied. See H. W. Bode and C. E. Shannon, "A Simplified Derivation of
Linear Least Square Smoothing and Prediction Theory," Proc. I.R.E., Vol. 38,

p. 417, April 1950. y




n
) 1
fyl=) = ( eiN) P [' %’ﬁ 2 Xie} (5.22)

where n is the dimension of the space, i.e., 2WT ,2 and N is the noise power.5

It can be shown that this ensemble of noise functions has a Gaussian distribu-
tion at every time and that its spectrum is uniform.

By the sampling theorem,

T
) xi2 = oy f [x(t)]edt ) (3.3)
0
Therefore a
L 2 1 ! 2
fN(x) = (é}‘ﬁ) exp [— ﬁo f x(t) dt] » (3.2b)

0

where N g is the noise power per unit bandwidth.5
If the signals and their probabilities are known, then the signal plus
noise probability density function, fSN(x), can be found by the convolution

integral, as described in Section 2.

]‘Unless otherwise indicated, the limits on the sum are i =1 to i = n = 2WT.

x.2 n

2 . 1 i
If 575 exp [— é‘ﬁ"] is called fy(x ), then fN(x) Iz[l fN(xi), lce., the x, are

independent and each has Eeh (Xi) for its probebility density function. For a
discussion of "independent," see Cramér, Ref. 1k, p. 159.

3'.l‘his assumes the circuit impedance is normalized to one ohm.
l}See Appendix D.

OThis form of the expression for IN(X), and the corresponding forms of the
equations for fSN(x) and £ (x) were first derived by Woodward. See Woodward
and Davies, Refs. 2 and 3.

6See page 13 of Part I.
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fSN(X) = /fn(x"s)d?s (s) “(éﬁf) ﬁ‘q’ [ 5% Z (Xl 51) } dpy (8)

R i=1
(5.4a)

8] o[ 4 5 ooy £ ]

n

1\2
o) P 2N

1

u' MB

=

M

~

I

H)\;

0

1

o]

~

B

—~

02}

~—

L1

—_—

1

Al

=

~———
|

.g\

[- ﬁl_ fT[x(t)—s(t)]2 dt]drsm

o

(3.4)

s

T
= <§:J§\I_) exp [- -I%—f X2 dt] exp [- N-]-'- f sedt] Xp[ﬁof xs dt] Q_PS(S)

0 0

T
The factor e*{p[ 1;' f Xz(‘b) dt] = exp [— éli'\f > xig} can be brought out of
0

the integral since it does not depend on s, the variable of integration. Note
that the integral

T o2 1 2 1
of s°dt = 5 28y = E(s) (3.5)

is the energy of the expected signal, while
T 1
of x(t) s(t) at = = 2 X;8; (3.6)

is the cross correlation between the expected signal and the receiver input.

lSee footnote 3 on page 5.
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5.3 Likelihood Ratio with Gaussian Noise

Likelihood ratio is defined as the ratio of the probability density

functions fqy(x) and fN(x). With white Gaussian noise it is obtained by dividing

Eq (3.%) by Bg (3.2).

n
L(x) = ﬁxp {- —T(qi)'J exp (IE\T Z XiSiJ dPg(s), or (3.7a)
R o i i=1
T
L) - /xp[%%lez» 27 xw e at] () . (3.70)
R ° L% 0

If the signal is known exactly or completely specified, the probability
for that signal, or point s, is unity, and the probability for any set of points

not containing s is zero. Then the likelihood ratio becomes

. n
,Zs(x) = exp [- ENZ | exp F I;I Y X8 (s or (3.8a)
i=1
e [LE® ) [2 T
= exp N, JGXP L N _[ x(t) s(t) dt] (3.8b)

0

Thus the general formulas (3.7a) and (3.7b) for likelihood ratio state that .£(x)

is the weighted average of £, (x) over the set of all signals, i.e.,

lx) = /[S(x)d:?s(s) . (3.9)
R

If the distribution function PS (s) depends on various parameters such

as carrier phase, signal energy, or carrier frequency, and if the distributions




in these parameters are independent,l the expression for likelihood ratio can be
gimplified somewhat. If these parameters are indicated by rl, Tpy eeey Tpy and
the associated probability density functions are denoted by fi(rl), fé(rg), ceey
%Jqﬂ,tMm

d PS(S) = fl(rl) see n(rn) drl ese drn
The likelihood ratio becomes

,@(X) f oo f ﬁs(x) fl(rl) ces fn(rn) ary v ar

f [f;l(rn) [ffl(rl) £, (x) ar ] ~-]drn . (3.10)

Thus the likelihood ratio can be found by averaging .Zs(x) with respect to the

parameters.

leramér, Ref. 14, p. 159.
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L. LIKELIHOOD RATIO AND ITS DISTRIBUTION FOR SPECIAL CASES

4,1 Introduction

The purpose of this section is to derive expressions or approximate
expressions for likelihood ratio and its distribution functions for a number
of special signals in the presence of Gaussian noise, The results obtained in

this section are summarized and discussed in Section 5.

4.2 The Case of a Signal Known Exactly

The likelihood ratio for the case when the signal is known exactly

has already been presented in Section 3.3, Eq (3.8).

i n
£(x) = exp -ﬁ%} exp [%f iz:l xisi] ) (%.1a)
T
4(x) = exp F-l—\IE—-] exp[ T\Ig- f x(t) s(t) d‘t} (.1b)
L ° ° 4

As the first step in finding the distribution functions for Z(x), it
is convenient to find the distribution for i]\? > x;8; when there is noise alone.
Then the input x = (X55 Xpy ey xi) is due to white Gaussian noise. It can be
seen from Eq (3.1) that each xs has a normal distribution with zero mean and
variance N = WNO and that the x; are independent. Because the 8; are constants
depending on the signal to be detected, s = (sl, 8oy ++ey 8,), each summand

i

8
%}' (z48;) has a normal distribution with mean 5 times the meen of x,, and vari-
e 82 8,2

8
ance e times the variance of x, — zero and —=— § = —— respectively.
e : W N

Because the xi are independent, the summands * 84X; are independent, each with

N

normal distributions, and therefore their sum has a normal distribution with
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mean the sum of the means -- i.e., zero -- and variance the sum of the
va.riances,l
g 2
S 1 - @WE(s) _ Z2E _ 5y Signal Energy . (4.2)
N N N, Noise Power Per Unit Bandwidth '

The distribution for I}»I- 2 Xi84 with noise alone is thus normal with zero mean

B

and variance Recalling (4.la)

=
O

L(x) = exp [- f’;—o- +§ 2 xisi] (%.1a)

it is seen that the distribution for% > X;8; can be used directly by intro-

ducing o defined by

B = exp [-%+a} s ora=1—%+ £ nB (+.3)

The inequality Y4 (x) 2 B is equivalent to %insiz a, and therefore

¢ 0
N N
SMONNE =5 / oxp [%éﬁyaJ &y ()
0/

The distribution for the case of signal plus noise can be found by

using Theorem 8, which states that®

dFsm'(ﬁ) = BGFN(ﬁ) . (1-1-.5)

1
Cramér, Ref. 1k, p. 212.

®5ee Part I, pp. 2Lk and 27.

10




—  ENGINEERING RESEARCH INSTITUTE -+ UNIVERSITY OF MICHIGAN —

Differentiating Eq (L.U4),

NO Noo: 1
@) = -/ e Lo e, (.6)
and combining (4.3), (4.5), and &.6),
No B Nooj2
dFSN(B) = - Il-—J'ﬂT: exp [- -ITI-(-)- + O "—E‘d—}-— do (h-.?)

Thus

In summary, o, and therefore Ln g , has a normal distribution with signal

plus noise as well as with noise alone; the variance of both distributions

is —%—— » and the difference of the means is 2k .
Ny N,

The receiver operating characteristic curves in Fig. 4.1 are plotted
for any case in which /n £ has a normal distribution with the same varience
both with noise alone and with signal plus noise., The parameter d in this
figure is equal to the square of the difference of the means, divided by the
varia.ncé. These receilver operating characteristic curves apply to the case of
the signal known exa;ctly, with 4 = ?I_E .

Eq (4.1b) describes what tlc;e ideal receiver should do for this case.

T
The essential operation in the receiver is obtaining the correlation,of s(t)x(t)at.

1The change in sign appears because the distribution functions FSH(B) and FN(B)

are probabilities that .£(x) will lie between 8 and @, not - @ and B as is
usually the case. If the density function for Fgqy(B) is called g(p), then

Y

M = —g(ﬁ), and FSN(B) = Bf G(B) ag.

ag

1l
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The other operations, multiplying by a constant, adding a constant, and teking
the exponential function, can be taken care of simply in the calibration of the
receiver output. Electronic means of obtaining cross correlation have been
developed recently.l

If the form of the signal is simple, there is a simple way to obtain
this cross correlation.® Suppose h(t) is the impulse response of a Tilter.

z

The response eo(t) of the filter to a voltage x(t) ig”
t

ey (t) = f x(T ) h(t-T) aT (+.9)
If a filter can be synthesized so that
h(t) = s(T-t) OStET
h(t) = 0 otherwise, (%.10)
then
T
co(T) = f x(t) s(T)drt , (%.11)
0

so that the response of this filter at time T is the cross correlation required.
Thus, the ideal receiver consists simply of a filter and amplifiers.
It should be noted that this filter is the same, except for a constant

factor, as that specified when one asks for the filter which maximizes peak

signal to average noise power ratio.

lHarrington and Rogers, Ref. 16; Harting and Meade, Ref. 17; Lee, Cheatham, and
Wiesner, Ref. 18; Levin and Reintzes, Ref. 19.

2This appears to be due to Woodward. See Woodward, Ref. 5, and Woodward and
Davies, Ref. 3.

3s. Goldman, Transformation Calculus and Electrical Transicnts, Prentice Hall,
New York, 1949, p. ll2.

J‘LI_.emson and Uhlenbeck, Ref. 1, p. 206; Horth, Ref. 11.
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1.3 Signal Known Except for Carricr Phase

The signal ensemble considered in this section consists of all
signals which differ from a given amplitude and frequency modulated signal only
in their carrier phase, and all carrier phases are assumed equally likely.

s(t) = £(t) cos (wtHh(t)-6) . (.12)

Since the unknown phase angle © has a uniform distribution,

1
By (6) = 5 8. (4.13)

The likelihood ratio can be found by applying Eq (3.7), and since the signal

energy E(s) is the same for all values of carrier phase Q,l
- _E o | £
L(x) = exp [ ) } /;,,cp ':N Xisi} d.PS(s) (.1h)
R

2
Expanding s into the coefficients of cos 6 and sin 6 will be helpful:
s(t) = £(t) cos(w £+¢(t))cos 0 + £(t) sin(wt+¢(t))sin o , (k.15)

and

%zxisi = cos e%}. Yxg f(ti) cos (wti + ¢(ti))

+ s5in 6 %Z x; £(t;) sin (wti + ¢(ti)) (+.16)

Because we wish to integrate with respect to 6 to find the likelihood
ratio, it is easiest to introduce parameters similar to polar coordinates

(r, 6,) such that

lFo:c' this to be rigorously true, it is sufficient that the signal be time limited
and have its line spectrum zero at zero frequency and at all frequencies equal

to or greater than =—

2w
2%

.

2 t1 denotes the 1th sample point, i.e., t; = %

17
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1 = 1 Wt t,

o T cos O s ZXi £(t;) cos ( 3 + 8( 1))

l as — l - A O

5 rsin e, = T ZOAi i‘(ti) sin (w Ty + ¢(ti)) (4.17)
and therefore

L2 %y = Feos (8-8) (4.18)

Using this form the likelihood ratio becomes

N 2n
- b r - de
b(x) = exp |- f\g] f exp [i\f cos (6 90)] >
- 0
B
= exp |- ﬁ—] I, ( IE\T ) (+.19)
| o

where I, is the Bessel function of zero order and pure imaginary argument.
I, is a strictly monotone increasing function, and therefore the

likelihood ratio will be greater than a value B if and only if I§ is greater than
J
r

sone value corresponding to B. The quantity r is defined by the Eq (4.17); T
is the square root of the sums of the squares of the right-hand sides. The
T

N
il
that each of the right-hand sides is —22 times the cross correlation of x(t)

probapility that = will exceed any certain value can be computed by observing

with a fixed signal, either £(t) cos [ wt + ¢(t)] or £(t) sin [w t o+ ¢(t)] .
Therefore, the distribution of each can be found in the same manner as the dis-

tribution of %I' Z x484 was found for the case of the signal known exac‘tly,l and

r T
both i cos GO and. i

%E- . Furthermore, f£(t) cos (wt + ¢(t)) and f(t) sin( wt + ¢(t)) are out
)

of phase, or orthogonal, and therefore r cos 6, and r sin 90 have independent

sin Qo have normal distributions with zero mean and variance

distributions .2

lSee page 9. 2See footnote 1, p. 17.
18
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r - x 2 L. 2 Lo
Because T = % T cos 90) + ( I sin 90) , the probability that

%I'.will exceed any fixed value is given by the well-known chi-square distribu-

1
tion for two degrees of freedom, K?_(az). The proper normalization yielding

/ N
. . e . . r 0 .
zero mean and unit variance requires that the variable be T —27:1'—(57’ that is

) 2
Py % -2—%2a =K2(O£)=exp[-gé—:|. (+.20)

If o« is defined by the equation

o) 2E
B = exp l:--ﬁ-o-] I, /"ﬁo a | o, (k.21)

the distribution for ,Z(x) in the presence of noise alone is in the simple form

a2
Fy(B) = exp |- = . (4.22)
Using Theorem 8 of Section 2, namely
B dFN(B) = dFSN(ﬁ) (""'23)

but meking use of the parameter ¢, we form first

dFN(ﬁ) = - O exp {- %2—] o, (k.2k)
and hence
2
dFSN(B) = = €Xp [_ ﬁ%]ae@ ‘:'%]IO I%‘E;a o (h‘QS)

Integrate from ¢ to infinity.

Y 2
Fgy(B) = ezp [-NE] f Q@ exp [-%} I, /%—Ea o . (4.26)

0lg

lCramér, Ref. 14, p. 233, or Hoel, P. G., Introduction to Mathematicael Statistics,
Wiley, 1947, p. 13k, .

19
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Egs (4.22) and (4.26) yield the receiver operating cheracteristic in parametric
form, and Eq (1+.21) gives the associated operating levels L These are graphed
in Fig. 4.5 for the same values of signal energy to noise per unit bandwidth
ratio as were used when the phase angle was known exactly, Fig. 4.1, so that the
effect of knowing the phase can be easily seen.

If the signal is sufficiently simple so that a filter could be syn-
thesized to match the expected signal for a given carrier phase 6 as in the case
of a signal known exactly, then there is a simple way to design a receiver to
obtain likelihood ratio. For simplicity let us consider only amplitude modulated
signals (¢(t) = 0) in Eq. (h.le)). Let us also choose © = 0. (Any phase could
have been chosen.) Then the filter has impulse response

n(t) = £(2-t) cos [w(r-t)] 0StsT

[}

= 0 otherwise. (k.27)

The output of the filter in response to x(t) is then

t t
f x(T) h(t-t) dT = f x(t ) £(T +T-t) cos w (T+T-%t) 4T

ey(t) =
-D t-T
t
= cos W(T-t) f x(t) £f(T+l-t) cos wtT 4T
t-T
t
- sin w (T-t) f x(t) f(t+l-t) sinwtT d T . (4+.28)
t-T

lGraphs of values of the integral (4.26) along with approximete expressions for
snmall and for large values of & appear in Rice, Ref. 20. Tables of this
function have been compiled by J. I. Marcum in an unpublished report of the
Rand Corporation, "Table of Q-Functions," Project Rand Report RM-399.
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The envelope of the filter output will be the square root of the sum
of the squares of the integrals,l and the envelope at time T will be propor-
tional to = » since

N
T
x|
20

T
[f x(T) £(T) cos wrdr:l2+[f x(t) £(7 ) sin wrdl—JQ. (%.29)
0 0

i

Square of the envelope, at time T, of eo(t).

If the input x (t) passes through the filter with an impulse response given by
N

Eq (4.27), then through a linear detector, the owtput will be »  at time T.

Because the likelihood ratio, Eq (4.19), is a known monotone function of % ’

the output can be calibrated to read the likelihood ratio of the input.

L.} Signal Consisting of a Semple of White Gaussian Noise

Suppose the values of the signal voltage at the sample points are
independent Gaussian random variables with zero mean and variance S, the signal
power. The probability density due to signal plus noise is also Gaussian, since

. . . . . 2
gsignal plus noise is the sum of two Gaussian random variables:
n

£ (x) = | =7 : z § (+.30)
sw®) =\ e [-3 s 2 %1 | &

The likelihood ratio is
n

2
11 2 1 1 2
L) - (ﬁ%) exp[aﬁzxi T2 in] (+.51)

11 the 1ine spectrum of x(t) is zero at zero frequency and at all frequencies

equal to or greater than gﬁ), then it can be shown that these integrals
w

contain no frequencies as high as P

2Cremér, Ref. 14, p. 212,
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In solving for the distribution functions for £, it is convenient

to introduce the parameter o, defined by the equation

n

= (‘I-IL-E-S-) exp (ITS%E %?-) . (k.32)

1
Then the condition £(x) 2 p is equivalent to the condition that T Z x; 2 052
X
In the presence of noise alone the random variables ( —1) have zero mean and unit

VI

variance, and they are independent. Therefore, the probability that the sum of

the squares of these variables will exceed cz2 is the chi-square distribution

with n degrees of freedom,l i.e.,

FB) = K,(@°) . (4.53)
&
Similarly, in the presence of signal plus noise the random variables
"\ N+S

o

2
have zero mean and unit variance. The condition % 2 %y 2 o 1is the same
s 1l 2 = . . . .
as requiring that T z Xi b s & and again making use of the chi-square

distribution,
. N 2
Fon®) = Bnlgzs® | - (4.3k4)

Receiver operating characteristic curves are presented in Figs. 4.6 and

4

l,7 for four possible choices of n (lO2 N lO3 s 10, lO5 ), and in each case for

three velues of signal to noise ratio three db apart.

Tor large values of n, the chi-square distribution is approximately

2

2
normal over the center portion; more precisely,” fora > > O

lcramér, Ref. 14, p. 233. Tables of Ky (o7) can be found in most books on sta-
tistics. Extensive tables are listed in the bibliography of Ref. lll-, p. 570.

2P. G. Hoel, Introduction to Mathematical Statistics, New York: Wiley, 1947,
p. 246,
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JET

T
/e
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If the signal energy is small compared to that of the noise,

YE} dy (4.35)

PO+

-

ana

X is nearly
s 7

unity and both distributions have nearly the same variance. Then Fig. 4.1

applies to this case too, with the value of d given by

2
d = (2n-1) (1 - &/ J—ﬂ\ig- . (&.37)

For these small signal to noise ratios and large samples, there is

simple relation between signal to noise ratio, the number of samples, and the

T ,LlsS s
l‘«/ﬁ;s?”em fory << 1 ,

detection index d.

2
i~ P.S.g_ (4.38)
20
. . . S S . .
Two signal to noise ratios, (I—I) and(ﬁ) , will have approximately the same
1 2

operating characteristic if the corresponding numbers of sample points, ny

and ny, satisfy 2

(2),
)

=10

|5
—
=l
N
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This can be verified for the three curves of Fig. 4.7 for n = JLO5 » compared
with Fig. 4.1 for 4 = 1, b, 16.
The receiver specified is any device that produces the likelihood

ratio of its input,

(o] l 2
exp ,:ﬁ%g T > x4 ] . (+.31)

An energy detector has as its output

e (t) = fT[x(t)]e at = aiw fo (4.40)
0

and this receiver can be calibrated so that its output at the end of the obser-

vation time, e (t), will be read as

- [ 5 eo(T)] (k. 41)

S N
(o]

L5 vVideo Desipn of a Broad Band Receiver

The problem considered in this section is represented schematically

in Fig. 4.8. The signals and noise are assumed to have passed through a band

INPUT FROM

BAND PASS LINEAR VIDEO
ANTENNA ]
Fi
OR MIXER FILTER / DETECTOR/ AMPLIFIER
POINT A POINT B
FIG. 4.8

BLOCK DIAGRAM OF A BROAD BAND RECEIVER.

pass filter, and at the output of the filter, point A on the diagram, they are

assumed to be limited in spectrum to a band of width W and center frequency

a7




—  ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN —

_é_ﬂ__ Eel . The noisec is assumed to be Gaussian noise with a uniform spectrum
¢

over the band. The signals and noise then pagss through a linear detector. The
output of the detector is the envelope of the signals and noise as they appeared
at point A; all knowledge of the phase of the receiver input is lost at point B,
The signals and noise as they appear at point B are considered receiver inputs,
and the theory of signal detectability is applied to ﬁhese video inputs to
ascertain the best video design and the performance of such a system. The
mathematical description of the signals and noise will be given for the signals
and noise as they appear at point A, The cnvelope functions, which appear at
point B, will be derived, and the likelihood ratio and its distribution will be
found for these envelope functions,

The only case which will be considered here is the case in which the
amplitude of the signal as it would appear at point A is a known function of
time.

Any function at point A will be band limited to a band of width W
and center frequency é(% > 321 . Then the alternate form of the sampling theoren
can be used.t Any such function £(t) can be expanded as follows:

f(t) = x(t) cos wt + y(t) sin wt (k. 42)

where x(t) and y(t) are band limited to frequencies no higher than g , and
hence can themselves be expanded by the sampling theorem:

£(t) = Z[x (%) 4/i('t) cos Wt + y(%‘)\[fi(t) sin wt] . (H43)

i

The function can be thought of as & point in a space of n = 2WT dimensions with
‘ i
{

. _ <LV ‘o s .
coordinates x (Y—) = X5 and y (W) =y; - This is a rectangular coordinate

lSee Appendix D.
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system, since the family of functions \I’i(t) cos wt and ‘I’i(.t) sin wt form
an orthogonal system.

The amplitude of the function f(t) is

r(t) / =) + [v0)]° (b 1)

and thus the amplitude at the ith gampling point is

i
P(w) =7 o= m e (h.15)
The angle
¥ X
8, = arctan — = arccos — (4.146)
i X, ry

night be considered the phase of f(t) at the jth sampling point. The function

f(t) then might be described by giving the r, and 8; rather than the x; and yj.

i 1

The rj and ©; are sample values of amplitude and phase, and forma sort of
polar coordinate system in the space associated with the set of functions.

Let us denote by X4s ¥4 OT Ty, ®) 19 the coordinates or sample values
for a receiver input after the filter (i.e., at point A in Fig. 4.8). Let
aj, by, or £y, ¢i denote the coordinates for the signal as it would appear at
point A if there were no noise. The envelope of the signal, hence the coor-

dinates f;, are assuned known. Let us denote by Fg(fy, Boy «--» ¢E) the

2
distribution function of the phase coordinates ¢i' The probability density

function for the coordinates X0 V5 when there is white Gaussian noise and no

signal is

s

[_1 nf2 , n/2 2)} )

oy 2 Y1t )y Yy
=1 i-1

fN(-X: y) = (éér:ﬁ) exp

29
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and Tor signal plus noise

n
2 n/2 n/2
o i} 1l 1 2 2
Ton(x, ¥) = (m) exp [— -2—I_I<zl (xi-ai) + .Zl (yi-bi)> dPS(aibi)
= 1=
R (4.148)
Changing to the polar coordinates,
n
1 2 n/f2 1 n/2 5
fﬂ(r, e) = (§§ﬁ) . Ty oXp | - 5m ;E r, s (. 49)
i=1 i=1
anc
n
2 n/2 n/2
1 1 2 .2
fSI'I(r’e) = m) II ry exp[— 5T z {ri + —Brifi cos (@i-¢i§J
i:l i=l
R
dFS<¢l, vers ¢.f_l) . (4.50)
2WT 2
The factors II ry are introduced because they are the Jacoblan of the
i=1

. . 1, 2
transformation from rectengular to polar coordinates.™’

The probability density function for r alone, i.e., the density func-
tion for the output of the detector, is obtained by simply integrating the den-

sity functions for 1 and © with respect to 9.5

21 25 25

I

N

=

p—

I

—
~
~—
s ?
‘——‘/\

H

-

©
[N

o

©

-

o)

©
no

o
B

(+.51)

[§]
—
=
S
no
= =i
~
1
[0]
~,
s
f 1 1
h#
o]
™M
~
21
[
N
—J

Lorandr, Ref. 14, page 292.

O

“For example, in two dimensions, fN(X, y)ix dy = fN(r, @) r dr de.

=2 /
“Cramer, Ref. 1k, page 291.
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and
2x 25 2x
fq(@) = [ [ [ £ (egs 6y) a6, a8, aey
0 0 0 2
n
L 5 /n/2 1 n/2 s 2 n/2 ry "y ¢ 4
(7)) / 0 mew| - 2 () 0 \—w ) 0
R i=1 i=1 i=1
n
P rifs , L
i - -
= (ﬁ') H ry Ig | xP 5 Z (r ) (k.52)
i=1 :

Hotice that the probability density for r is completely independent
of the distribution which the ¢ 1 had; all information about the phase of the
8ignals has been lost.

The likelihood ratio for a video input is

Lo (r) L 2 ) /2 ity )
L) = gy = ew |-z | T 1| =) ¢.2)
i=1 i=1
Again it is more convenient to work with the logarithm of the likelihood ratio.
n§2 5 5
L LS [f(t)] at = 2, and (%.54)
2N 4., 1 2N N,
n/2
™ . f.
In b (x) = - I—i—’— Y jn = ’ (k.55)
o N
i=1l
which is approximately
T
- - - E Ly x(t) £(t) at 4,56
In f(l (t)) = I W f .Zn I, - (4.56)
0

IS
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The function ,én Io(x) is plotted as a function of x in Fig. h.9.
. \ X2 .
This function 1s very nearly the parabola j:.for small values of x and is
approximately linear for large values of x. Thus, the expression for likelihood

ratio might be approximated by
T

Y . _E W 2 1. 2 =
Lo L(r(t)) = T f [r(‘c)] [f(t)] at (%.57)
0
for small signals, and by
T
Lnd(e(t)) = c, + G, f r(t) £(t) at (4.58)
0

for large signals, where C, and 02 are chosen to approximate Zn Io best in the

1
desired range.

The integrals in Egs (4.57) and (4.58) can be interpreted as cross
correlation. Thus the optimum receiver for weak signals is a square law detec-
tor, followed by a correlator which finds the cross correlation between the
detector output and (f(t))e, the square of the envelope of the expected signal.
For the case of large signal to noise ratio, the optimum receiver is a linear
detector, followed by a correlator which has for its output the cross correla-
tion of the detector output and f(t), the amplitude of the expected signal.

The distribution function for ‘Z(r) canmot be found easily in this
case. The approximation developed here will apply to the receiver designed
for low signal to noise ratio, since this is the case of most interest in
threshold studies. An analogous approximation for the large signal to noise
ratios would be even easier to derive.

First we shall f£ind the mean and standard deviation for the distribu-

tion of the logarithm of the likelihood ratio:
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n/2

rzf-2

1 2 1
v oL Yyt A .
Ln d(r) 2 i YT L Tr T

N (4.59)

for the case of small signal to noise ratio. The probability density functions

for each r; are

s r.c+l., s
gSN(r.) = = exp |- ——2 | I i1 s and
1 n en o i
[ 2
i L b6
gglry) = § = (-5 ' (.060)

The notation gN(ri) and gSN(ri) is used to distinguish these from the Joint

distributions of all the r. which were previously called fN(r) and fSN(r). The

o, 2
r.2f,
mean of each term :;12 =~ in the sum in Eq (4.59) is
2 2 2 © 5
r. T, f- s
/-L 1 1 = 1 __l__ gs (r.) dI'~
sw\ 12 T i nis il
0
2 @ 3
f. r. 2,,.2 .f
i i, (ri~+£i%) rity
C3 [ - ——
o A {P[ oN }I"( N dry
N
0
150 @
ry?e;2 £3° £;° (r.) ar £42 ryd ry?
K| |= = —_ & (T g = —5— exp [~ 5= |1
W\ P I T A TR A en (4.61)
0 0
r.gf.2
The second moment of each term 5 is
Ly
o0
I'.)"'S.I+ f 4 r.h
1 1 i 1
Fa\—— /= - Gn(F1) &y
SN\ 16y 161 N
0
00}
4 5 2.2
£y ry - (my7E57) Tifi |
= 2 = P To \ dry
161 s i) eN

3k
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il

©
L

2 rihfih L /-r—l—li & (r;) dr,

I\ 16 16%° J g it T

(00)
) 5 2
f. T r.,
1 f -———l exp I:_ 2———-; :] dl‘i (Ll-.62)

g 1
1
N 0

The integrals for the case of noise alone can be cvaluated easily:

2, 2 2

g e 2N

bl :
£, filL

W
161\1l¥ on

The integrals for the case of signal plus noise can be evaluated in terms of
the confluent hypergeometric function, which turns out for the cases above to
reduce to a gimple polynomial. The required formulas are collected in conveni-

ent form in the book, Threshold Signals by Lawson and Uhlenbeck.l The results

are
2 . 2 2
/j_ rigfi = ;L_ Eé'.._ +fj_'._
SN hNg 2 X 2N
L.l 2 L
m ry £y 1 fi21L 1+ f N Ty
SN 16Nl+ 2 P N g (k.64)
Since
2 o) _ 2
o’z = w@ - [p@w]® (h.65)
r.gf.a
the variance of 12 = is

lRef. 1., p. 17k
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0o 0 fh f2
r.<f. . s
0_2 171 |- L 1 <l+ i

S\ 152 bR N
2 o
o [Ti fie i :tiLL
T 2 by (4.66)

For the sum of independent random variables, the mean is the sum of
the means of the terms and the variance is the sum of the variances.

mean of fn A(x) is

n/2 nf2|, 12 e nfe ok
1 2 1l ~i 1 i |_ i
poy (Lo d) =-5 2 5 + 3T |52 W T |7 2 P
nf2 o nf2 .o
f‘ l fi
py (4nde) =- 3 5-*3 2 (.67)
i—"-l i:l
= 0

and the variance of {n A (r) is

n/2 1 filF 1f16»
oy (€0 £(x) El E 2 TEg

i

=

nfe g

S =
o lme (4.68)

2
- (ﬁhﬂ(r))

If the distribution functions £n l(x) can be assumed to be normal,
the distribution functions can be obtained immediately from the mean and standard
deviation of the distribution. In some cases the normal distribution is a good

approximation to the actual distribution.
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Let us consider the case in which the incoming signal is a rectangular

pulse which is %{ seconds long.l The energy of the pulse is half its duration

times the amplitude of its envelope, and therefore the amplitude has the value

fi = g_ﬁﬁ_f s (+.69)

where I is the pulse energy. It has this value on M sample points and is zero

at all others. For this case

1 Ee
P (£Ln L(r)) = 5 f‘q.;_
T (,@n l(r)) = 0 ,
2 i 2 B
Cenr (ln ,Z(r)) = MNOQ (l 5 ff; )
n 2
oy (£n L) = =5 (4.70)
MNO

Also, for this case, the distribution of Ln f(x) is approximately
normel, if M is much larger than one. Since it is the sum of M independent
random variables, all having the same distribution, it must, by the central
limit theorem,2 approach the normal distribution as M becomes large. The actual
distribution for the case of noise alone can be calculated in this case, since

the convolution in‘ceg,r'al3 for the gﬂ(ri) with itself eny number of times can be

l’I‘he problen of finding the distribution for the sum of I independent random vari-
ables, cach with a probability density function f(x) = x exp [- % (xe-fcze ]IO (o)

arises in the unpublished report by J. I. Marcum, A Statistical Theory of Target
Detection by Pulsed Radar: Mathematical Appendix, Project Rand Report R-113.
Marcunm gives an exact expression for this distribution which is useful only for
small. values of M, and an approximation in Gram-Charlier series which is more
accurate than the normal approximation given here. Marcum's expressions could be
used in this case, and in the case presented in Section 4.6.

2
Cra.mér, Ref. 1k, p. 213 and 316. 5Cra.me/r, Ref. 14, p. 188-9.
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expressed in closed form. The density function for this distribution is
plotted in Fig. 4.10 for several relatively small values of M. The distribution
of #n A(x) for signal plus noise is more nearly normal than the distribution
for noise alone, since the distributions gsN(ri) are more nearly normal than
elrs).

The receiver operating characteristic for the case M = 16 is plotted
in Fig. 4.11 using the normal distribution as approximation to the true distri-

bution; In many cases it will be found that

n

™
2

No

<< 1 . (.71)

.]_-. .
M

In such a case the distributions have approximately the same variance. Aasuming

normal distribution then leads to the curves of Fig. 4.1, with

2
a = Ejﬁ (%‘é) . (k.72)

4,6 A Radar Case

This section deals with detecting a radar target at a given range.
That is, we shall assume that the signal, if it occurs, consists of a train of
M pulses whose time of occurrence and envelope shape are known. The carrier
phase will be assumed to have a uniform distribution for each pulse independent
of all others, i.e., the pulses are incoherent.

The set of signals can be described as follows:

M-1
s(t) = > f(t+mT) cos (wt+@i) (&.73)

m=0
where the M angles Gi have independent uniform distributions, and the function f,

which is the envelope of a single pulse, has the property that
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T

f f(t+iT) £(A+JT) dt = %E- Sij , (. 7h)
0

where Sij is the Kronecker delta function, which is zero if i # j, and unity
if 1 = j. The time T is the interval between pulses. Eq (4.74) states that
the pulses are spaced far enough so that they are orthogonal, and that the total
signal energy is E.l The function f(t) is also assumed to have no frequency
components as high as @

21
The likelihood ratio can be obtained by applying Eq (3.7).

T
L(x) = fexp[— %ﬂ]cxp[%—f s(t) x(t) dT] dPg(s) (+.75)
R © °o
23t 2n T M-1
B 2
= exp|- =—| [ o+ [ exp|= 2 £(t+mT)x(t)cos @t+6_)dt do ...de
[ No]of Of [No of =0 (eme)(t)oos (t40y) ° M-1
(4. 76)
The integral can be evaluated, as in Section 4.3, and
. M-1 m
Lx) = e [ ﬁ—] oI (B®) (.77)
m=0
where
2 T 2 I >
™my _|.2 2 .
(—ﬁ—) =i P(t+m T )x(t)cos w tdt| + — f(t+m7) x(t)sinwtdt (4.78)
o o
0 o)

This quantity rm is almost identical with the quantity r which appeared
in the discussion of the case of the signal known except for carrier phase,

Section 4.3. In fact, each r; could be obtained in a receiver in the manner

AThe factor 2 appears in (4.74) because £(t) is the pulse envelope; the factor M
appears because the total energy E is M times the energy of a single pulse.

41




—  ENGINEERING RESEARCH INSTITUTE -+ UNIVERSITY OF MICHIGAN —

described in that section. The quantity Ty 1s connected with the first pulse;
it could be obtained by designing an ideal filter for the signal

so(‘t) = F(t) cos Wt+6) (4. 79)
for any value of the phase angle 9, and putting the output through a linear
detector. The output will be %‘. %9. at some instant of time ‘co vwhich is deter-
mined by the time delay of the filter. The other quantities Ty differ only in
that they are associated with the pulses which come later. The output of the

Ng

filter at time to +mT will be —é' T

It is convenient to have the receiver calculate the logarithm of the

likelihood ratio,

M-1 7
Lix) = -2+ 3 Un1 (—{5) (+.80)

‘o m=o

r
Thus the Zn Iy (-—I?-) mst be found for each r_, and these M quantities must be

r

added. As in the previous section, -I-? will usually be small enough so that
2 1 ties L (IB )2

£n Io(x) can be approximated by T The quantities T\ can be found
by using a square law detector rather than a linear detector, and the outputs
of the square law detector at times t,, t+ T, ..., t ) + (M-1)T then must be
added, The ideal system thus consists of an i.f, amplifier with its passband
matched to a single pulse ,2 a square law detector (for the threshold signal
case), and an integrating device.

We shall find normal approximations for the distribution functions of

the logarithm of the likelihood ratio using the approximation

r 1‘2
n 1, () i (.81)

Lsse Fig. 4.9,

211: is usually most convenient to make the ideal filter (or an approximation to
it) a part of the i.f. amplifier.

L2
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r
which is wvalid for small values of E?E’ 1
M-1 2
o~ B ' 1 rm
Znﬁ - ——-N 4 I{T ( _—-N ) . (h.&)
(o] n=o0

The distributions for the quantities r, are independent; this follows from the
fact that the individual pulse functions f(t+#mT) cos (W t+@m) are orthogonal.
The distribution for each is the same as the distribution for the quantity r

which appears in the discussion of the signal known except for phase;. the same

analysis applies to both cases. Thus, by Eq (4.22)2

ERT
W\ N om = *P|- 3

or 5 (4+.83)
r aN M
22 4] = expl- 0
PN N = £ ?_E ’
and by (k.26),
[00)
NM~»r 2 -
o m> = -2 o ex -2 1 (o /28
Psu\W & T = eXP[IJ/ Pt T e\ W EH
)
(0
or
@® 2
T oM £ acN M
o> = e - - o
Fo (I\T =a> o exp[ NOMJ/a exp \ -~y | Lo(@) & (4.84)
a

The density functions cen be obtained by differentiating (4.83) and (4.84):

MN, , r [ v, 2 N M
6 (2)- (e |- (3]

MY i 2 M
or (2) = 22 (B ems |- 2] |- (2) (2)] 5 () 09

lSee footnote 1, p.37.

2T}:xe M appears in the following equations because the energy of a single pulse is

m

;—f‘{- rather than E.

b3
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This is the same situation, mathematically, as appeared in the previous section
on page 3%. The standard deviation and the mean for the logarithm of the

likelihood ratio can be found in the same manmner, and they are

Ln L 52
Foy (£n£) = 2
7. (£nl) = 0
2
O'SN2 Unl) = E2 (l+l%—)
MN, °
2
N (Lnl) - 2 (1+.86)
O

If the distributions can be assumed normal, they are completely deter-
mined by their means and variances. These formulas are identical with the
formmlas (1L.7O) on page 37 of the previous section. The problem is the same,
mathematically, and the discussion and receiver operating characteristic curves

at the end of Section 4.6 apply to both cases.

4.7 Approximate Evaluation of an Optimum Receiver

In order to obtain approximate results for the remaining two cases, the
assumption is made that in these cases the receiver operating characteristic
can be approximated by the curves of Fig. 4.1, i.e., that the logarithm of the
likelihood ratio is approximately normal. This section discusses the approxi-
mation and a method for fitting the receiver operating characteristic to the
curves of Fig. 4.1.

It was pointed out in Section 2.5.1 of Part I of this report that
FSN(ﬁ) can be calculated if FH(I) is known. It was further pointed out that
the n*P moment of the distribution Fy(£) is the (n-1)*1 moment of the distri-

bution FSN("Z)' Hence, the mean of the likelihood ratio with noise alone is

b
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2
unity, end if the veriance of the likelihood ratlo with noise alone is 0y , the
second moment with noise alone, and hence the mean with signal plus noise is

1+ O'NE. Thus the difference between the means, and the variance with noise
alone are the same number O"NQ.

reliability better than any other single number.

This number probably characterizes the receiver

Suppose the logarithm of the likelihood ratio has a normal distribution

with noise alone, i.e.,
©

2
FN(.Z) = ;L ; / exp[- -(-%L] ax, (4.87)
¢ gn i

where m is the mean and d the variance of the logarithm of the likelihood ratio.

The nth moment of the likelihood ratio can be found as follows:

(00) 100)
2
/.LN(,@n) = (‘)fln an(.Z) = ;d -&[ exp[nx]exp[— -(x—;(;&—]dx s (4.88)

where the substitution £= exp X has been made. The integral can be evaluated by

completing the square in the exponent and using the fact that
@

/ exp[ - ’eiz_ ]dx = 2nd. »
-
/.LN(ﬂn) = exp[ Ez—d + m ] . (4+.89)

In particular, the mean of .Z(x) s which must be unity, is

y,N(,@) = 1 = exp[ -g‘-+m ] ’ (4.90)

and therefore
d

2 » and therefore the second moment

The variance of £(x) with noise alone is oy
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of £(x) is
,um(,éz) = [#N(ﬁ)]e + O'NQ(J@) = 1 + O’If(ﬁ) ,  (h.92)

and this must agree with (%.89).

#N(le) = 1+ O‘N2 = exp [ed + 2m] = exp[d] (+.93)

and therefore

d =A4n 1+ o 2) (4.9%)

I\
The distribution of likelihood ratio with signal plus noise can be

found by applying Theorem 8.1

dFSN("Z) = .,édFN ("Z) )
o0)
FSN(Z) = - [f dFN(.Z) . (%.95)
Substituting for FN(,Z ) from (4.87), and letting £ = exp x yields
2
o) (x + 4)
1 2
Fop(£) = Joa Z{Z eXP[x]exP - T2a dx
2
a
1 (¢0) (x - 5)
- - & . 4.96)
A/ 2nd /I{‘/ °FP 2d (

Thus the distribution of j n £ is normel also when there is signal plus noise , In
this case with mean g and variance d.

In surmary, the variance <J'H2 of the likelihood ratio probably measures
the receiver reliability better than any other single number. If the logarithm

of the likelihood ratio has & normal distribution, then this distribution, and

lSee Part I, Section 2.k.
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_ 2
hence the signal plus noise distribution, are completely determined if CTH
is given. Both distributions of £n .Z(x) are normal with the same variance d,

and the difference of the means is d. The receiver operating characteristic

2

curves are those plotted in Fig. 4.1, with the parameter d related to CTN

by the equation

d = In (1 + Gﬁ?) . (4.94)

In the case of a signal known exactly, this is the distribution which
occurs. In the cases of Section 4.4, Section 4.5, and Section 4.6 this distri-
bution is found to be the limiting distribution when the number of sample points
is large. Certainly in most cases the distribution has this general form. Thus
it seems reasonable that useful approximate results could be obtained by calcu-~
lating only (TN? Tfor a given case and assuming that the receiver reliability is
approximately the same as if the logarithm of the likelihood ratio had a normal
distribution. On this basis, (TN?(.Z) is calculated in the following sections
for two cases, and the assertion is made that the receiver reliability is given
approximately by the receiver operating characteristic curves of Fig. 4.1 with
2).

a = o 1+ oy

4,8 Signal Which is One of M Orthogonal Signals

The following case has several applications, which will be discussed in
Section 5.3. The importance of this case, and the one which follows it, lies in
the fact that the uncertainty of the signal distribution can be varied by
changing the parameter M.

Suppose that the set of expected signals includes just M orthogonal

functions sk(t), all of which have the same probability, the same energy E, and

b7
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are orthogonal. That is,

T

of s () s8y(t) dt = Edyg (+.97)
Then the likelihood ratio can be found from . Eq (3.7) to be
M 1 - 1 n
L(z) = ¥ pexp |:- -I-I-:' exp [ﬁ > Xiski}
k=1 o i=1
M 1 n .
1 + - -
= 7 Y exp 5 2 XSy T (4.98)

k:l i=l %

where s, ; are the sample values of the function sk(t).

n
It should be clear that with noise alone, the terms .I]é > X84
i=1
n

31:12 og 1
have a Gaussian distribution with mean zero and variance Z =

¥ N

n 1=1 °

Furthermore, the M different quantities % 2 X8y 4 BTe independent, since the
i=1

M
functions sy (t) are orthogonal. It follows that the terms exp [N]é > X8y - ﬁE—-]
: o

i=1
are independent.
n
Since the logarithm of each term Z = exp [3: Z X18pq - -E—} has a
i=1 NO
normal distribution with mean - f?' and veriance E_IE s the moments of the distri-
o [o}
th .
bution can be found from Eq (4.89). The n~ moment is
n E
L (Z%) = exp |n(n-1) = . (&.99)
N U

lThe reasoning 1s the same as that on page 9.

L8
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It follows that the mean of each term is unity, and the variance is

O'NQ(Z) = /L(Zz) - [}L(Z) 2] = exp[%—E—] -1 . (4.100)
o

The variance of a sun of independent random variables is the sum of the variances

of the terms. Therefore
2 o e [CEY _
o ML) = N [e}.p(N ) 1:' , (4.101)

‘and it follows that the variance of the likelihood ratio is

O'Ne(j) = %LE [exp (%) - l] . (k.102)

It was pointed out in Section 4.7, page 47 that the receiver operating

characteristic curves are approximately those of Figure 4.1, witn

d = Ln (1+ O‘NE) = Ln l—%+%’ie}{p(%§) (4,103)
o

This equation can be solved for I—\Izg :
o

= An l:l + M (ed - l)] . (b.10k4)

I8

Curves of I%-E— for constant d are plotted in Fig. 4.12. They show how much the
o

signal energy must be increased when the nuriber of possible signals increases.

1.9 Signal Which is One of M Orthogonal Signals with Unknown Carrier Phase

Consider the case in which the set of expected signals includes just
M different amplitude modulated signals which are known except for carrier phase.
Denote the signals by

8. (t) = £, (t) cos (wt +6) . (%+.105)

k9
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It will be assumed further that the functions flr (t) all have the same energy E

and are orthogonal, i.e.,
T
of £, (t) fq(t) at = aESkq , (4.106)
where the 2 is introduced because the f's arc the signal amplitudes, not the
actual signal functions. Also, let the fk('t) be band-limited to contain no
frequencies as high as W, Then it follows that any two signal functions with
different envelope functions will be orthogonal. ILet us assume also that the
distribution of phase © is uniform, and that the probability for each envelope
function is = .
M
With these assumptions, the likelihood ratio cen be obtained from
Eq (3.7), and it is
M 2x n
.1y 1 f 1 _E
Lx) = 5 > = S exp | % > X By T ae (k.107)
k=l i=1
where 84 are the sample values of 81 (t), and hence depend upon the phase O,

The integration is the same as in the case of the signal known except for phase,

and the result can be obtained from Eq (4.19)

M
L(x) = I%Ikzl exp [- NE—}IO(
= o

“r

) s (4,108)

where

r =\/(Z x; £,(t5) cosw'bi)2 + (2 % Ti(ty) sin wti)2 . (%.109)
1 1

Now the problem is to find UNQ (£). The variance of each term in
the sum in Eq (4.108) can be found, since the distribution function with noise

alone can be found as in Section 4.3. Since the fk(t) are orthogonal, the

51
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distributions of the r, are independent, and the terms in the sum in Eq (+.107)
are independent. Then the variance of the likelihood ratio, CJ'N2 (L) is the

sum of the veriances of the terms, divided by M2, T

r
The distribution function for each term exp [- %?——}Io(-ﬁli) is given
o

in Section 4.3 by Eq (4.21) and (k.22). If ¢ is defined by the equation

B = exp [- f%} I, <Of\/ﬁ%.> s (4.10)

then the distribution function in the presence of noise for each term in
Eq (4.108) is

FN(k)(B) = exp [-9‘;} . (%.111)

The mean value of each term is

(k) > (k) ® 2
K E 2k o
N / o | ©\V X, P

0 0

This can be evaluated,2 and the result is that ,u(k) (B) = 1.

The second moment of each term is

00
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Lcramér, Ref. 1k, p. 188.

®Lawson and Uhlenbeck, Ref. 1,p. 17h.
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The integral is evaluated in Appendix E, and the result is

#N(k)(se) = (&) . (4.114)

The variance is

o 2
I:O.N(k)(ﬁ):l L) @2) - [#(k)(ﬁ)] _ Io(%f')‘ 1. (h115)

It follows that the variance of M £ is

2 B
o, ML) = M [IO(%E;)— 1:, , and (+.116)
aN2(j) - % [Io(ﬁaz-)- lJ , (k,117)

since the variance for the sum of independent random variebles is the sum of the

variances.,

If the approximation described in Section 4.7 is used, the receiver

operating characteristic curves are epproximately those of Fig. 4.l, with
- 2y 1,1 (@_)

Curves of %E vs M for constant d are plotted in Fig. 4.13.
o
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5. DISCUSSION OF THE SPECIAL CASES

5.1 Receiver Evaluation

5.1.1 Introduction. In Section 2.5 it was shown that the receiver

reliability can be determined from the distribution functions for likelihood
ratio. In particular an optimum criterion receiver operating at the level B of
likelihood ratio has false alarm probability PN(A) =Ty (B), and probability of

detection Pgy(A) = Fgy(B). The functions FN(B) and F ) are calculated in

sn(®
Section 4 for a number of special cases.

For the purpose of discussing receiver reliability it is sufficient to
have the receiver operating characteristic in which FSN(ﬁ) is plotted as s
function of FN(B). In this discussion B plays only a secondary role.

The receiver operé.’cing characteristic shown in Figure 5.1 applies to
several cases. Among them is the case of the signal known exactly, with the
parameter d equal to %E. s twice the ratio of signal energy to noisé power per
unit ba.ndwidth.l Thusf for example, if the signal is a voltage which is a known
function of time, and 1f the signal energy is twice the noise poirer per unit
bandwidth, theoretically a receiver could be built with false alarm probability
of 0.25 and a probability of detection 0.90. If the false alarm probability is
required to be no greater than 0.10, the probability of detection can be made no
greater than 0.76. If the false alarm probability is required to be no greater
than 0,025 and the probability of detection is to be at least 0.98, the signal

energy must be at least eight times the noise power per unit bandwidth.

5.1.2 Comparison of the Simple Cases. Several curves for the case of

a signal known except for phase are shown in Fig. 5.2 for some of the same values

Isee Section 4.2.
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[}
of the ratio %E— as appear in Fig. 5.1. The curves for a given energy lic below
o

those for the case of the signal known exactly; with a given false alarm

ynl

probability and a given value of %z- » one cannot achieve as high a probability
of detection if the carrier phase of the signal is unknown.

It was found that in several cases the distribution of £n L (x)
approached a normal distribution as a limiting case, and that in the limit the
variance with signal plus noise and the variance with noise alone are equal.

In any such case the curves of Fig. 5.1 apply, and a comparison of these cases
is simplified. For example, in the case of a signal which is a sample of white

Gausslan noise, it was found that if the number of sample points is large and the

signal to noise ratio is small, then this approximation applies, with

2 2
- /X )5 2(3
a = (en-1)\1- /5= ]m 3 ( N) . (+.37)

Other curves for this case, some with small sample number and moderate signal
to noise ratio,are given in Figs, 4.6 and 4.7. The exact equations for the
distribution are Egqs (4.33) and (L.3h4).

The following two cases lead to the same receiver operating charac-
teristic in the approximation considered in Sections 4.5 and L4.6: (1) the broad
band receiver with optirum video design, with a pulse signal, and (2) the optirmm
receiver for a train of pulses with incoherent phase. In the first case the
parameter M was taken as the product of the total bandwidth of the receciver and
the pulse width of the signal. In the case of the train of pulses, M is the
number of pulses. In each case E is the total energy of the signals. Approxi-
mate receiver operating characteristics are plotted in Fig. 4.10. Small signal

to noise ratio and large M lead to the distributions for which Fig. 5.1 is
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plotted, this time with

- HE) n71)

5.L.3 An Approximate Evaluation of Optimum Receivers. Some simpler

evaluation of receivers was needed because of the difficulty in solving directly
for the distribution function of likelihood ratio in any cases more complicated
than the ones already mentioned. It seemed reasonable to approximate the actual
receiver operating characteristic by the curves given in Fig. 5.1, finding in
same mamner the value of the detection index d which leads to the best fit of
the approximate curve to the real curve., This is suggested by the occurrence of
the curves of Fig. 5.1 in four of the five cases already discussed, Also, any
recelver operating characteristic must have in common with the curves of Fig. 5.1
that its slope is positive and its second derivative is negative, and that it
must start at the lower left hand corner and end at the upper right hand corner
of the graph.

It is shown in Section 2.5.2 that the variance o of the likelihood
ratio when there is noise alone is the same as the difference of the means of
likelihood ratio with noise alone and with signal plus noise. This paraneter

O'Ne geems to characterize signal detectability better than any other single
number. In Section 4.7, it is shown that if o °

N

the likelihood ratio is assumed to have a normal distribution with noise alone,

is given and the logarithm of

then it follows that the logarithm of the likelihood ratio with signal plus
noise also has a normal distribution with the same variance, and thus the

receiver operating characteristic is that of Fig. 5.1l. The index d is given by

d = 4n (1 + O'NQ) . (4.9k)
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It seems reasonable that the curves be fitted on this basis, i.e., that O'HQ

be determined for the actual situation and the approximate receiver operating
characteristic graph be taken as the curve of Fig. 5.1 with index d given by the
above Eq (4.94).

5.1.% The Signal One of M Orthogonal Signals. The methods of the

previous section have been applied to the case where the operator knows that the
signal, if it occurs, will be one of M orthogonal functions of equal energy.
Orthogonal, of course, means that the functions have zero cross correlation, i.e.,
f(t) and g(t) are orthogonal if

f £(t) g(t) at = 0 (5.1)
0

where the integration is over the observation interwal. The value obtained for

1
O'H2 is

2 _ L1l (?:‘3_)_1 4.102
i T [e}‘p I, ( )

and so the approximate receiver operating characteristic is that of Fig. 5.1 with

1 = I e = :
a = fn [1 Z+ 2 exp(l_qo)] (4.103)

The value of o‘N2 was also found for the case where each of the M orthogonal
signals is known except for phase, and the phase angle has a uniform distribution.g

For this case

2 1 (21: ')_ _ )
o = = =] 1 and hence ko1l
i M [IO \x J ? (k. 117)
o]
1.1 ( o% )
= I N = .
¢ = 4n [1 s+% D i } . (4.118)
1 . o .
Sec Section k4.6. See Section k4.7.
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These two cases arc the basis for the best approximation available to
the problem of a signal of unknown vime origin or a signal of unknown Irequency
or both. Tor example, we have been unable to find the distribution of likelihood
ratlo for the case of a signal which is a pulse of unknown carrier phase if the
starting time is random and distributed uniformly over a time interwval. However,
if the problem is changed slightly, so that the starting time is restricted to
tines spaced approximately a pulse width apart, then pulses starting at different
times would be approximately orthogonal, and the case of the signal one of !
orthogonal signals known except for phase could be applied. Eq (4.118) should
be used with M equal to the ratio of observation time to pulse width. A sinilar
argunent applies to the case in which a signal is a pulse known except for phase
and center frequency. Eq (4.118) should be used with lf taken as the ratio of
total bandwidth to signal bandwidth. It should be pointed out that it is not the
same to assume that the signal can appear in only a finite number of different
positions, even though the positions arc close to each other, as to say that the
signal can appear anywhere in an interval. Therc is more uncertainty in the
latter case, and the signal cannot be detected as easily.

5.1.5 The Broad Band Receiver and the Ideal Recelver. One common

nethod of detecting pulse signals in a frequency band is to build a recelver
whose bandwidth is the entire frequency band. The receiver operating character-
istic for such a receiver with a pulse signal of known starting time is cal-
culated in Scction 4.k, This is not a truly ideal receiver, and it would be
interesting to compare it with an ideal receiver. This can be done using the
approximation of the preceding paragraph for the ideal receiver. Since the
bandwidth of a pulse is approximately the rcciprocal of the pulsc width, the

parameter M of Scction 4.kt and the parameter M in Eq (.118) are both equal to
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anl

the ratio of total bandwidth to pulse bandwidth. Curves showing %ﬁ as a
function of d are given in Fig. 5.3 for the approximate ideal receiver and the
broad band receiver for several values of M. The expression used for 4 is

Eq (4.71) which holds for large values of M.

5.1.6 Uncertainty and Signal Detectability. In the two cases dis-

cussed in Section 5.1.&, where the signal considered is one of M orthogonal
signals, the uncertainty of the signal is a function of M. This gives us an
opportunity to study the effect in these two cases of uncertainty on signal
detectability. In the approximate evaluation of the receiver built to detect the
presence of a signal when the signal is one of M orthogonal functions, the

curves of Fig. 5.1 are used with the detection index d given Dby
2E
d = Zn[l--l-+-l—exp(—-)J (+.103)

This equation can be solved for the signal energy.

%2 =_£n[l -bi+Lwd]
Ty
8 fn M+An (c%1) (5.2)

op 1
the approximation holding for large N From this equation it can be seen

that the sipnal energy is approximately a linear function of £n M vhen the

' q . . 2
detection index d, and hence the ability to detect signals, is kept constant.

lrp %E > 3, the error is less than 10%.
lo

21t night be suspected that %E is a linear function of the entropy = - 2: pifnpi,
o}

where p; 1s the probability of the jth orthogonal signal. This is not the casc,
except when all the p; are equal. The expression which occurs in this more

general case is:
%-fi‘- N - ,fn[z pi2]+ﬂn (ed—.l)
\lo
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5.2 Recelver Design. There are a few cases when the receiver design is sirple

to specify if the noise is Gaussian. If, for example, not only the noise, but
also the signal are Gaussian, and both have a uniform spectrum over their
bandwidth, then the optimum receiver simply measures the energy which comes in
during the observation period. The simple relation between energy and likeli-
hood ratio is given by Eq (4.41) of Section 4.k.

The simplest remaining case is that in which the signal is known
exactly. Then the theory specifies that the receiver find the cross corre-
lation between the expected signal and the receiver input, i.e.,

T
jﬁ s(t) x(t) dat, (5.3)
0]

where s(t) is the expected signal and x(t) is the receiver input, and the
observation interval is from t = O to t = 7. The ratio of this cross correlation
to the noise power per unit bandwidth is one-half the natural logarithm of the
likelihood ratio.l Several elaborate correlating devices have been built
recently.2

There is, in this case, a simple means of obtaining the correlation,
if the signal is simple in form, for example, a pulse. If a filter can be
designed with impulse response

h(t) s(T-t) if o£tsT ,

= 0 otherwise, (+.10)

and the receiver input applied to the filter, then the output at time T will be

lgee page 9, Eq (k.1b).

2
Harrington and Rogers, Ref. 16; Harting and Meade, Ref. 17; Lee Cheatham, and

Wiesner, Ref. 18; Levin and Reintzes, Ref. 19.
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T T
[ () n@-v) ar = [ 2@ s(x)ar (4.11)
-0 0

which is the required correlation. It turns out that this is the same filter
specified by Middleton, Van Vleck, Wiener, North, and Hansen as the filter which
maximizes signal-to-noise ratio.l

If the signal being sought is an amplitude modulated signal known
except for carrier phase, then the ideal receiver has a filter like the one
specified in the previous paragraph designed for any particular phase. The
receiver input is applied to this filter, and the output is an rf (or more
likely, if) voltage. It turns out that the envelope of this voltage is the
required quantity. Its relation to likelihood ratio is derived in Section L.3
and presented in Eqs (4.19) and (4.29).

A look at the general equation for likelihood ratio

A T
Lx) = /vp [ %l]xp[;r [ =0 s dt] By(s) . (5.7)
o o
R 0

suggests the following method for designing the optimum receiver for signal
detection. First find the correlation as described above, between the receiver
input and each possible expected signal. Next, divide each by No, the noise

per unit bandwidth, and find the exponential function of each. ZFinally, find the
weighted average of all these quantities. The hard part is to find the cross
correlation between each expected signal and the receiver input. This means

that the ideal filter and associated amplifiers are needed for each expected

signal, or essentially a separate receiver for each expected signal. In most

1
Lawson and Uhlenbeck, Ref. 1, p. 206; North, Ref. 1l.
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cases this is out of the question. In the cases studied in Sections 4.2, 4.3,
4.4, and 4.6, some peculiarity of the set of expected signals made a simpler
ideal receiver possible.

There is another noteworthy case. If the signal is known except for
starting time, then it is sufficient to look at the same ideal filter at dif-
ferent times rather than to have a different filter for each starting time.

For even a simple square pulse, it is impossible to synthesize the
ideal filter exactly. Just how critical, then, is the design of the ideal
filter? This can be answered by finding how well signal detection can be accom-
plished with an epproximation to the ideal filter.

For simplicity, consider the case of the signal known exactly. The
results for this will follow with little modification for the other cases where
the ideal filter is used. The theory specifies that the response of a certain
filter to the receiver input be observed at a certain instant. Once it is known
that the ideal receiver has this form, it is clear that this filter must be the
one which maximizes the instantaneous signal output voltage (or power), the noise
rms voltage (or average power) being kept fixed. This is the reason the filter
which other authors have found maximizes signal-to-noise ratio is the one which

1
is the absolute optimum for this case.

If a filter can be bullt for which the output ratio of peak signal to rms
noise is nearly the same as that obtained with an ideal filter, then this filter
will give results nearly as good as the ideal filter. The noise power at the

output of a filter with transfer function H(w) is equal to

No a)
N = 7 [ H0) i) (5.4)
-

1
See Footnote, p. 65.
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where Ny 1s the noise power per unit bandwidth of the input noise. By Parseval's

theorem,l and the fact that h(t), the impulse response, is the Fourier transform
of H(w).
N
o @ —
N = 5 [ Hw) How) dw
-0
N
= 5 [ n(t) b(t) at. (5.5)
-

In the case of the ideal filter, Eq. 4.10 can be applied, and the

result is
N = 5 [ s(T-1) d7 = —5 (5.6)
2 o 2
where E is the signal energy. The peak voltage output if there is signal but

no noise is

T 2
[ s(t) at = E ’ (5.7)
0]

and hence the peak signal power at the output is E2. The ratio of peak signal

power to average noise power is thus 2E for the ideal case.

Ny

For the particular case of the signal consisting of a single rectangu-
lar pulse, if an RC filter is used with time constant 80% of the pulse duration,
the receiver operating characteristic will be the same as if the ideal filter
were used and the signal reduced 0.90 db. This is derived in Appendix F.
Several other pulse cases have been treated and the results for the best filter

of each type are summarized in the following table:

1
Titchmarsh, An Introduction to the Theory of Fourier Integrals, Oxford Univer-
sity Press, 1937, p. 50.

67



—  ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN —

TABLE II
Equivalent Loss
Pulse Filter in Signal Strength
Gaussian Rectangular Passband 1
0.98 ab
Rectangular Gaussian Passband
Rectangular Rectangular Passband 0.83 apt
Rectangular Simple RC Filter (or
Single Tuned Circuit) 0.90 db
r\ impulse
Rectangular response 0.51 db
l\\ I\\ impulse
response 1.62 db
N Simple RC Filter (or
(Exponential Decay) | Single Tuned Circuit) 2.67 db

The minimum equivalent loss was obtained by adjusting the bandwidth
of the filter. Thus in detecting pulses the form of the filter passband is
relatively unimportant. However, it is important to have the correct filter
bandwidth. This is essentially the present-day attitude in building receivers

Tor receiving pulses of known frequency.

5.3 Conclusions

Part II of The Theory of Signal Detectability consists of the applica-

tion of the theory presented in Part I to some special cases of signal detection
problems in order to obtain information on (1) the design of optimum receivers

for the detection of signals, and (2) the performance of these receivers.

1
These cases are derived in Lawscn and Uhlenbeck, Ref. 1, p. 206.
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The special cases which are presented were chosen from the simplest
problems in signal detection which closely represent practical situations. They
arc listed in Table I along with examples of engineering problems in which they

find application,

TABLE I
Description of
Section Signal Ensenble Application

L2 Signal Known Exactly Coherent radar with a target of

known range and character

4,3 Signal Known Except for Ordinary pulse radar with no inte-
Phase gration and with a target of known

range and character.

by Signal a Sample of White | Detection of noise-like signals;
Gausgsian Noise detection of speech sounds in

Gaussian noise,

k.5 Video Design of a Broad Detecting a pulse of known start-

Band Receiver ing time (such as a pulse from a
radar beacon) with a crystal-video
or other type broad band receiver.

4.6 A Radar Case (A train of | Ordinary pulse radar with inte-
pulses with incoherent gration and with & target of known
phase) range and character.

4.8 Signal One of M Orthogo- | Coherent radar where the target is
nal Signals at one of a finite number of non-

overlapping positions.

k.9 Signal One of M Orthogo- | Ordinary pulse radar with no inte-
nal Signels Known Except | gration and with a target which
for Phase nay appear at one of a finite

nunber of non-overlapping posi-
tions.
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In the last two cases the uncertainty in the signal can be varied, and some
light is thrown on the relationship between uncertainty and the ability to
detect signals. The variety of examples presented should serve to suggest
methods for attacking other simple signal detection problems and to give insight
into problems too complicated to allow a direct solution.

It should be borne in mind that this report discusses the detection of
gignals in noise; the problem of obtaining information from signals or about
signals, except as to whether or not they are present, is not discussed. Tur-
thermore, in treating the special cases, the noise was assumed to be Gaussian.l

In addition to general remarks on receiver design,2 most sections on
special cases include gpecific information describing the simplest design for
the optimum receiver for the case considered in those sections.

For the simple cases, the design indicated corresponds closely to the
design indicated by the type of analysis in which signal to noise ratio is
maximized. For the more complicated cases, the design suggested is usually
impractical. For some problems it may never be practical to attempt to build an
optimum system. For others, however, engineers equipped with a good understand-
ing of statistical methods and their application to the problem of signal
detectability, and to commumnication theory in general, will undoubtedly invent
systems which approach the optirmum system.

For each special case treated in this report, at least an approximation

is given for the receiver performence, Receiver performance received primary

emphasis because it has generally been slighted in previous work. It is

15ee the footnote on page 4 with reference to the spectrum of the assumed
noise.

2See Section 5.2.
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important to know the performence which could be obtained from an optimum
receiver even if an optimum receiver cannot be built, since this gives an upper
bound on the performance which can be obtained with any receiver in a given
situation, and since this also gives an upper bound on what can possibly be

accomplished by improvements in receiver design.

—
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APPENDIX D

The Sampling Theorem

Suppose f(t) is a measureable function which is defined for 0L t £ T.
Then f(t) can be expanded in a Fourier series in this interval. The frequency of
any term in the series is an integral multiple of l/T. Suppose there are no terms
in the series with frequency above W.l This makes the function band limited.

Denote by Y;,(t) the function

sin [ﬂ(ewcp) (- r;T)]

t = D.l
Val®) (2WT) sin |x (E - -—IE—> (-1
T WT
Then
20T
£(t) = £ _11;) t D.2
() = X () ¥al®) (D.2)
m=
Furthermore, the functions \[/m are orthogonal on the interval 0<t<T,
z >
- k. (D.3)
/ (6) Y (t) ab = o
0
and
T 1 1)
= D.
/ Vlt) a6 = 2, (
0
where Skm is the Kronecker delta function, which is zero if k # m and unity if
k =m,

T Ve shall assume 2WT is an odd integer. This equivalent to choosing the limit
of the band half way between the frequency of the last non zero term in the
Fourier series and the frequency of the next term (which, of course, has a

zero coefficient). -
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Tt follows from Eq (D.2) and Eq (D.3) that

. 2 1 ile m)| ° (D.5)
/ [f(t)] a = G 2 [f(-éw-ﬂ .

0

and from Eqs (D.2) and Eq (D.4)

T 2WT
/ £(t) dt = 5—;—- 2 f(%) (D.6)
m=1 .

0

Thus the 2WT functions Wm have the same properties for the finite
interval which Shannon's interpolation functions have on the infinite interval.
It is interesting to note that when 2WT is large, these functions, except the
ones near the ends of the interval, are approximately the same as Shannon's.

The Fourier series for \I/m(‘c) has no terms with frequency above W,

It is, in exponential form,

WI- 3
Valt) = 5= Z exp[j ;%%Em_g_]e,@[j E“Tnt} (D.7)
=)

This can be shown by expressing the sine functions in Eq (D.l) as exponentials

and using the algebraic identity

an+l _a-n-l n K
a-al kz 8 (D.8)
==

Formula (D.l4) can be proved by integrating Eq (D.7) directly. Note
that the only term which contributes to the integral is the term for which

n =0,

1 see Shannon, Ref. 21.

—
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Formula (D.3) can best be proved also by using the Fourier series.

T
[ ¥ (8) Wy () at
0

T Wre L WP-%
s 2 2
1 [ -eﬁmn] [ 2nnt] [ 2ﬁkh] [ Ennt]
e onshdbaesiiull Pilhdons’ i Pk Sl
(2wT)2J Z, XI;J =il Al R 21‘”‘5’ J BT 7 a4t

0 n=-(-3) P =(v-3)

W= L WP - L T

5 2

2
WP - %—. W= _32_._
" T ), ), em[s Zdmim)] g
" pe (- 1) - ~(we- 1) P
( 2) 2
WT -%
- ~_21_7§ exp[g ~2nn(m-k) ]
) v
(27) n = -(WT - % )

If m = k, each of the 2WT terms in the sum is unity. If m # k, the terms in the

sum are equally spaced around the unit circle in the complex plane and must sum

to zero. Thus
T
3
Of\lfm(twk(t) at = I

which was to be proved.

h
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The validity of the expansion in equation (D.2) follows from the
fact that the functions ¢h(t) are 2WT linearly independent linear combinations

of the 2WT functions

2nnt ] I imc o< 1

exp[ J
vhich are used in the Fourier series expansion, Thus any function which can be
expanded in a Fourier series with only the first 2WT terms can also be expanded
in a unique way in terms of the functions whf

There is an alternate form of the sampling theorem for band limited
signals, With this form the signal function can be described by giving sample
values of the envelope and phase of the signal, and hence this form is often
convenient to use in deseribing rf signals.

Suppose the function f(t), when expanded in a Fourier series on the
interval 0= t £ T has only a finite number of terms in its expansion, and

suppose they are included in the terms ranging from frequency fl to frequency

fé.l The bandwidth then éould be defined as

W=f2-fl+%, (D.9)
and the center frequency is
fs + £
w - 2 % (D.10)
en 2

Then the Fourier series can be written

i}
£(t) = 2 a cos[(w + 2x k t} s1n[(w+ ?‘Tﬂk)t} (D.11)

=

m
£(t) = RY{ 2 (ak-lb exp Qﬁk t} (D.12)
-m

where R means "the real part of", and m = %‘(WT - 1).

Iye shall assume Tfp - Tf is an even integer and that Tfl-— 1.

—
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m
£(t) = R{exp [iwt]Sfa, - ib, )exp[i 2Kt
P ]j§<1< k) xo[l' T ]
n il
f(t) = R{exp [iwt](Z ay exp[i 2;1‘1‘113]4- iy bk exp [i Q;kt] >
- -
= R{exp [iwt] (x(t) - iy(t))}
= x(t) coswt + y(t) sin wt (D.13)
where .
x(t) =% ':‘Eexp [i?‘;‘lﬁ], and
-m
(D.1k)
m by
y(8) =-F & em [1 28] .
-1

The functions x(t) and y(t) meet the conditions of the first form of

the sampling theorem, for a signal with frequencies no higher than g .

They can be expressed therefore in the form

WT
x(t) = 2 x(g) ¥y (8)
k=1
W
y(6) = T y(F) ¥y ) (D.15)
k=1

Where the Y functions are defined for a signal with no frequencies above "2.1 .

Thus the original function can be written as

WT WT
£(t) = 2. x(%)wk (t) coswt + 2 Y(%)\l/k(’c)sinwt ,
k=1 k=1
(D.16)
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and the function f(x) can be represented by giving the sample values x (%)

and y(l‘.)
W
Since f(t) can be expressed in the form

£(t) = x(t) coswt + y(t) sinwt (D.13)

W which is less than LR

and x(t) and y(t) are limited to frequencies less than 5 57 ?

the envelope of f(t) is

r(t) = '\//x(t)e + y(t)2 (D.17)
The angle ©(t) defined by
‘ - x(t)
cos o(t) Iif.é.ﬁ
sin 8(t) = = %’-((3 (p.15)

can be considered as the phase of the signal, since

£(t) r(t) cos 6(t) cos wt - r(t) sin 6 (t) sin wt

i

r(t) cos [wt + Q(t)] (p.19)
Note that the sample values X5 and y; can be obtained from sample

values of r and @,

(D.20)

<
I

r. sin o,
i i

Thus the function f(t) may be represented by giving the sample values of its

amplitude and phase at points spaced %.5 apart through the observation interval.
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APPENDIX E
The integral
(00)
2 2 2
exp (-b°) [Io (boc)] o exp [-%_] da (E.1)
0
is required.
The integral
(00}
on+l o
a I (w) e,ip[-—g—]da
0
n b2 bh
= ni2 exp[.g.]l?(-n, 1; - 'E')
2 2k
: n b nz nib
= nl2 exp[——] . (E.2)
2] k=20 (py)xicies

2
where F (-n, 1; - %. ) is the confluent hypergeometric func’t:ion.l The function

I, () can be expanded in a power series

®
- b« (E.3)
Io(ba) =2 “D nint
n=0
Then the integral (E.l) can be written
©
2 e 2
exp () f[Io(m)] cepl-L] w - (B.b)
0
(Substituting (E.3) for IO (vcx))
©
2 S S ' “1a
= exp (-b<) 2 _,2__.'_.__ I (bc) o eXp[— _;?_] o
o) n=0 2 nin -
(E.5)

1 Tawson and Uhlenbeck, Ref. 1, p. 17k.
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[e0]
@ b2na2n+l o p
= - p - 2. | do E
eXP(b) Z ——-WTI(bC)e’CP[ 2] ( )
n= 0 @ nun.
(substituting from (B.2))
. DO en 1 b2 n 0t b2k
= -b 12" e [_._} ey (E.
exp (-b7) Y o " || X (n—k)lk!k!Ek( 7)
n=0 * k=0
on+2k
) b2 00)] n b
= eXP[“é‘] >z 2
n=0 k=0 20K(n-k)!k!k! (£.8)
(Rearranging the terms in the double sum)
B2 © @ L2n+ek
- ew[-%]Z 2 (E.9)
k=0 1=k 2™K(n.x)ixik!
(0 0] (49)
- bk . on - 2k
- exp[- 22_] > X b © (E.10)
k=0 0=k 2K UK et (hpys
(Letting m = n-k)
) (00) (00 ).;.k 2m
- exp[' e IR QE . m (E.11)
=0 =0 2 kikim!2
(¢0) IR 00
2 k 2m
= e}{p[-%_] z -—.—...-._._...._,_.b Z .---..-b il (E.lE)
k=0 29K kik! p=0 m!2
2 2
2
= eXP[- %—] I (b%) exp [92-]= I, (b°) (E.13)

The steps in this derivation which must be justified are interchanging
the order of integration and summation at step (E.6) and rearranging the double
sum, at steps (E.9)and (E.12). It is easy to show that the integral (E.l) exists.

The integrands in (E.6) are uniformly bounded by the integrand in (E.4). Thus

T9




the integrals in (E.6) converge uniformly, and the order of integration and
surmation can be interchanged. As for rearranging double sums, this is possible

since all the terms are positive, and hence the convergence is absolute.
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APPENDIX F

Let us consider a simple case of approximating the ideal filter by

some other filter. Suppose s(t) is a rectangular pulse of energy E and width d.

Then ] .
s(t) =/E ir0Stsaq (F.1)

= O otherwise

Suppose the filter is made up of a single resistor and a single

condenser, with an amplifier or attenuator, whichever is needed to make the

N.E
noise power at the output —g— as in the ideal case. Then the impulse response
is of the form -.%
h(t) = he ift 20
= O otherwise (F.2)

where T is the time constant of the filter and hy is a constant depending on the
gain of the amplifier or attenuator. The requirement that the noise power at

NoE
the output be -%— is,by (5.5), equivalent to requiring that

@ 2
E = J [n(t)] ©at, (F.3)
-0
or o
© o - &t b T
E = [ h e T dt = (F.4)
o °©° 2
which yields
2 2E
- ————— Fo
h_ = , and (F.5)
— % 5
ht) =~/ e T ift20
T (F.6)

= O otherwise
The response V(t) of this filter to the pulse s(t) is, by (4.11),

T
v(t) = [ s(A)h (t-A) an. (F.7T)
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Substitutions from (F.l) and (F.6) for s(t) and h(t) give

t - (t=\)
V(t) =/@-,/%Ei e T diroLtsa

F‘B
1 _ () (F.8)
_ E 2B T
= 3 JT e dn  ir £ >4,
0
These integrals can be evaluated easily, and
2T -7 %)
v(t) = EJ5-0-e 7 ifostsd
(F.9)
2T -4y - ()
V(t) = K T(l-e T)e T it t>a .

V(t) increases with time if t < d and decreases with time if % >d, so it

must have its maximum value at t = d. That maximum value is

_a
Viax = Eq/?.a?_ (l-e ?). (F.10)

In Fig. F.1, V,4/E is plotted as a function of g . It is seen that at
T _ + . . . .
i 0.8 approximately, Vpax has a maximum, and at this point Vmax is approxi=-
mately 0.OE.

For this particular case, if the RC filter with time constant T = 0.8d
is used in place of the ideal filter, the reliability of signal detection will

be the same as if the ideal filter were used and the signal amplitude were reduced

to ninety per cent, or 0.90 decibel.
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LIST COF SYMBOLS

The event "The operator says there is signal plus noise present,"
or a criterion, i.e., the set of receiver inputs for which the
operator says there is a signal present.

Any criterion A which maximizes P (A) - p P (A), i.e., an opti-
mum criterion of the first type. >

Any criterion A for vhich P (A) < k, and Poy(A) is maximum, i.e.,
an optimum criterion of the 'second type. *

The event "The operator says there is noise alone."

A parameter describing the ability of a receiver to detect signals.
(See Section 5.1 and T'ig. 5.1.)

The signal energy.
The n-dimensional Fuclidean space.
The probability density for points x in R if there is noise alone.

The probability density for points x in R if there is signal plus
noise.

The complementary distribution function for likelihood ratio if

there is noise alone, i.e., FIXB) is the probability that the
Ty
likelihood ratio will be greater than § if there is noise alone.

The complenmentary distribution function for likelihood ratio if
there is signal plus noise.

A symbol used primarily for the upper bound placed on false alarm
probability PH(A) in the definition of the second kind of optimum

criterion.
he likelihood ratio for th i t 2 (x) fSN(X)
The likelihood ratio for the receiver input x. X) = .
fNZXS

The dimension of the space of receiver inputs. n = 2WT .
The event "There is noise alone,'" or the noise power.
The noise power per unit bandwidth. NO = N/w .

The probability that the operator will say there is signal plus
noise if there is noise alone, i.c., the false alarm probability.
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PSNCA) The probability that the operator will say there is signal plus
noise if there is signal plus noise, i.e., the probability of

detection.
P_(SN) The a posteriori probability that there is signal plus noise
X . =
present. (See Sections 1.3 and 2.3.)
PS(S) The probability measure defined on R for the set of expected
signals.
R The space of all receiver inputs. (The set of all possible sig-

nals is the same space.)

5]

A signal s(t), which may also be considered as a point s in R
with coordinates (sl, By o v vy sn).

SN The event "There is signal plus noise.”

t Time.

T The duration of the observation.

W The bandwidth of the receiver inputs.

X A receiver input x(t), which may also be considered as a point x

in R with coordinates (xl, NIy x)

B A symbol usually used for the likelihood ratio level of an optirum

criterion.
ILLSN(Z) The mean of the random variable z if there 1s signal plus noise.
/J.N(z) The mean of the random variable z 1f there is noise alone.
O'NE(Z) The variance of the random variable z if there is noise alone.
fox 2 The variance of likelihood ratio if there is noise alone.

N

Jote: The terms "normal distribution" and "Gaussian distribution" have becn
used interchangeably in this report.
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