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ABSTRACT

An experimental study of the dc cylindrical magnetron is
described. An electron beam parallel to the axis of the magnetron
is injected into the magnetron space charge close to the cathode
surface at one end. The beam is deflected by the fields in the
magnetron, and its exit point shows on a fluorescent screen at the
other end of the magnetron. Through a study of the beam deflection,
significant information about the electric field in the magnetron
can be obtained.

According to the most widely used theory of the dc magnetron
in the cutoff condition, the space charge is confined to a region
between the cathode and a maximum radius commonly called the Hull
radius. Experimental results indicate that the amount of space
charge outside the Hull radius, far from being negligible, exceeds
that within the Hull radius in many cases. The space charge outside
the Hull radius consists primarily of electrons whose momentum or
energy have been changed from initial values by collisions or
irregularities in the fields, in such a manner that these electrons
are trapped within the magnetron. Such space charge has sometimes
been called secular space charge.

Calculations of beam electron orbits indicate that if
the space charge in the magnetron agreed with the classical theory
of the magnetron, it would be possible to determine from a study
of the beam spot observed in these experiments which of the several
possible types of orbits actually occur. Attempts to determine which
of the classically possible orbits occur, or to find evidence of transi-
tions from one type of orbit to another, indicate that the actual
behavior does not correspond to any of the classically predicted
behavior. There is apparently so much secular space charge relative
to that in the stream emitted from the cathode that the latter has
very little effect on the probing beam.

Control experiments are described. On the basis of these

experiments, the electron probe technigue and its limitations are
discussed.
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THE TRAJECTRON--AN EXPERIMENTAL DC MAGNETRON

CHAPTER I

INTRODUCTION

1.1 The Problem

The purpose of the research reported in this dissertation was
to learn as much as possible about the potential distribution, space-
charge distribution, and electron orbits in a cylindrical dc magnetron
having a relatively large diameter cathode, by means of an experimental
technique involving the use of an electron beam as a probe.

The trajectron, the dc magnetron used in the experiments, con-
sisted of concentric cylindrical anode and cathode placed in the magnetic
field of a solenoid. An electron gun was placed within the vacuum
envelope with the magnetron diode and diode and positioned so that the beam
electrons entered one end of the diode close to the cathode surface and
parallel with the axis of the cathode. The exit point of the beam showed
on a fluorescent screen placed at the other end of the diode. The electric
field in the magnetron was studied through the deflection which it caused
the beam to undergo.

According to the most widely used theory of the dc magnetron in
the cutoff condition the space charge is confined to a region between the
cathode and a maximum radius commonly called the Hull radius. The results

of the trajectron experiment indicate that the space charge outside the Hull
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radius is by no means negligible. In fact, rough calculations based on
trajectron experiments for a typical situation in which the Hull radius
was located approximately one-fifth of the distance from the cathode to
the anode show the quantity of space charge outside the Hull radius to
be several times the amount inside the Hull radius. This and other con-
clusions relative to the dc magnetron are discussed in detail in Chapter
V and summarized in Chapter VI.

The initial plan was to interpret the data from the trajectron
in the following simple manner: if initial velocities of both the beam
electrons and the electrons emitted from the magnetron cathode and end
effects in the magnetron diode could be neglected, the forces would be
the same for beam electrons as for emitted electrons. The radial and
angular displacements of the beam in a given transit time would then be the
same as for emitted electrons in the same time. Thus, as the beam velocity
was varied, the beam spot would trace the orbits of emitted electrons on

1 there was reasonably good

the fluorescent screen. In control experiments
agreement between the theoretical electron orbits and observed deflection

of the beam when a non-emitting cathode was used. However, when an emit-
ting cathode was inserted and the emitted current became space-charge-
limited, the situation was changed markedly. The electron beam then entered
the diode in a region of weak electric field and was deflected into a region
of strong field. It has been both shown theoretically and observed in the
trajectron that the beam defocuses under these circumstances. The defocus-

sing effect is so important that the beam deflection cannot then be inter-

preted as being identical with the deflection of emitted electrons.

1 See Chapter IV,
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However, it was found possible by use of more refined studies
of electron beam motion to draw significant conclusions relative to the
potential distribution and space-charge distribution.

In addition to these semi-quantitative conclusions, careful
study of the beam motion in the trajectron contributes to an intuitive
understanding of the character of the fields in the dc magnetron and
the resulting electron motion. For example, it becomes clear that the
electrons! canonical momentum (and hence their initial tangential
velocity or initial radial position) is much more important than initial
radial velocity.l Likewise, a more vivid understanding of the effects
of the potential minimum on the motion electrons is obtained from the
photographs and discussion of the trajectron data with emitting cathode

and no magnetic field.2

1.2 Outline of Previous Work on the DC Magnetron

1.2.1 Introduction., The dc magnetron is a diode, usually with

the anode and cathode surfaces concentric cylinders. It 1s operated with
a positive voltage on the anode and in a uniform magnetic field parallel
to the axis of the diode.3 The anode current as a function of anode volt-
age of a typical dc magnetron is shown in Figure 1.1. The current is very
small below a "cutoff voltage." As the anode voltage is increased through
this cutoff range, the current rises rapidly. Above cutoff voltage the
current is only slightly less than it would be in the absence of a magnetic

field.

1 This was also noticed by Twiss. See Refs. Lk and L45.
See ection k4.5.

3 The arrangement of electrode in a dc magnetron is illustrated in Fig. 2.k,
A simplified drawing of the trajectron appears in Fig. 3.1.
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Most of the theoretical studies of magnetrons have been
based on one of two idealizations of a practical magnetron, the in-
finite cylindrical magnetron, or the infinite planar magnetron. It
has been possible to solve the equations of motion for electrons in
these ideal magnetrons if initial velocities and electron collisions
are neglected. For a magnetron in the cutoff condition several types
of electron orbits are indicated by the theory. In one type, which
in this dissertation is called the By or single-stream solution, the
electrons move in circles concentric with the cylindrical cathode (or
in straight lines parallel to the planar cathode). In all other types
the electrons move out from the cathode to a maximum radius and then
back again to the cathode in a cycloid-like path. These are called
double-stream solutions. The radial velocity may vanish or nearly
vanish at a number of almost evenly spaced points between the cathode
and the maximum radius. The solution with no such point is called the
By solution. If there is one such point, it is the Bp solution; and if
there are k such points, it is the By,; solution. The idea is illus-
trated in Figure 1.2.LL

In the planar magnetron and under some conditions in the
cylindrical magnetron, several or even infinitely many different solu-
tions are theoretically possible with the same anode voltage and
magnetic field. No adequate answer to the question of which of these

solutions actually occurs has yet been given.

The orbits sketched in Figure 1.2 are not accurate. Orbits drawn
from actual solutions of the equations of motion appear in Figures
2.7 and 2.8.
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The study of trajectron data has shown that none of these
solutions is more than a crude approximation for the magnetron operat-

ing below cutoff.

1.2.2 Theoretical Work. 1In 1921 the classic paper of

A. W. Hull introduced the magnetron to the scientific world.5 After
thirty-three years, after many studies by very capable men, there are
still fundamental questions about even the dc magnetron which remain
unanswered.,

In his original paper Hull included both experimental and
theoretical results. He derived the equations of motion and stated
the cutoff condition for both the planar and cylindrical cases. He
speculated that the orbits were of the double-stream type. Then in
1924, in a paper presented to the American Physical Society,6 he
described a solution of the equations of motion for the cylindrical
magnetron in which the electrons move in circular paths concentric
with the cathode and ancde, i.e., the Bp or single-stream solution.

The equations of motion which Hull presented were derived on
the assumption that initial velocities and electron collisions are
negligible. They are the "self-consistent field" equations; i.e., they
take into account the space charge of the moving electrons. Much of
the theoretical effort on the static magnetron has been on obtaining
the solution of these equations, This problem has been solved satis-
factorily. The solution is presented in Chapter II, since it forms the

basis for much of the discussion of the data obtained from the trajectron.

Ref. 26.

Ref. 27.
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The earliest step towards the solution of the magnetron equations
appears to have been presented by W. E. Benham in 1955.1 He derives the
equations of motion for the planar magnetron with the total current to the
anode a known function of time. The equations are reduced to the following:

X + o x = J, (1.1)
where x is the distance from the cathode, w is the cyclotron angular fre-
quency,2 and J is the current density to the anode, which may be a function
of time. The dots represent differentiation with respect to time. Benham
gave the solution for x as a function of time for the two important cases

J = Jo , and

J = JO + g

sin pt. (1.2)
These solutions did not play a prominent part in his paper, and he did not
carry them to the logical conclusion by giving expressions for potential
distribution, space charge density, and the electron orbits. The solution
for a sinusoidally varying anode current did not appear in the literature
again until Brillouin rediscovered it ten years later and discussed it very
thoroughly.”

The solution for constant current was presented the same year, de-

rived independently, by S. dJ. Braude.J+ Braude did discuss the electron

orbits, potential distribution, and space charge distribution. He failed

Ref. 3.

®w = eB/m , where B is the magnetic flux density, e the charge, and m
the mass of an electron.

Ref. 8.

Ref. 6.
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to fit his solution properly to the physical boundary conditions, and
came to the erroneous conclusion that there could be no cutoff in the
planar magnetron. The error was pointed out by Lewi Tonks,l and the solu-
tion for the planar magnetron was complete. The solutions have been
derived and discussed by many authors since.?
The equations for the cylindrical magnetron cannot be integrated
in terms of any commonly used functions. Therefore, only approximate or
numerical solutions can be obtained. Most of the solutions given have
been applicable only to the cylindrical magnetron with large ratio of
anode radius to cathode radius.3 The first satisfactory solution applica-
ble to the entire range of anode radius to cathode radius ratio was that
obtained by W. P. Allis, derived during the World War II research prog;r'am.)+
This solution, together with some numerical solutions of Hartree? and the
differential analyser solutions obtained by Brillouin,6 have given a defini-
tive picture of the solution for the cylindrical magnetron. A lucid
derivation and description of the solutions for both the planar and

cylindrical magnetrons are presented in two papers by Leon Brillouin and

Felix Bloch.'

1
Ref. U3,

2
Bethenrod, Ref. L; Boutry and Delcroix, Ref. 5; Delcroix, Ref. 12; Moullin,
Ref. 34; Page and Adams, Ref. 35; Pidduck, Ref. 37; Slater, Ref. 39;
Watanabe and Katsura, Ref. L9.

3
Glagolev, Ref. 22; Mdller, Ref. 32; Page and Adams, Ref. 36; Pidduck,
Ref. 37.

L
Ref. 1.

>
Ref. 2k,

6
Ref. 9.

7

Refs. 8 and 9.
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Solutions obtained by neglecting initial velocities and
collisions fall completely to explain the small flow of current when the
anode potential is below cutoff. (See Figure 1.1.) A number of authors
have attempted to find the explanation of this phenomenon. Harveyl
describes theoretical studies of the effects of finite rather than in-
finite geometry. Several authors have discussed the effects of initial
Velocities.2 A few have attacked the difficult problem of including the
random interaction effects of electrons.” The possibility of oscillation
and noise amplification in the space charge has been studied.u All of
these factors seem to enter the problem, and their relative importance has
not yet become clear.

By far the most satisfactory study of the effects of initial
velocities is that of Twiss.”? The equations involved are quite complicated,
Twiss has done a remarkable job of finding the nature of the solutions with-
out actually solving the equations. The most important results are as
follows: the tangential initial velocities are far more important than
normal initial velocities; when tangential initial velocities are considered,
the solution must be of the double-stream type; and the initial velocities,
although they account for a small current to the anode below cutoff, do not

account for currents as large as are observed.

1
Ref. 25.
2
Fechner, Ref. 20; Twiss, Refs. Ll and 45; Watanabe and Katsura, Ref. L9.
b)
Gabor, Ref. 21; Hok, Refs. 28 and 29; Lindsay and Sims, Ref. 31.
b
e.g. Guénard and Huber, Ref. 23; Warnecke, Huber, Guénard, and Doehler,
Refs. 46 and L7,
>

Refs. 4L and U5.
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The recent paper by G. Hokl is the best discussion of the
magnetron from the point of view of statistical mechanics. Unfortunately,
as both Twiss and Hok point out, the dc magnetron is not in or even near
statistical equilibrium, nor is it in the state studied by Twiss, where
electron collisions are neglected. Rather it is somewhere between.
Nevertheless, the ideas presented by Hok and Twiss are a step closer to
the actual conditions than previous studies. A discussion of some of Hok's
concepts and their implications with respect to the electron orbits is
given in Chapter II.

1.2.3 Experimental Studies of the DC Magnetron. In his original

paper, Hull described many detailed observations of the behavior of the
magnetron.z His experiments included investigation of the effect of fila-
ment heating current, anode voltage, filament temperature, anode diameter,
electrode alignment, magnetic field alignment, and gas pressure. He
studied the magnetron with concentric cylindrical anode and cathode both
with the cathode at the center and with the anode at the center. In all
cases the ratio of the radius of the outside electrocde to the radius of the
inside electrode was much larger than one.

Harvey3 also described experiments on the effect of misalignment
of electrodes and magnetic field. He compared curves in the neighborhood
of cutoff for various anode voltages and magnetic fields. He pointed out

that if the disagreement with the theoretical curve were caused by the

1

Refs. 28 and 29.
2

Ref. 26.
p)

Ref. 25.
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initial velocity distribution, the actual cutoff curve would approach the
ideal as the anode voltage i1s increased. His experiments indicated that
this did not occur.

Moller obtained an estimate of the current of the rotating space
charge in the magnetron by measuring the small change it produces in the
axlal magnetic field.l He reported the measured current nine per cent
weaker than predicted for the By solution. He stated that this was with-

e conducted a

in the limits of experimental error. More recently Wasserman
similar experiment and reported agreement within fifteen per cent of the By
solution. The tubes used in both of these experiments had filamentary
cathodes. This is not a promising technique for distinguishing between the
various types of solutions because 1t requires measuring a very weak mag-
netic field in the presence of a strong magnetic field (in Mdller's case,
0.7 gauss in 5000). Also, the magnetic fields for the various solutions
are probably very nearly the same. The current of the moving space charge
parallel to the cathode of a planar magnetron with given anode voltage and
magnetic field is the same for the whole series of solutions, By, By, By,
and so on.

The potential distribution in a dc magnetron with filamentary

cathode was measured by Engbert5 with a probe. The probe potential was

varied until the deflection of the wire as observed with a microscope was

1

Ref. 33.
2

Ref. L8,
3

Ref. 19.
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zero, and this potential was presumed to be the potential at that point in
the tube. Control experiments with no magnetic field were run. The poten-
tial distribution curves found experimentally with no emission, temperature-
limited emission, and space-charge-limited emission agreed very well with
theory. The experimentally determined potential distribution in the magne-
tron, when normalized with respect to anode potential, was found to be
almost independent of anode voltage, magnetic field, and filament emission
over a wide range if the anode voltage was kept near but somewhat below
cutoff. The potential curve was parabolic near the cathode, but nearly
linear near the anode. The data did not appear accurate enough to permit cal-
culation of space-charge distribution, making comparison with theory difficult.

Another phenomenon of the dec magretron, noticed by a number of
workers, was studied in some detail by Linder and Wigdortschik.l In a dc
magnetron with a filamentary cathode, the current to a small probe was
measured as a function of probe potential. The experiments indicated that
the electrons in the space charge had a Maxwellian distribution of veloci-
ties with average energy approximately L4 percent of the anode voltage.
Linder showed that this random energy was much too large to be explained by
collisions of electrons with lons or other electrons. He suggested that
the high temperature of the space charge may be due to some sort of oscilla~-
tion such as plasma oscillations.

An experimental measurement of the field in a dc magnetron by an
electron-optical method was carried out by Reverdin.2 A beam of electrons
was passed through a wire mesh, through the magnetron diode, and then

through another mesh. Images of both meshes were focused on a fluorescent

L

Linder, Ref. 30; Wigdortschik, Refs. 50; Spiwak and Zrebny, Ref. 4O0.
2

Ref. 38.
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screen, and from their relative positions the electric field could be cal-
culated. The magnetron diode had a filamentary cathode. Three different
space-charge distributions were observed: one had its maximum near the
cathode and fell off gradually with increasing radius; another had a maxi-
mum roughly at the edge of the space charge cloud; and the third was
time-varying.

The method described in this dissertation was first used by
Svensson.l His work is reported very briefly, and can be considered no
more than the introduction of a promising technique. This technique was
employed and appraised in the experiment reported herein.

The anode current as a function of anode voltage was studied
carefully by Delcroix in a series of tubes with guard rings and with the
ratio of anode radius to cathode radius ranging from 1.25 to 7.5.2
Delcroix noticed discontinuities in the anode current as the anode voltage
was varied. The voltage at which these occurred was roughly proportional
to the square of the magnetic field, and they occurred in the range of
anode voltage in which changes might be expected from one theoretical
type of space charge to another (as By to By, for example). Delcroix
identified regions of operation indicated by these discontinuities and
suggested that these regions are very likely the regions in which particu-
lar theoretical types of space charge occur.

In a very thorough paper, Guénard and Huber? described a series
of experiments designed to investigate the possibility that amplification
can occur in magnetron-type space charge without the presence of a slow-

wave structure. Most of the experiments were carried out with a linear

2 3
Ref. L2, Refs. 14, 15, and 16. Ref. 23.
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magnetron. The electrons were emitted from an electron gun, passed
through a region of crossed electric and magnetic fields, and were re-
moved from the tube at a collector electrode. In one experiment an

rf wave was introduced near the electron gun and rf power was taken
from the tube at a point near the collector. Amplification of 20 db.
was observed in tubes of this type. In another experiment, the current
to a probe was measured as a function of probe potential. The measure-
ments showed large components of randomly distributed velocity at a
point which electrons reached from the electron gun after a few Larmor
periods.

If amplification occurs in the space charge, then oscillations
would be expected when this stream of electrons is closed on itself, as
in the dc cylindrical magnetron. Such oscillations were observed, and
the frequency of observed oscillations agreed quite well with theoreti-

cal predictions.



CHAPTER II

THEORY OF THE DC MAGNETRON

2.1 Introduction

In this chapter the theoretical background necessary for
interpreting the data obtained from the trajectron is presented. This
is not intended to be a complete exposition of the theory of the dc
magnetron. Only phases of the theory which will come up in discussion
of the design or the results of the trajectron experiment are dis-
cussed. The idea behind the trajectron was to measure electron tra-
Jectories, and the mechanism used for obtaining data in the trajec-
tron was the trajectory of a beam of electrons. Therefore it is
fitting that the electron trajectory be emphasized and discussed at
length, while the potential and space charge distributions play a
secondary role.

Most of the chapter is devoted to the solution of the mag-
netron equations for the case of no initial velocities or discrete
electron interactions. The resulting solutions, which are described
qualitatively on page 5, are discussed in more detail and some graphs
of solutions are presented.

In all these solutions, the space charge is confined to a re-
gion between the cathode and a maximum radius, called the Hull radius.
The trajectron experimental results indicate that there is space
charge outside the Hull radius. The explanation lies in the fact that

conservation of energy and angular momentum was assumed for individual

electrons in the deviation of these solutions. Actually electron

-16-
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collisions may occur, and electron energy and momentum are subject to
changes. As a result of such a change, an electron may traverse an
orbit confined to the region between the snode and the cathode, but not
necessarily inside the Hull radius. The space charge observed to be
outside the Hull radius in the trajectron is undoubtedly made up of such
electrons, which are called "secular electrons." The concept of
secular space charge is discussed in Section 2.6.1, and in Section 2.6.2
the effects of secular space charge on the orbits in the stream of
electrons emitted from the cathode are investigated.

The units used in all equations are MKS unless otherwise
noted. When numerical values of magnetic flux density B or the ratio

¢a/B2 of anode voltage to flux density squared, B is measured in Gauss.

2.2 The Motion of an Electron in the Fields of a Planar Magnetron

The planar magnetron consists of parallel planar cathode and
anode with a uniform magnetic field parallel to the cathode. A rectan-
gular coordinate system is used in describing the motion of electrons
in the planar magnetron, with the y axis perpendicular to the cathode
and the z axis parallel to the magnetic field, as illustrated in Figure
2.1, The electric potential @ is assumed constant in time end depen-
dent only upon the y coordinate; notice that this includes assuming the
existence of a steady state. The magnetic field is assumed uniform and
parallel to the z axis, with flux density B.

It is most convenient to derive the equations of motion from
the Lagrangian.l The Lagrangian for an electron in an electromagnetic
field cen be written

L = T+§+ehv . (2.1)
where T is the kinetic energy, @ the electric potential,'z the vector

lGoldstein, Ref. E, p. 19.
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potential of the magnetic field, and m is the mass of an electron.l

A suitable choice for the vector potential A is as follows:

A = B
y X
A, = A, =0 . (2.2)

With this choice of EL curl A has a component only in the z direction
and that component has strength B.
In the rectangular coordinate system, the kinetic energy T

can be written

T o= 2GEEAR4ER) (2.3)

where the dot denotes differentiation with respect to time, and m is

the mass of an electron. Thus the Lagrangian can be written

L = g (32 + 3%+ :%) + ep(y)-eBxy , (2.4)

and the equations of motion are

_q d_L_,-a—& = O ]

dt d0x 0x

d oL OL _

a-jt- .a_;r - -a;' = 0 » and

d oL dL

.__--—-:-.,—- = 0 . 2.
t 3; oz (2.5)

If the expression (2.4) is substituted for L, equation (2.5) becomes

mx+eBy = 0 , (2.68)
my - e Bx - %32 = 0 , and (2.6Db)
mz = O. (2.6¢)

These are the equations of motion of an electron in the magnetron in

A reader not familiar with Lagrangian mechanics may proceed to equa-
tion (2.€).
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the ordinary Newtonian form, with the forces due to the magnetic field
included.l

Energy and momentum integrals can be derived from equations
(2.6) for an arbitrary potential field and for arbitrary initial
conditions. These equations will be used in Chapters IV and V in
discussing the motion of the electron beam in the magnetron diode
as well as in finding the self-consistent field solution for the
planar magnetron.

The solution of equation (2.6c) is
(2.7)

zZ = éo t+z0 ’
where éo is theinitial z component of velocity and z, the initial z
displacement. Equation 2.6a can be integrated once to

mx + e By = P, (2.8)
where Px is a constant of integration. If there were no magnetic
field, the x-component of linear momentum would be constant, because
the electric field has no x-component. This equation expresses the
corresponding relation with the magnetic field present, and Px is
usually called the generalized or canonical momentum. Px can be
found in terms of initial velocity and displacement by considering
its initial value

P, = mio + eBy, , (2.9)

where io is the initial x-velocity and Y, is the initial y-displacement.
There is one more integration which can be carried out at

this point. Multiplying (2.6a) by %, (2.6b) by y, and (2.6¢) by z,

and adding gives

(L X1 L L) se o d

mXX + WYY + WZZ - e Fy ¥ = O . (2.10)

lSee, for example, Dow, Ref. B, p. 46.
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This can be integrated to
02 [ L4
3 (% + P+ i) e (y) = E (2.11)

wvhere E is a constant of integration called the total energy. The
equation expresses conservation of energy for this problem. The total
energy for any electron can be expressed in terms of initial velocity
and position by considering the initial value of E.

. 2 ) « D
m
E =3 (2, +3, +2,) -eb(y) (2.12)

where io, &0, and éo are the components of initial velocity and Yo is

the initial y-displacement.

2.3 The Planar DC Magnetron

The plan of this solution is to asuume that electrons are
emitted from the cathode at a uniform rate., The local variations of
the potential due to the discrete nature of electrons are neglected,
but the average effect of the space charge is brought in through
Poisson's equation. All electrons are assumed to have congruent orbits.
Then the equations of motion are written and solved for any one elec-
tron.

The initiel conditions assumed for this electron are

X 0= VTEo = X, = ¥, = Z, = o , (2.13a)

i.e., at time t = O the electron is at rest on the cathode surface.

Then equation (2.7) becomes

z 8 0 . (2.13b)

Since x and y are initially zero, P 1is zero. It is convenient to
X
denote by w_ the Larmor angular frequency, which is defined as

L
o = SB (2.14%)

L 2m
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Then (2.9) can be written

x = -2,y . (2.15)
With these initial conditions, equation (2.12) becomes

+

l\)|‘< .
o

)= +ep (2.16)

i e

m (

where the constant E has been chosen to make ) = O on the cathode.

Substituting (2.15) in (2.16) to eliminate x yields

RIS NS SN (2.17)

.2
Since y must be equal to or greater than zero, an electron cannot

reach any region in the magnetron where the potential is less than
2 2
2n ooy

e
cathode that an electron emitted from the cathode with zero velocity

. The symbol i denotes the greatest distance from the

could reach. This distance Yy can be found by solving the equation

om 2 2
¢ (v,) = e A S (2.18)

e

It follows also that if an electron 1s to reach the anode,

6, > Peutorf = I (ho P (2.19)

So far, nothing has been required of the potential @ except that it
depend only upon y. This is to be a self-consistent field solution.
Hence the effect on the potential of the space charge due to the

moving electrons themselves is to be included. The potential ¢ must

satisfy Poisson's equation:

Ve = 'EE’ (2.20)
(o]
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where p 1is the space charge density, and € is the permitivity of a

vacuum. Since @ depends only upon y, this reduces to
== =-£ . (2.21)

Since the space charge is assumed to be flowing from the
cathode at a constant rate, the current per unit area must be a con-
stant. The following relationship must hold between electric current

density J and space charge density p:
. J
J = py, or p = 3 (2.22)

This is the case 1f the electrons all leave the cathode and go to the
anode with positive radial velocity. Another case is important.
The electrons may move out to some radius, cease radial motion, and
return to the cathode. The net current would be zero, since there
would be equal current density for flow in each direction. Equation
(2.22) can still be applied for this case if J is interpreted as the
sum of absolute values of the two currents, i.e., twice the emitted
current, The § will have the same magnitude for both streams; since
§ and x are both functions of y only, it follows from (2.16) that
the magnitude of & depends only upon y.

The magnetron is assumed to be space charge limited. This

requires that the potential gradient be zero at the cathode, or

= Qvherey = 0 . (2.23)

Qaloa
<hs

The equations necessary for the self-consistent field solution are

summarized below:

my - eBx - e g . o , (2.66)
dy



) L
5 = =< s (2.21)
dy o
J )
P =3 ’ (2.22)
The initial conditions are
X, = ¥ =z, = X, = ¥, = 2z, = 0 , (2.13)
and
ag
Iy - O wherey = 0 . (2.23)

One simple solution of the equations is that called the B,
or single-stream solution. Suppose the y velocity is identically
zero for electrons at every distance from the cathode out to some Ype
Then for any particular electron, y is comstant. By (2.15) the

x-velocity 1is constant, Zmly, for any given electron, and thus
X = - 2‘1) yt . (2n21")

The potential distribution can be found from the energy integral (2.17):
22

ey, ¥

e

B o=+ RGEP - (2.25)

The space charge density can be found from Poisson's equation (2.21)

to be

bm e w2
p = ___illL (2.26)

e

The current density in the y direction is zero, since ¥y = 0. Thus all

the equations are satisfied.
All of the other self-consistent field solutions, called

double-stream solutions, are derived as follows. Equation (2.21) can be



-25-

written
& - P (2.27)
dy €,

where F is the y-component of electric field. Multiplying both sides

by y and noting (2.22)

(_i_}; . y = a.t. - 6

dF afF  _ Py - I (2.28)
0 60

The term %% is the time rate of change of electric field which an elec-
tron experiences while moving through the field. The field itself is
not changing with time, of course. Equation (2.28) can be integrated,
since J is constant, as follows:

p oo 3t
T €

. (2.29)
)
The constant of integration was chosen to make F zero on the cathode
in sccordance with (2.23).
Equation (2.6b) can be written
my + eBx = eF (2.30)
Equation (2.15) can be used to eliminate X, and F is eliminated by using

(2.29). Then

e eB _ €eJ

y + = - amLy = e t , or

¥+ by = &g, (2.31)
meo

An obvious particular solution of this linear differential

equation is

eJ
y = —5—t
)-60.‘.L2m€ ’
o
and thus the general sclution is
edJ
Yy = ———t + C, sin 20 .t + C, cos 2v_t
oy e, + T L

vhere Cy and C, are constants of integration. The condition y = O when
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t = 0 requires C2 to be zero. The condition & = 0 when t = O requires

Cptobe - —2 | and thus the solution of (2.28) is
wr, e
)
= ed
y = —— (amLt - sin 2o t) . (2.32)
L
Swy “me,
For convenience, let
W J
m T e — - (2.33)
8wy~ me,
Then (2.29) becomes
1Y)
y = 7z (et - sin 2w t) (2.34)
and
L] w
y = w—i—- (1 - cos 2w %) (2.35)

The y-velocity vanishes when amLt is any mwultiple of 2x. The points
where § vanishes are spaced W units apart on the y-axis.

The x-displacement can be found from equation (2.15):
X = - amLy , Or

x = ft[-anLy] at . (2.36)
0

Substituting for y from equation (2.34) and integrating yield

= - X 242 .
X 5 (zw.L t 1 + cos Zth) . (2.37)

The boundary conditions at the cathode are met by these
solutions. However, when the anode voltage is specified, another set
of boundary conditions must be met. Consider first the cutoff magnetron.
The electrons are confined to the region between y = O and

Yy =¥y vhere
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P (v,) = + 35 (hop B0) . (2.18)

Inside this region the potential distribution is given by (2.17),
and between y = Y, and the anode, there is no space charge, so that
the potential is linear. Both @ and its derivative must be continuous
inside the magnetron, and in particular at the boundary of the space
charge.

The potential at the boundary given by (2.18) holds for both
single-stream and double-stream solutions. The potential gradient at

the boundary for the single-stream solution is, from (2.25),
2
d¢) _g__[ m 22] . hoop, Sy
(dyy Gl g ey V) = = (2.39)
h

The potential gradient at the boundary of the double-stream solution

can be found from (2.29) to be

d¢ = -F = - :Lt- .
2 > (2.29)

J can be eliminated by using (2.33)

3
ag ., e m oy
W - (2.39)

e on

At the space-charge boundary y = 0, and so zwtt is a multiple of 2=,

say 2nn. Then Y must be nW., Eliminating t and W yields

L
Q_Q = + _nuL__.___%’h (2 .)‘I'O)
dy e

which is the same as equation (2.38). Thus regardless of which solu-
tion applies, the potential distribution is linear between y and the
anode; and at Yy @, and g% satisfy (2.37) and (2.38). Thus the anode

potential is o

2 2
g i T W P
a 2 e

(¥g = ¥) . (2.41)
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The yy, as a function of anode voltage can be found by solving this equation.
The anode voltage determines only Yp? and the boundary conditions are
completely satisfied by the single-stream (or BJ solution, or the double-
stream solution with W = yh/n where n is any integer.

The solution with W = yh

solution, and in general W = yh/n gives the B solu-

is called the B, solution. If W =
¥,/2, this is a B,
tion. The orbits of the Bl and B, solutions and the potential distribu-
tion of the Bo’ Bl and 52 solutions are shown in Figures 2.2 and 2.3,
Theoretically one cannot say for a double-stream solution whether an
electron will go through or turn around at a point inside the space-charge
region where & = 0. The electrons are illustrated as going through.

The emission current required for the single-stream solution is
zero. For the double-stream solutions it is given by equation (2.33).
(Note that for a cutoff magnetron the emission current density is J/2.)

The cutoff voltage for the magnetron is given by (2.19).
Presumably any double-stream solution could occur, and as the voltage is
decreased toward the cutoff voltage, the current would approach the value

given by (2.33). There should be absolutely no anode current if the anode

voltage is below cutoff.

2.4 The Motion of an Electron in the Field of a Cylindrical Magnetron

The cylindrical megnetron consists of concentric cylindrical
cathode and anode with a uniform magnetic field parallel to the axis of
the tube. A cylindrical coordinate system is used, with the z-axis the
axis of the tube, as illustrated in Figure 2.4. The electric potential is
assumed constant in time and dependent only upon the r and z coordinates.

The magnetic flux density will be denoted by B.
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Again it is convenient to derive the equations of motion from

the Lagrangian.l A suitable choice for the vector potential'K is

A = Br, (2.42)

With this choice of'K; curl A has no component in the r or @ direction, and
the z-component is constant, equal to B. In the cylindrical coordinate

system the kinetic energy T can be written

2

T o= (s r26° + 22) (2.43)

vhere the dot denotes differentiation with respect to time, and m is the
mass and e the charge of an electron. Thus the Lagrangian equation (2.1) can

be written

[ ] . 2
L = g (fz + ro0° + 22) + ep(r) - eBZ ° (2.44)

The equations of motion are

d 0Ly, OJL _
Fr (5;) "3 = 9 (2.45)

d 9Ly 9L _ g

=2 g d 2.46)
T 35 08 > &n (

d (0Ly . oL _
E'E(gg) = 0

On substituting the expression (2.44) for L in (2.45), they

become
nF - mr 62 - e Qg%;?il-+ eBré = 0 (2.46a)
d 2 eBre
ey (mrce - 5—) = 0 (2.46b)

m = e 28(x,2) (2.46¢)

d 2
Ithe reader not familiar with the Lagranglan may simply omit this paragraph.
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Equations (2.46a and (2.46c) are the equations of motion in Newtonian

1

form.~ Notice that the second term in (2.46a) is present because of

the curvilinear coordinate system; it is essentially centrifugal force.

DTre+2mre -eBr = O (2.47)

vhich is also in Newtonian form. Here the second term is centrifugal
force and the third the force due to the magnetic field.

Energy and momentum integrals can be found from equations
(2.46) for an arbitrary potential field and for arbitrary initial
conditions. These equations will be useful in discussing the motion
of the electron beam in the magnetron diode as well as in finding the
self-consistent field solution for the cylindrical magnetron.

Equation (2.46b) can be integrated to

28 eBr2
nr<e - 5 = Py (2.48)

where PQ is a constant of integration. This equation can be interpreted
as a generalization of conservation of asngular momentum. PG is called

the generalized, or canonical, angular momentum.

Pe can be expressed in terms of initial conditions by consi-
dering equation (2.45) at time t = 0.

2

eBr
= (2.49)

_ 2
Py = wrg éo -

where r, is the initial radial displacement and éo is the initial

angular velocity of the electron with respect to the axis of the

cathode,

lSee, for example, Dow, Ref. B, p. 5k.
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The energy integral can be obtained by multiplying (2.46a)
by ¥, 2.47 by r, (2.46c) by z, and adding. The result is

o¥ P + mred S + mrecr + m¥z- -

s
U

N
.

= 0. (2.50)

Q
H

Q
N

This equation can be integrated once with respect to time, yielding
22+ P82+ 8) - ef (r,2) = E (2.51)

where E is a constant of integration called the total energy. The total

energy for any electron can be found in terms of intial conditions

by considering equation (2.51) at time t = O as follows:
E = B (2 2,123 24 z 2) -ep (r, z) (2.52)
2 0 o 0 o o’ o’ °

where fo and éo are the initial r and z components of velocity, Ty

and z, are initial r and z displacements, and éo is the initial value

of e.

2.5 The Cylindrical DC Magnetron

The derivations of this section are analogous to those given in
Section 2.3 for the planar magnetron. The solutions are very similar,
though there are several important differences.

In this section the electric field is assumed to depend only
upon r. The local variations of the potential due to the discrete nature

of the electrons are neglected, but the average effect of space charge is
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brought in through Poisson's equation. All electrons are assumed to

have congruent orbits and the equations of motion are solved for any
one of them.

The initial conditions for this electron are assumed to
be

Ir = a, Qo = ZO = I.'O = éo = éo = 0 ’ (2055)

where r_, 6., z, are initial values of r, 6, and z, and Tos éo’

(o]

and io are initial values of f, 9, and z respectively, and a is the

cathode radius.
Since @ does not depend upon z, gg = 0, and equation (2.46c)

can be integrated immediately. 1In view of the initial conditions,

(2.53), the solution is

(2.54)

N

n
o
L]

Since r is initially a, the cathode radius, and 8 is initially zero,

2
e Ba
Py = - , (2.55)
2
and (2.45) can be rewritten as follows:
. al
e = o (1 - ;E) , (2.56)

where o, = eB/2m as before.
With the initial conditions (2.53), E is found from equation
(2.52) to be zero (if @ is assumed to be zero at the cathode.) Then

the energy integral (2.51) becomes
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02 2 '2 .2

B4R 0 LB - e (r) . (2.57)

Equation (2.56) can be used to eliminate © from (2.57), and z = 0, so that
mfe mr2 wLe a2

+ (1--5) = ep(r) , (2.58)
2 2 b o

.2
Since r must be equal to or greater than zero, an electron cannot reach

any region in the magnetron where

mr2 2 2
< —L (1- 3—2-)2 (2.59)
2e T

The maximum radius from the cathode that an electron emitted from the
cathode with zero velocity could reach is called the Hull radius and

denoted by ry,.  The Hull radius can be found by solving the equation

2 .2 2
p(r,) = f—-f-z;-ﬁ'— (1 - -8-2-2-) : (2.60)
™h
It follows also that if an electron is to reach the anode,
2
g, 2 Bostore = 6 0L r? (1 - i-é—) . (2.61)

So far nothing has been required of the potential @ except that
it be a function of r only. Now the conditions on @ which make this a
"self-consistent field" solution are introduced., The potential @ must
satisfy Poisson's equation

Ve = -.g. , (2.62)
o

vhich in cylindrical coordinates becomes

14 ,_ag, _ P
149 . -£ (2.63)

since @ is a function of r only.
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Since the space charge is assumed to be flowing from the cathode
at a constant rate, the current per unit length of the tube must be con-
stant. The current per unit length I and current demnsity J are related as
follows:

I = 2nr J(r) . (2.64)
Because of the symmetry, J can depend only on r. The space charge density
is related to J by the equation
J = pr, (2.65)
and therefore

I

2xr rp (2.66)

Again this is the case if the tube is not cut off and the
electrons are all moving toward the anode. If the tube is cut off, half
the electrons are moving out and half are moving back toward the cathode.
The net current is zero. Equation (2.66) still applies, however, if I is
taken as the sum of the magnitudes of the inward and outward currents, or
twice the emission current.

The magnetron is assumed to be space-charge-limited, and hence

the potential gradient at the cathode is zero, i.e.,

9@ = 0 vhere r = a . (2.67)
dr

With this, all the equations and boundary conditions required to determine
r and @ as functions of time have been presented. The necessary equations

are summarized as follows:

¥ - mr 62 . e %g + e Bré = 0 (2.463)
. a2
14 d _ P
1d Eg) - - (2.62)

T = 2nr rp (2.66)
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with the boundary conditions

© = 2z Ovwhent = 0, and (2.53)

r = a, 6 = 2z = 7r

= O wherer = a. (2.67)

o
]
ul cu

r
These equations can be solved for r and © as functions of time, and for
electric potential and space charge distributions.

Again a simple solution for the equations is that called the
single-stream solution. Suppose the r-velocity is identically zero for
electrons at every distance from the cathode out to some maximum radius T
Then for any electron, r is constant, and the electrons move in circles
concentric with the cathode, By (2.56), the angular velocity is con-
stant, o (1 - i;), and so
o = ot (1 -E‘;) . (2.68)

r

The potential distribution can be found from the energy integral (2.57) to

be 5

2 2
m 2 02 W2 mop~ T a2
= 2 9 = —_——1 - ) . 2.6
) 5 (r° + r + 2°) — ( r2) (2.69)

The space-charge density can be found from Poisson's equation (2.63) to be

2
2m € L
p = ._i)_i'_..q (1 + EE) ) (2.70)
r

The current density in the r direction is zero, since y = 0. All the
equations are satisfied.
Next the double-stream solutions are considered. Equation (2.63)

can be written

Rl

dif (rF) = .6% (2.71)

vhere F is the radial component of electric field., Multiplying both sides
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by rr, and using (2.66) to eliminate P
r— (rF) = S () = Pz _ I_ | (2.70)

The term é% (rF) is the time rate of change in electric field which an
electron experiences while moving through the field. The field itself
is not changing with time, of course. Equation (2.72) can be integrated

since I is a constant.

F o= Xt (2.73)
2neq

The constent of integration was chosen to make F zero on the cathode in
accordance with (2.67).

Equation (2.46a) can be written

m¥ -wrd°+ e Bré = eF, or

se 2 2 2 eF
r-r(0-~-w)+ r = & 2.7k
(6 - @) + oy = (2.74)

Equation (2.56) can be used to eliminate é, and F can be eliminated by

using (2.73).
“T? gl o
¥ + r = elt
r5 2nm eo r

. (2.75)

The problem has been reduced to the problem of solving an ordinary differen-
tial equation. Unfortunately, the equation cannot be solved in terms of
well known functions. All the necessary information about the solutions

has been obtained, however, through the efforts of Allis on an approximate
solution, which was checked with numerical solutions by Hartree and dif-

ferential analyser solutions by Brillouin.l

1. Allis, Ref. 1; Slater, Ref. 39; Hartree, Ref. 24; Brillouin, Ref. 9.
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In solving (2.75) it is important to eliminate as many para-

meters as possible by introducing dimensionless variables., Let

R =L,T = at,andbd = el (2.76)
a 3 2 T . .
L 2mm € w13 a

Then (£.75) can be written

o
g——g. + R - -—]-_'— = P-? 3} (2'77)
ar R’ R

and the boundary conditions become
R =1 98 = 0 whenT = 0. (2.78)

Solutions of this equation were obtained on the electronic differential

1 Some of the solutions are shown

analyser at the University of Michigan.
in Figure 2.5. They are in substantial agreement with those obtained

by Allis and Brillouin. The solutions obtained by Brillouin on the MIT
differential analyser are more accurate, since that is a much more elaborate

machine. However, these solutions show clearly the nature of the solu-

tions of equation (2.77).

When the solutions were run on the differential analyser, both R
and dR/AT were recorded. The tapes shown in Figure 2.5 include the curves

of both quantities, For some solutions,

T
6 = edt = .f (1 - 25) ar (2.79)
(o)

was also recorded., Some examples of these curves are shown in Figure 2.6.
They give the orbit parametrically.
In Figures 2.7 and 2.8 the data have been replotted showing R as

a function of @, which is the orbit. Note that for small values of Ry,

lThe method of solution is discussed in Appendix 2.
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the B1 and B, solutions do not occur; this phenomenon is discussed on
page 46.

For small values of b, the electron radial velocity oscillates
between small and large values as the electron moves outward, Jjust as the
electron velocity oscillated between zero and a maximum value in the
planar case of the B solutions with n greater than one. Each successive
minimum velocity is nearer zero, until finally the radial velocity actu-
ally reaches zero and apparently becomes negative. For the solutions
shown, in the case of b = 0.6, there are two minima before dR/dT becomes
zero, and for b = 0.8 or 1.0 there is one. For b = 1.2 or greater
there is no minimum before dR/AT reaches zero.

In equation (2.58), the energy integral,

mr a - !
5 (1-2) = ep (), (2.56)

52 is a single valued function of r. The magnitude of r for an electron
moving outward and for an electron moving back toward the cathode are the
same. Therefore, if an electron moving outward ever ceases outward
radial motion and starts moving back, it moves back in the mirror

image of its outward path. Thus the differential analyser solutions

have no connection with the physical problem beyond the point where

R = O.

If the electrons cease radial motion and start returning to
the cathode before they reach the anode, the magnetron is said to be
operating below cutoff. The radius at which the radial velocity vanishes
is called the Hull radius, Ry; there can be no space charge between the

Hull radius and the anode. The Hull radius Rh as a function of b, the

parameter in the differential equation (2.77), is plotted as a solid
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curve in Figure 2.9.l The parameter b is proportional to the current
emitted from the cathode. It can be varied physically by varying the
anode voltage, but b is not a single-valued function of the anode voltage,
and hence is not determined uniquely by the anode voltage. The relation-
ship between b, Ry, and the anode voltage is discussed in the next few
pages.

Important constants for a number of solutions are listed in
Table 2.1. This table is taken from Allis' report.2

Discontinuities in Ry as b is increased occur when the next
earlier minimum in the R curve reaches the axls, and there is one less
minimum before R becomes zero. The double-stream solution is called the
By solution if R has no minimum inside the space charge region. It is
called Bp if there is one minimum, 35 if there are two, and so forth.
From Figure 2.9 it can be seen that for b > 0.96 the Bl solution occurs.
For 0.96 > b > 0.6 the B, solution occurs. For 0.6 >b > .4l the By
solution occurs. Also, the By solution can occur for any value of Ry
greater than about 2. The B, solution can occur only if 2.1 < Rh < 2.7
approximately; the B3 occurs in the range 2.15 < R, < 2.6, and so forth.
No double-stream solution is possible in the curoff magnetron if Ry < 2.
The single-stream (Bo) solution is possible for any value of Rh.

The Hull radius in the cutoff magnetron for a given anode
voltage can be found from the condition that the potential and its gra-
dient must be continuous. The space charge density between R = Ry
and the anode is zero, and therefore the potential is logarithmic in that

region, It is a solution of Laplace's equation:

lThis figure is for the most part copied from a figure in the report by
W. P. Allis, Ref. 1.

2Ref. 1.
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TABLE 2.1

DATA FOR SOME SOLUTIONS OF THE
CYLINDRICAL MAGNETRON EQUATION

Solution
Type* b Ry bTh#* -Rﬁ**Autho;#*
10 .125 2,312 5.01 .07 H,A
L .354 2,436 5.68 .03 H
3 L415 2.279 5.01 .00 H
3 545 2.627 6.54 .08 H
2 .590 2,226 L. 76 .00 H
2 605 2.254 4,83 .03 H
2 762 2.540 6.00 .12 H
2 867 2,722 6.83 .16 H
2 957 2.871 7.5% .20 H
1 ‘957 2.02% 3,84 -,ou**¥** g
1 1.00 2.067 3.87 .08 H
1 1.17 2.241 L., 49 .15 H
1 1.20 2,270 4,50 .21 A
1 1.71 2.7k 6.10 L7 H
1 2 2.992 7.1 .57 A
1 2.8 3,618 9.7 .91 A
1 2.83 3,622 9.66 .9k H
1 L L ho6t 13.5 1.%6 A
1 6 5.512 19.5 1.96 A
1 8 6.437 25.3 2.49 A
1 12 T.9%9  35.7 3,46 A

*An n in this column indicates that the B, type
occurs.

**1  is the normalized time required for an elec-
tron to reach the Hull radius from the cathode,
and Ry is the normalized acceleration experienced
at the Hull radius.

***This column indicates whether the data were
taken from Hartree's numerical solutions or

Allis's approximate solutions.

XHH
*Allis referred to this positive value of Ry

as "dubious." Equation (2.93) shows that R} must
be negative,




2 = }__d__ d = 2.8
V- ¢ r dt (x ar ) 0 (2.80)
Laplace's equation can be integrated for this case as follows:
r gg =
dr 1

(2.81)
0 = Cl Inr + 02

where C, and C, are constants of integration., If Fh and ¢h are the elec-
tric field strength and pot tial at ry, then the continuity of P and F

requires that

C, = fy +F tnry (2.82)
Consider first the single-stream solution. By (2.69)
2 2 o)
nay r a°
g = —5e— (1 - ;5) (2.69)
in the space charge region. Therefore
2
m b
I'h I\h
2.
; _ may? 2 : 22 (2.83)
h 2e 1-—=)
Th

The potential outside the space charge region, and in particular
at the anode, 1s obtained by substituting (2.83) and (2.82) in (2.81).
_ pof e 2 2

' i
o = e — |(1 - 3;5) +2(1- E;H) in ;S]: (2.8%)

This equation can be written

Pa e a2 1.2 1 Ry

-B-§ = - Rha[(l-_r‘?lg) +2(l-§;1:) lnﬁ;] ) (2.85)
and ¢a/B2 as a function of Rh is plotted in Figure 2.10.

For the double-stream solution, ¢h can be obtained from the

energy integral (2.58), since r = 0 8t r = 1.
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2,2 2 2
_ m wpr a
b, = —=— (1 '—rh2) , (2.86)

the same as in the single stream case., The electric field can be obtained

from the differential analyser solutions and (2.73).

Ity
F =
™' T e (2.87)

(o]

where th is the time at which r becomes zero. Putting this in dimension-

less form gives

2 52
aPF = I Th = . ‘DL 2 _2}.)?1_1. and
2 2
m (DL2 a l
= 2 - ——
¢h 5o Ry (l 2) . (2.88)

Then the anode voltage can be found by substituting these expressions in

(2.82) and (2.81).

m a2 a? 2 R
g = —L " |2 (1-1y", oopan 2 2.89)
a S h Rhg) + h Rh s (
or
¢a e a2 2 1.2 edTy Ra
—— = Rh (l - + !n F-un . (2'90)
B° G Rh2) R,y  h

The time Th when ﬁ becomes zero can be found from differential analyser
solutions, and ¢a/32 is plotted in Figure 2.10 for the B, and By solutions
with the R, appropriate for the trajectron. Note that several types of
solutions, Bl’ By, etc., may be possible with a given anode voltage, but,
unlike the planar magnetron case, the various types of solutions result
in slightly different Hull radii T'ye

In order for the double-stream solution and the single-stream

solution to have the same anode voltage for a given Ty it is necessary
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and sufficient that the Fh for the two cases be the same, since the ¢h

is always the same for a given r,. By (2.58), for either type of solution,

2 o 2 a® 2
- |2
e¢-§[r+ Y (1‘?)], (2.58)
and therefore
02 2
= d¢ m | dr d a
F - g = e — ——— 2 2 -
h ar Ze\dr * 3r [“’L = (1- )} - (2.91)

The second term is the same for both types of solution. The first temm
is zero in the single-stream case, since r = 0. If diz/dr =0at r=nry

in the double-stream case, then ¢a is the same in both cases, But

. LIC BT S
a(re) . dt - dt _ adr (2.92)
dr dr » at *
at

and this is to be zero when r = 0. Thus in a double-stream solution if
the r curve becomes tangent to the axis, the Hull radius is the same as
for the single-stream case. This is why the curves for the double-stream
solutions start on the curve for the single-stream solution in Figure 2.9.
In any case,

d(l“)2 2dr <

Tr 5 =0 vhenT = 0, (2.93)

since r must approach zero from the positive side. Therefore the
gradient at the edge of a double-stream space charge cloud is no larger
than that at the edge of a single-stream cloud. For the same Hull radius,
the double-stream solution generally has less space charge and a lower

anode potential.

As the anode voltage is decreased the cutoff occurs at the
point where r becomes zero at the anode radius, i.e., the anode radius
becomes the Hull radius. The cutoff voltage is given by (2.61). Pre-

sumably, any solution could occur at cutoff if it is possible for that
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solution to have ¥ = O at the anode radius., As the anode voltage is

decreased toward cutoff, the current should approach the value given by

(2.76).

2.6 Secular Space Charge

2.5.1 The Concept of Secular Space Charge., The idea of

electrons in the "secular" region of phase space, introduced by Hok

in his Space Charge Equilibrium in a Magnetron-A Statistical Approach,l

is very helpful in interpreting the trajectron data., Therefore this
concept will be defined and discussed here,

The state of any electron in a cylindrical magnetron at a given
time can be described by giving the coordinates of its position and the
three components of its momentum. It is convenient to use the canonical
momentum, which is, with the choice of magnetic vector potential used in

the previous section, equation (2.42),

JL :
P = = = omr
T ai.
Pg = 9L = mr2 (o - 6) (2.94)
96
JL -
P Z em— = mz .
2 9%

The state of the electron is glven by six numbers, and hence the state
can be thought of as a point in six dimensional space. This is called
the representation in phase space.

If the potential field in the magnetron is constant in time and
dependent only upon the radius, the equations of motion are the same as

those of Section 2.3, with %% = Q.

lRef. 28 or 29.
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By equation (2.49), Py is constant. The energy integral is,

from equation (2.51),

2 D <2 2
LO 0 Loz . g(r) = E . (2.96)

m T
2 2 2

This equation can be rewritten in terms of the momenta:

2 (P, -mo r°) 2 P2
g; + 0 D + 2; -ef(r) = E. (2.97)

If an electron in a certain state would eventually reach the
cathode, or if it could have reached its state by starting from the
cathode, that state is called accessible from the cathode., The totality
of all states which are accessible from the cathode form a region of the
phase space, which Hok calls the cathode-accessible region., Likewise,
there is an anode-accessible region, comprising all states which could
be reached by electrons starting on the anode or states from which
electrons may reach the anode.

Electrons can obviously be in either accessible region. It is
possible for an electron to be in both regions, as for example most elec-
trons in the magnetron with the anode voltage above cutoff. It is also
possible for an electron to be in neither region. For example, the
electrons in the single-stream (BO) solution travel in circles concentric
with the cathode, never reaching the cathode or anode. Hok calls the
region in phase space which is in neither accessible region the secular
region.

The energy integral can be used to determine whether or not an
electron is in the cathode- or anode-accessible region. The equation
(2.97) for the energy can be solved for Pr2 as follows:

P2 P,°

(p, - r2)2
r z e by,
2m 2 > r2

. (2.98)
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If an electron is at radius r_ with constants of motion Pgs Py and E,

o

and if it is in the cathode-accessible region, it must be able to reach
the cathode in a finite time, or it must have come from the cathode to

o in a finite time. Hence,

ry o
f dr _ f mdr . transit time (2.99)
a a P

e

must be a finite real number, Since Pr as a function of r is given by
equation (2.98) which in turn is completely specified by the three con-
stants of motion of the electron Py
distribution, knowledge of the three constants PG’ P, and E suffices for

PZ, and E, for a given potential

determining whether or not an electron is in the cathode-accessible
region. Note that it is necessary that P@ 2 0 everywhere between Ty
and a, and it is sufficient that Pg > O everywhere between r, and a

for an electron at r, to be in the cathode-accessible region of phase
space. It can be determined whether or not an electron is in the anode-
accessible region by a completely analogous method.

Twissl argues that if initial velocities are taken into account
in the cutoff magnetrun, the electron motion must be of the double-
stream, and probably even the single-swarm (Bl) type. The time which such
an electron spends in the magnetron between the time when it is emitted
and the time it reaches the cathode again is not much greater than hﬂn/wL
for the Bn solution.2 Generally, one would not expect electrons in the

cathode-accessible region of the phase space to spend more time in the

magnetron than a few Larmor periods 2n/a)L.5 This would also be true of

lRef. Ly,
2This can be seen from the solution of the magnetron equations given in
Section 2.3, See the curves in Fig. 2.5 end the date in Table 2.1.

3Any period is theoretically possible; for example, the B_ solution with
n arbitrarily large may occur, and thus the time spent in the tube
might be arbitrarily large.
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electrons in the anode-accessible region. Electrons in the secular
region, however, would stay in the magnetron indefinitely.

The above discussion assumes each electron moves in a potential
field which is independent of time and dependent only on the r-coordinate
in space. This is not the actual case, of course. The electrons are
emitted in a random manner, and have, when they are emitted, a random
distribution of velocities. There are bound to be small variations in
space charge density which will cause variations in time and space from
the strictly radial potential field. It must also be remembered that the
space charge is made up of electrons, discrete particles, and very near
any electron there is a sharp depression in the potential., If two
electrons pass very near each other, each is deflected by the field of
the other; this is a collision. The collisions are not accounted for if
the potential is assumed strictly radial, Furthermore, it is possible
that oscillations may occur due to phenomena like plasma oscillations or
space charge waves, and as a result, the potential may change in time.

Thus an electron may experience changes in P,, Pgs and E. It
is even possible for an electron to change its position in phase space
into or out of any particular region. Not enough is known about the
magnetron for a good estimste to be made of the frequency or magnitude
of the changes or the rate of flow of electrons in or out of the various
regions of phase space. In the cutoff magnetron the anode current, which
probably is a large fraction of the flow of electrons into the anode
accessible region, is only a very small fraction of the current which
the cathode can and probably does emit. This would seem to indicate
that the flow of space charge from one region to another may be small.

On the other hand, Warnecke's group have observed large components of
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random velocities in a stream of electrons only a few Larmor periods
after they were emitted from an electron gun in a linear magnetron.1
From this it would appear that rather large changes in momentum and
energy can take place in a short time,

If there is little probability of a significant change in
energy or momentum due to these collisions or other variations from radial
fields in a few Larmor periods, then the ideas of accessible regions of
phase space are still useful. The energy E and the momenta Pe and Pz
vhich would remain constant with a purely radial field are now subject
to changes which are small or infrequent, Under these conditions, an
electron's state can change, and it may even move from an accessible
region to the secular region, or vice versa. Electrons may be so near
the boundary of two regions that an infinitesimal change in one of the
constants E, Pg, or P, might place it in the other region. 1Indeed, the
average energy of electrons emitted from the cathode is kT, where k is
the Boltzmann constant and T the temperature of the cathode in degrees
Kelvin. If an average emitted electron should lose a little more energy
than kT in a collision, and if the momenta Py and P, should not be
affected, then the electron would fall into the secular region.

In these terms, the operation of a static magnetron can be
described as follows: each electron starts from the cathode, and hence
in the cathode-accessible region. It probably stays in the magnetron a
few Larmor periods, and then returns to the cathode. /A few of these
emitted electrons, however, suffer large enough changes in their energy or
momentum to place them in the secular region, or even the anode-accessible
region., There are many electrons in the cathode-accessible region,

although each electron leaves the cathode-sccessible region after only a

lGue'hard and Huber, Ref, 22,
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few Larmor periods. The cathode emission supplies electrons as fast as
they leave. There are many electrons in the secular region. Electrons
enter the secular region at a slow rate, but the average electron spends
many Larmor periods in the secular region. There are few electrons in
the anode-accessible region. Electrons drift into the anode-accessible
region at a slow rate and spend only a short time in it. The signi-
ficant electron drift is from the cathode-accessible region to the
secular region (and perhaps to the anode-accessible region), and from
the secular region into both the anode- and cathode-accessible regions.

This qualitative theory explains the current to the anode at
voltages below cutoff. If the anode voltage is far below cutoff, a
large total change in energy or momentum is required before an electron
can pass from the cathode-accessible region to the anode-accessible
region. Only a very small fraction of the emitted electrons will reach
the anode-accessible region. As the anode voltage is increased toward
cutoff, & smaller total change in energy and momentum is required.
Electrons which have passed into the secular region are more likely to go
into the anode accessible region, and electrons are more likely to pass
directly from the cathode-accessible region to the anode-accessible
region. Thus the current to the anode will show a continuous rise in the
neighborhood of cutoff. When the anode voltage is at or above cutoff,
nearly all electrons are in both accessible regions, and a fairly large
change in energy and momentum would be necessary to put an electron into
the secular region. Also, the double-stream type of electron flow,
which affords many opportunities for collisions does not occur. Thus,
collisions and small variations in potential distribution probably play

an important role only in the cutoff magnetron.
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2.6.2 The Effect of Secular Space Charge on Electron Orbits in

the DC Magnetron. If the collisions and small variations in the potential

field have such a profound effect upon the operation of the static cutoff
magnetron, then are the solutions obtained for the ideal case considered
in the first part of this chapter of any interest? The answer is yes,

but with limitations. Most of the electrons in the cathode-accessible
region probably travel their entire orbit, little affected by the irre-
gularities in the potential field. Their motion would be, except for

two modifications, the same as that found in the ideal case., In the first
place, electrons of the secular region contribute to the space-charge

density p, so that p must be taken as

I
= ——t 2.100
P 2nrr Ps ( )

where I is the sum of the magnitudes of the current flow inward and
outward of the electrons of the cathode- accessible region, and Py 1is
the contribution of the secular electrons. This equation must replace
(2.66). Also, when the Hull radius is calculated, it must be remembered
that there are electrons, mostly secular electrons, outside this radius.
Unfortunately we have no way now to predict theoretically the
space=charge distribution due to the secular electrons. Only a very crude
estimate is possible--this will be discussed along with the other results
of the trajectron study. Also, if an exact solution were desired for the
ideal case modified by replacing equation (2.66) with (2.100), then it
would be necessary to teske into account the fact that the P g would be
affected by cathode-accessible electrons in some complicated way.
Clearly, the best one could hope to do now would be to see how sensitive
the solution is to the distribution ps of secular electrons by obieirning

sclutions for several hypothetical distiibutions Pg * This was done with
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the help of the electronic differential analyser at the University of
Michigan.

If the secular space-charge density /)s is a simple function of
r, the equation for the motion of electrons in the cathode-accessible
region is hardly more complicated than in the case where P is assumed
zero. The equations required for a solution in this case are those on
page 37, with

p= Lo 4pg (2.100)

2nrr

substituted for (2.66). Poissons equation (2.63) can be written

14
=& (F) = G.F; . (2.71)

Multiplying both sides by rr and using (2.100) to eliminate Ps

. 4 d pre 1 pst
T (rF) = E (rF) = —— = e . (2.101)
(o] o) o]

This equation can be integrated, since I is a constant, and

F o= i +'El' f r Pg (r) dr . (1.102)

The constant of integration was chosen to make F zero on the cathode in

accordance with (2.67). Equation (2.46a) can be written

R (2.74)

Equation (2.56) can be used to eliminate é, and F can be eliminated by

using (2.102).

¥ elt 1
rd

r
vorfr = + [ perar  (2.103)
a8

meebr rme,

Introducing the dimensionless quantities



T = of, (2.76)

and
QR) = —= ps (2R) (2.104)
m Wl €
equation (2.103) becomes
2 R
a®R, .1 BT, 1
EEQ + R - =3 TR j; RQ (R) dR . (2.105)

It is convenient to solve this equation on the differential analyser for

the following four cases:

Ql (R) = kl ’
k
Q@R = £,
k3 (2.106)
Qz (R) = ;3 , and
ki,
Q, (R) = .
’ B
The answer can be found analyticelly for the case
% (r) = ks (1+§E) s (2.107)

i.e., space charge with a distribution proportional to the distribution
in the single stream (BO) solution. These five functions are plotted
in Figure 2.11.

Consider the last case first. Equation (2.105) becomes

2 R
&R, R-% = pr+d j' Rks (1 + i%) drR
4T RO R J R
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ks R 1
=DbT + = (= - =—=) , or
R *2 2
2 k
LEs (- 2) (® - -13) = BT . (2.108)
ar R
/ k b
With the change of variables T' =T /1 - 7; y =TT 73
(1 -2

and with no change in R, this equation becomes

2
dR2+R--%=b'T, (2.109)
ar’ R

vhich is the same equation as appeared in the case of the ideal cylin-
drical magnetron (equation (2.77)). The solutions have been studied

in detail in Section 2.5. In particular, since the variable R was not
changed in transforming equation (2.108) into equation (2.10), any

type of solution can occur in the same range and only the same range of

Hull radius Rh regardless of the value of the constant k5 (o Sk S 2),

>
the same range as in the case of no secular space charge.

Since it would require too much space, the differential analyser

solutions could not be included in this dissertation. The most important
constants of those solutions are summarized in Appendix B, however,
For each solution, the vaslues of maximum radius, the transit time, and
the type of solution are recorded as well as the parameter values for
the solution. The solutions are all similar to those presented in
Figures 2.5 and 2.6.

The most important information which can be obtained from these

solutions is the range of maximum radius Ry possible with the various

types of solutions. These data are summarized in Figure 2,12, The single
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stream (Bo) solution can always occur with any maximum radius. (The
anode voltage determines Rh for any given possible type of solution.)
Figure 2.12 gives the range of Rh possible for the Bl’ By, and B3
solutions. Where one of these solutions does not appear in the figure
at some parameter value, this may be taken to mean it does not occur.
All these data--even that for the case of no secular space charge--
were taken from solutions on the University of Michigan differential
analyser. There are slight discrepancies between these solutions and
the more precise solutions obtained by Brillouin.

In the case of no secular space charge, the By solution can
occur with any value of Ry, greater than 2.15. The B, solution occurs
only in the range 2.22131§ 3.1, and the B5 occurs in the range 2.25 s
Rh S 2.9. These would also be the ranges which would apply to the
Q5 distribution of secular space charge. For the distribution Ql, the
limits for Rh are increased, and the region in which only the single
swarm solution is possible is widened., The increase is small for smell

values of ki, large for large values of k The Qp distribution has

1°
little effect on the range of maximum radius. For the Q3 distribution,
the limits are made smaller, and the B, solution can occur with R,
very small if k3 1s large enough. In fact only the By and By solutions
occur when k5 2 0.8, and only the B, solution occurs when k5 = 1.
The Q) distribution has this same effect on the solutions, except that
the effect is greater. Only the Bl and B, solutions occur if k) 2 0.4,
and only the By solution occurs if k), 2 0.6.

This can be summarized as follows: For a distribution of
secular space charge proportional to the space charge in the B0 sclution

(Q5), the range of maximum radius for which any particular type of solu-

tion can oceur is not affected. For secular space charge distributions
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that do not decrease as fast as a function of radius as the Q5 distri-
bution, the limits are increased. For the distributions which decrease
faster than the Q5

happen that only the Bl solution occurs, and it can occur with any maxi-

distribution, the limits decrease. It may even

mun radius Rh‘

2.6.3 Conclusions. In an infinite cylindrical magnetron it is

possible for an electron to be in such a state that until its energy,
angular momentum, or z-momentum is changed, it cannot reach the anode
or cathode. Such electrons are said to be in the secular region of
phase space, and they maske up the secular space charge in the dc magne-
tron. On account of collisions of electrons with ions or other elec-
trons, and on account of fluctuations in the potential field, electrons
can experience changes in energy and momentum. No reliable estimate of
the magnitude or frequency of occurrance of these changes, or of the rate
of flow of electrons in and out of the secular region is available, There
is evidence that the secular space charge is an important part of the
space charge in the dc magnetron.1

The actual secular space charge distribution is unknown, and
therefore it would be impossible to calculate the orbits for emitted
electrons in the presence of the secular space charge. The most obvious
effect of the presence of secular space charge would be to make the Hull
radius smaller.

Calculations were made for electron orbits in the presence of
hypothetical secular space charge distributions in order to learn what
other effect the secular space charge might cause. The result of most

interest concerned the range possible for the Hull radius for the

lsee Section 5.k.
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particular types of solutions. The Bl solution could occur only with
Rh > 2 (approximately) with no secular space charge. With the secular
space-charge density constant or slowly decreasing as a function of
radius, the lower limit for Rh was increased. If the secular space
charge decreased rapidly as a function of radius, the lower limit for
Ry, was decreased, in some cases to unity. Thus the presence of secular
space charge is enough to make possible the existence of the By type

solution with any Hull radius.l

1wiss (in Ref. U4U4) suggests that the distribution of initial velocities
may modify the electron motion in such a way that the B4 solution is
always possible, End effect in the tube may also affect this.



CHAPTER 3

DESIGI OF THE TRAJECTRON

3.1 Basic Design Parameters

The purpose of this chapter is to discuss the design of the
trajectron and to describe the trajectron and associated equipment.

The principal parts of the trajectron and their functions are
shown diagrammatically in Figure 3.1. The magnetron diode has concentric
cylindrical cathode and anode surfaces and is operated as a dc magnetron.

A beam of electrons is sent from the electron gun parallel to the axis of
the magnetron entering the magnetron at the cathode surface. The trajec-
tron was designed with the following mode of operation in mind: the
initial radial and angular velocities and displacements were almost the
same for beam electrons as for emitted electrons. Therefore beam electrons
experienced nearly the same forces as emitted electrons, and their displace-
ment in the radial and angular directions during the time they spent in the
magnetron should have approximated the displacement which would be
experienced by an emitted electron in the same time. The exit point of the
beam showed on a fluorescent screen. By varying the beam voltage, the time
the beam spent in the magnetron could be varied, and the spot on the fluo-
rescent screen could be made to trace out paths which should correspond to

trajectories of emitted electrons.

-69-
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The first questions of design which had to be answered were (1)
what should the dimensions of the magnetron diode be; and (2) in what
range of anode voltage, magnetic field, and beam voltage should the trajec-
tron be operated? In order to obtain results as accurate as possible, a
large ratio of magnetron dimensions to beam diameter was desirable. There-
fore, the magnetron diode had to be made as large as possible without
incurring excessive anode voltages or difficult cathode heating and heat
dissipation problems. The personnel of the tube laboratory recommended a
cathode one-half inch in diameter and two inches long for the first model
of the trajectron, and no change seemed advisable in later models. The
cathode required approximately one-hundred watts heater power, and the heat
dissipation presented no real difficulty.

The anode diameter was made about three and one-half times the
cathode diameter. The theory of the static magnetron predicts transitions
from one type of solution to another when the radius of the space charge
cloud is in the range of twice to three times the cathode radius -- this
range is easily observed when the anode radius is three and one-half times
the cathode radius.

Conventional electron guns of the type used in oscillograph tubes
were employed because they were readily available and inexpensive. P-1
phosphor (RCA No. 33—W-2A) was found to be the most satisfactory fluorescent
screen coating. Then the approximate range of beam voltage was determined,
since the phosphor is not satisfactory for beams of less than approximately
200 volts and the electron guns are rated to operate at no higher than 3000
volts (although they were found to work quite satisfactorily above L4000 volts).

An estimate of the required magnetic field is now possible. Suppose
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we wish to have the beam deflected to its maximum radius when the beam
voltage is 2000 volts. It can be seen from the differential analyser
solutions given in Chapter II (Figure 2.5 and 2.6) that an electron will
reach the maximum radial position in its orbit after a little more than
one-half Larmor period; or n/wL seconds. Therefore we wish the 2000 volt
beam to travel the length of the tube, two inches, in n/wL seconds. The
velocity of the 2000 volt beam is

v = %§ $ beam = 2.6 x 107 meters per second. (3.1)
The time it takes the beam electrons to travel the two inches through the
magnetron is

t = L = 1.9 x 10—9 seconds, (3.2)

v

and this is to equal ﬁ/wL . Then

wp, = % = 1.65 x 109 radians per second, (3.3)
and since w = eB/2m ,
B = L - 0.0185 webers per square meter, (3.4)
e

or 185 gauss. Such a field can be obtained easily with a solenocid. The
anode potential required to operate the tube with a given Hull radius can
be found by referring to Figure 2.10 of Chapter II. For a Hull radius
equal to twice the cathode radius, Figure 2.10 gives ¢a/B2 = .067, and
hence if B = 185 gauss, @, = 2300 volts. For cutoff conditions, @,/B® =

.111, and ¢, = 3800 volts.

3.2 Details of the Tube Construction

Figure 3.2, an assembly drawing of the trajectron, shows most of

the details in the design of the trajectron. A photograph of the assembled
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FIG. 3.3
ASSEMBLED TRAJECTRON

trajectron appears in Figure 3.3. The fluorescent screen was a coating of
P-1 phosphor on the inside surface of the pyrex window (20).l This pyrex
disk (20) was cut from an ordinary pyrex baking dish by using a "biscuit
cutter".2 The P-1 phosphor was suspended in acetone and sprayed onto the
pyrex disk with a handmade glass spraygun. The phosphor was wiped off the
outside edge of the disk where the glass contacts the teflon gasket (19),
and a spot in the center of the disk was wiped so that the end of the

cathode could be seen.,

The numbers in the parentheses here and in the following paragraphs refer
to the part numbers on the assembly drawing, Figure 3.2.

Strong, Ref. H, p. 36.
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A little thought will make it clear that the fluorescent screen
must be as near as possible to the magnetron diode. If it were not, the
point where the beam leaves the magnetron space charge would have to be
calculated from knowledge of where it hits the fluorescent screen. But
such a beam path would be difficult curve to calculate because of the
presence of the electric and magnetic fields in the region near the end of
the diode. In the trajectron the spacing between the end of the cathode
and the fluorescent screen was made one-eighth of an inch.

Placing the fluorescent screen near the magnetron cathode resulted
in several problems. In the first place, the phosphor was subject to some
heat and contamination from the cathode. P-1 phospor was recommended as
the most rugged of the commonly used phosphors, and was found quite satis-
factory. The efficiency of the fluorescent screen decreased with time as
the trajectron was being used; therefore the fluorescent screen was recoated
every time the tube was modified in any way and reassembled. In order to
keep the fluorescent screen cool, cold water was run between the outside of
the pyrex disk (20) and the transparent plastic disk (17). Holes in the
clamping ring (3) were for water intake and outlet.

The most serious difficulty encountered with the fluorescent
screen near the cathode was the lighting of the fluorescent screen by stray
electrons from the magnetron space charge. The fluorescent screen was
essentially the boundary of the magnetron space charge, and many electrons
struck it because of initial z-components of velocity and because of z-
components of velocity acquired in collisions. The only satisfactory way
found to overcome this difficulty was to place a copper mesh (28) between

the fluorescent screen and the magnetron diode. The mesh was connected to
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ground (the cathode potential) through a narrow strip of .003 inch copper
which was brought through the gasket seal. Glyptal was used at the point
where the copper strip passed through the seal in order to make the seal
vacuum-tight. Unfortunately, the presence of the copper mesh at ground
potential at the end of the diode made end effects more serious.

Details of the cathode (25) are shown in Figure 3.4. The cathode
was made of a Grade A nickel cylinder with a fine mesh of Grade A nickel
sintered to its surface. The surface was coated with barium carbonate RCA
No. 33-C-131. The coating was scraped so that the surface of the coating
was flush with the outside of the mesh. The heater was a bifilar winding
of .020 inch tungsten wire wound 20 turns per inch on a threaded piece of
ceramic tubing. The ceramic tubing was found necessary to prevent the
heater from sagging. The cathode and the ceramic were supported on a
molybdenum rod. The electron beam entered the magnetron diode through a
.063 inch hole in the flange at the bottom of the cathode. The flange
served to support the shield (29) which was made of .003 inch molybdenum
sheet. The shield was necessary to prevent any deflection of the electron
beam by the electric field before it actually entered the magnetron space
charge region.

Two .003%5 inch wires were mounted on the cathode -- one on the
center of the hole in the flange at the bottom of the cathode, and the
other in exactly the same angular position at the other end of the cathode.
These were used in aligning the beam.l A .025 inch hole was drilled in the
end of the cathode centered in the axis of the cathode. This hole identified

the center of the cathode on the data photographs. It was found to show up bes

1 The beam alignment procedure is described in detail in Section L4.2.



17

SOOI N NNNNNNNNNN

.0035 DIA. NICKEL WIRE

0N NN N NN AN N

AR NN

/H

FIG. 3.4

.0035 DIA. NICKEL WIRE

ALL DIMENSIONS UNLESS OTHERWISE SPECIFIED MUST BE HELD TO A TOLERANCE - FRACTIONAL + 4, DECIMAL 1 .00%,” ANGULAR § 14°
(X 7.

EncGINEerING REesearcH INsTITUTE

University oF Michican
ANN ARBOR MICHIGAN

DESIGNED BY W.P.

APPROVED BY .

DRAWN BY PLW

scaLE 2 X

CHECKED BY

DATE 2-2-54

TITLE

PROJECT
2009

MAGNETRON CATHODE
FOR THE TRAJECTRON

SSUE

2-2-5
DATE

CLASSIFICATION

DWG. NO. A- 8047

V ‘'ON 'OMQ



-78-

on the photographs when aluminum oxide powder was put in the hole -- the
aluminum oxide region appears dark on the photographs because it did not
become as hot as the cathode and did not emit as much light.

A1l vacuum seals which could not be soldered were made with
teflon gaskets, teflon being selected because of its low vapor pressure
and good insulating qualities. The heater connections were made through
two terminals (5) brought through the base of the diode and insulated
with teflon gaskets. The three bolts (k) and the clamping ring (3) applied
pressure to the water seal gasket (18), and to the two vacuum seals which
were teflon gaskets (19). The anode (2) was thereby insulated from ground.
Both gasket seals (19) were designed so that the pressure on the gasket
was greatest on a narrow section in the middle of the seal. The bottom
seal was given the beveled shape so that the anode would align itself
concentrically with the base when the pressure was applied to the clamp.

Both the anode and the base were cooled by means of cold water
running through copper tubes (26) soldered to the anode and the base.
Water from the mains was run first through a 25-foot length of rubber tub-
ing, then through the anode cocoling tube, and through another 25-foot
length of rubber tubing. From there it flowed through the base cooling
tube, and finally through the chamber between the plastic window (17) and
the pyrex window (20), and on into the drain. The water in the two rubber
tubes formed a path to ground from the anode with a resistance of about
eilght megohms.

The electron gun chamber (10) was connected with the diode base
(1) through a brass bellows (21). With this arrangement, the electron beam
could be aligned after the tube was operating. The alignment was accomplished

by adjusting the eight tangent screws (30) which control the relative position
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of the electron gun chamber (10) and the diode support (8).l The diode
support (8), which was outside the vacuum seal and served as mechanical
support for the diode section of the trajectron, could be removed with-
out opening any vacuum seals; this facilitated checking for leaks in the
vacuum envelope of the tube.

The connections to the electron gun (23) were made through a
teflon disk (24) at the base of the tube. The four terminals (16) brought
through the insulator connected to [ l] heater, [2] heater and cathode, [3]

grid, and [h] focussing electrode.

FIG. 3.5
ELECTRON GUN READY FOR INSTALLATION

1
The exact alignment procedure is described in detail in Section 4.2.
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Figure 3.5 is a photograph of the electron gun and terminals
ready for installation. The anode was connected to the grounded electron
gun chamber through mounting springs (31). The terminals in the teflon
also served as supports for the electron gun. The teflon insulating disk
was clamped to the base of the electron gun chamber with two rings (1k4)
and (15). The ring (14) and the base plate (13) were used to mount the
tube to the bench on which it was operated. The vacuum seal between the
ring (14) and the electron gun chamber (10) had to be silver soldered in
order to give it sufficient strength to support the whole tube.

All parts of the tube were brass except for the insulators, gas-
kets, windows, copper cooling tubes, and parts associated with the cathode.
All metal seals were soft soldered except the two noted on Figure 3.2 and
the joints on the cathode itself. The molybdenum support was arc welded
to the nickel cathode sleeve, the mesh was sintered to the cathode surface,
and the two parts of the molybdenum cathode support were platiﬁum—brazed

together.

3.3 The Magnetic Field

The magnetic field was produced by a solenoid. The solenoid was
wound on a brass spool 12-1/2 inches long with a 4-3/L4 inch inside diameter.
The winding itself consisted of about 925 turns of No. 14 double cotton
covered wire.l The winding was 30.5 cm. long, 1.2 cm. thick, and had a

12.7 cm. inside diameter. The solenoid can be seen in Figure 3.6, page 86.

1
There may be an error of as much as + 1% in the estimate of the number of
turns, and hence in the estimate of magnetic flux density.
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The field of the solenoid could be calculated more accurately
than it could be measured with available instruments. Calculations were
made only for the field on the axis of the solenoid. The assumption is
made that the current flow is uniformly distributed through the cross-
section of the winding rather than being concentrated in the wires; this
is a very good approximation in this case, since the distance from the

axis to the winding is many times the spacing between wires. The magnetic

field on the axis of a cylindrical sheet of current of zero thickness is1
£ - p) E + 1)
2 2 3.5)
Hoxis ’ (

= __.ni --l--l
2s > 5
R 5 _ v V/ R 5 + p)2

where s is the length of the solenoid; n, the number of turns; i, the cur-
rent; b, the distance along the axis to the point at which the field is
being calculated; and R is the radius of the cylinder. The field of a
solenoid of appreciable thickness can be found by integrating (3.5) with
respect to R between the limits Rj, the radius of the inside of the coil,

and Ro the radius of the outside of the coil.

(3.6)
S S

- S+

2s R, - R, f + dR

e R \/ R + (8 -b)° \/RE + £+ p)2
1 2 2

(5 - 1) R R

- g& 22R . sinh-1 2 _ einh-1 L |
s (Ry - Ry ) (8 s .

> b) 5 - )

1
Attwood, Ref. A, p. 262.
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R R
E+b) | stonl 2 siml L
—— Z+0b S+D
2(Rp-Ry ) (3 + D) (5 + )
At the center of the coil b = 0, and this reduces to
R R
sinh-1_2 _ sinh-1 L
ni 2s 2s
Hoxis center = — (3.7)
S Ro Ry
2s " 2s

As s approaches infinity, Haxis approaches ni/s, the field of an infinite sole-
noid. The expressions in the brackets can be considered the factors which

correct for finite length. For the coil described above, the correction

factor turns out to be 0.91 at the center of the coil (b = 0), and
0.895 at 10 cm. from the end of the coil (b = 5.25), The flux density is
B = p  H webers per square meter , (3.8)
and since po = bk x 1077 ,
B = Unxx 1077 x925
0.305

0.00381 webers per square meter per ampere

38.1 gauss per ampere (3.9)

i

for an infinite solenoid. At the center of the coil described above,

%— = 38.1 x 0.910 = 3L4.6 gauss per ampere, (3.10)
m
and at 5.25 centimeters from the center,
B
T; = 38.1 x 0.885 = 33.7 gauss per ampere, (3.11)

or about two and three-quarters percent lower than at the center.

When the magnetron diode was placed in the solenoid, one end of the
diode was at the center of the solenoid, placing the other end, was approxi-
mately 5 centimeters from the center of the solenoid. The beam path was

placed on the axis of the solenoid.
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It is not easy to calculate the field of a solenoid off the axis;
however, relative field strength on the axis and off the axis can be
measured easily by means of a search coil. Alternating voltage was applied
to the solenoid, and the voltage induced in a search coil was then
measured by means of an oscilloscope. The measurements indicated that the
field inside the diode would be nowhere appreclably stronger than on the
axis at the center of the solenoid and nowhere weaker than on the axis five
centimeters from the center of the solenoid. The difference in field
strength at these two points was approximately two and three quarters per-
cent, as was indicated by the theoretical calculation.

As an average value for the magnetic field in the diode, the

figure 34.3 gauss per ampere was used in all calculations.

3.4 TInstruments and Recording of Data

Electron gun cathode potential was measured on a Simpson model
260 meter which was calibrated with a Weston model 45-300 volt voltmeter
with a 3000 volt multiplier. The anode voltage was also usually measured
with a Simpson model 260 meter, but some anode potential data were taken
directly on the Weston model 45 voltmeter. The errors in these Simpson
voltmeter readings should be less than one percent of the full scale voltage
5000, 1000, or 300 volts.

Magnet current was measured on a Weston model 45 ammeter usually
with a five ampere shunt. Anode current was usually measured with the
Simpson model 260 meter, and there may be errors as great as ten percent
in some of the anode current figures given. The current data for the volt

ampere curves of Figs. 1.1 and 5.10, however, were taken on a Weston model L5
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ammeter with a one-ampere shunt, and those readings probably involve no
errors greater than five milliamperes.

All data from the fluorescent screen were taken on photographs.
The fluorescent screen was inaccessible for direct measurements, but
convenient for photographing. In addition the photographs formed perma-
nent records of the data which could be studied at any time.

The camera used was a Dumont model 296, 35mm. oscillograph type
with an f2.8 lens. An adapter was made so that the camera could be
mounted on the end of the solenoid. The camera is shown ready for use in
Figure 3.6. When the cathode was heated a Kodak Series V Wratton Filter B
was used to filter out as much of the light of the hot cathode as possible.
This filter matches very closely the spectrum of the light emitted by P-1
phosphor. In addition Kodak Linagraph-Ortho film, which is a fast film
insensitive to red light, was used. The aperture was usually set at about
flt to increase the resolution. The shadow of the copper mesh, on which the
wires are spaced .0l0 inch, is resolved on the photographs except when the
spot was over-exposed. This is certainly adequate resolution, since the
spot was never less than .010 inch in diameter, and was usually much larger
than this. A single photograph usually includes a number of spots. This
was accomplished by making exposures with the spot in each of many positions.
The exposure time was varied to make the spots appear more uniform on the
photographs, the times ranging from as much as 20 seconds for a 300 volt
spot to as little as 1/50 second for a 4000 volt spot. Many typical photo-
graphs are included in Chapters IV and V and Appendix E.

A1l the negatives were developed in the tube laboratory immediately

after exposure so that they could be checked while the equipment was still
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in operating condition. They were developed in tanks with Kodak Microdal
fine grain developer for fifteen minutes. They were then placed in an
acid fix for fifteen minutes, rinsed in cold water for fifteen minutes, and

hung up to dry.

3.5 Auxiliary Equipment

The trajectron tube was mounted on a special bench, illustrated
in Figures 3.6 and 3.7. The whole bench could be moved, since the pump-
out tube had a bellows at each end. In addition, the surface (A) on
which the tube was mounted could be tilted. These two degrees of freedom
permitted adjusting the tube so that the electron beam traveled parallel
to the earth's magnetic field. The solenoid was placed on surface (B),
which could be adjusted relative to surface A by means of three bolts
(C), which can be seen in Figure 3.7. By tilting the surface (B) and
sliding the solenoid about on surface (B), the solenoid could be aligned
with the electron beam. The complete alignment procedure is described in
detail in Section k.2,

The heater supply for the beam consisted of a well-insulated 10-
volt transformer connected to a "Variac" auto-transformer. The auto-
transformer was connected to the safety circuit of the vacuum station, so
that it would be turned off in case of failure of the power or the vacuum
station.

The beam anode voltage was supplied by a small power supply built
especially for this application. It supplied 300-4500 volts, but less than
one milliampere, and hence was not a hazard to the operator.

The circuit of this power supply appears in Figure 3.8. It is

similar to that used in television receiver high voltage supplies, and
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standard television components were used. A voltage regulator circuit
was incorporated in order to stabilize the voltage. The 6SN7 blocking
oscillator, operating at about 15 ke, drives the 6L6 power amplifier.
The output transformer in the 6L6 plate circuit steps up the voltage to
about 5000 volts. It is rectified and filtered. The resistor Rj is
essentially part of the bleeder resistor on the output, and the voltage
developed across it and applied to the grid of the 6SF5 is proportional
to the output voltage. A constant regulated voltage is applied to the
cathode of the 6SF5, and the difference voltage is amplified by the

6SF5 and 6SNT to control the 6L6 screen grid voltage and 6SN7 oscillator
plate voltage. The potentiometer P; controls the regulated voltage
applied to the cathode of the 6SF5, and the output voltage is maintained
by the regulator at approximately a constant multiple of this voltage.
This potentiometer was used to adjust the output voltage to the desired
value.

The electron gun grid and focussing electrode potentials were
controlled by potentiometers mounted on the bench with the trajectron
(on surface A, Figure 3.7). The circuit is shown in Figure 3.9.

The heater voltage for the diode was supplied by a small 2L
volt transformer connected to a "Variac" auto-transformer. The auto-
transformer was connected to the safety circuit of the vacuum station.
It was found that the magnetic field of the heater current deflected the
beam and affected slightly the operation of the magnetron diode, so that
it was necessary to make observations when the heater was turned off. In
order to accomplish this, a multivibrator with a relay in its plate circuit
was built. It was adjusted so that the relay was closed ten seconds and

then open ten seconds. The relay was inserted in the heater circuit. A
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circuit diagram of this setup is shown in Figure 3.10.

The anode voltage for the diode was obtained from either one of
two supplies. The first was rated at 1000 volts 100 ma, but would de-
liver up to 1400 volts with very light loads. It was a conventional,
unregulated supply with a 3 section filter. When higher voltages and/or
currents were required, a rebuilt Signal Corps RA-38 rectifier was used.
It would deliver up to about 15,000 volts =-- much more than was required
for the trajectron -- and up to 800 ma.

Power was supplied to the solenoid by a small thirty volt motor-
generator and controlled by a rheostat. The ripple in the supply voltage
was approximately one and one-half percent. The ripple in magnetic
field was undoubtedly less than this: the brass spool on which the sole-
noid was wound acts as a secondary winding. The magnetic field of the
ac component of the solenoid current and the magnetic field of the current
induced in the brass spool tend to cancel one another.

The vacuum pump used with the trajectron was a National Research
Corporation type H-2-P oil diffusion pump, which is rated to have a
blanked off ultimate vacuum of 2 x lO"7 mm of Hg., and a pumping speed
unbaffled of 50 liters per second at 10™2 mm of Hg. The forepump was a
Welch type 1400B. There was a valve in the pumpout tube so that the pump
could be kept in operation while modifications were being made in the
trajectron. The vacuum gauge, which was mounted near the diffusion pump,
was a Distillation Products, Inc., type VG-1lA, and the gauge control cir-
cuit was a DPA type 37.

The circuit diagram for the power control system for the vacuum

station and the trajectron is shown in Figure 3.11. There is a Gelssler
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circuit: 1if the pressure at the forepump rises above about 150 microns,
there 1s a discharge in a spark gap mounted in the system, which closes
the relays R-1 and R-2. The relay R-2 holds itself closed. Note that a
brief power failure will not cause this relay to close and hence will
not interrupt the operation of the diffusion pump, which is connected to
this relay. There is also a safety circuit, controlled by relay R-3.
This relay can be closed by the push-button switch at any time when the
diffusion pump is turned on and receiving power. The relay then holds
itself closed as long as there is no interruption of the power. However,
if the power is even momentarily turned off either because of a power
line failure or because of the Geissler circuit, the relay R-2 will open
and remain open. The heater voltages for both cathodes were connected

to this circuit.

3.6 Processing of the Cathodes.

In processing the diode cathode, about one volt was applied
initially to the heater. The heater voltage was gradually increased as
the cathode outgassed, the pressure in the system always being maintained
at approximately 2 x LLO"lL mn of Hg, until the cathode temperature reached
about 875°C. The cathode temperature was measured by means of an optical'
pyrometer, the end of the cathode being viewed through the hole wiped in
the center of the fluorescent screen. The cathode was kept at 875°C until
the pressure in the system dropped to approximately 10™2 mm of Hg. This
outgassing required about 30 hours. Then anode voltage was applied,
starting at about ten volts. It was gradually increased to about 500
volts (with about 400 ma of anode current) over a period of several hours,

and was operated at about 500 volts until the pressure in the system dropped
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to 5 x 10_6 mm of Hg. During this time a record was kept of the anode
current compared with the theoretical space-charge-limited current for
a cylindrical diode of these dimensions, to show whether or not the
cathode was operating with space-charge-limited current. When the
cathode could deliver 400 ma of space-charge-limited current with the
pressure in the system below 5 x 10'6 mm of Hg, the cathode was con-
sidered ready for operation.

The electron gun cathode was always processed after the diode
cathode was activated. The voltage on the heater was increased gradu-
ally to about eight volts and held there until the pressure in the

systen dropped to 5 x 10'6

rmm of Hg. This usually took an hour or two.
Then the heater voltage was decreased to about six and one-half volts,
and the electron gun was ready to use. Usually after several days of

operation, the emission from the electron gun cathode dropped, and the

gun cathode had to be heated somewhat more for satisfactory operation.



CHAPTER IV

CONTROL EXPERIMENTS

4,1 Introduction

This chapter consists of a description and discussion of
control experiments and a discussion of the trajectron method based on
the results of these experiments.

The trajectron could be operated under any one of four
conditions: (1) Non-emitting cathode with no magnetic field,

(2) Non-emitting cathode with magnetic field,

(3) Emitting cathode with no magnetic field, or

(4) Emitting cathode with magnetic field.
The reason for building the trajectron was to obtain data for the
fourth case, which is the magnetron case. The first two cases corres-
pond to finding the trajectory of an electron in the field of concen-
tric cylinders without space charge. The third case is that of finding
the trajectory of an electron in a space-charge-limited cylindrical
diode. These first three cases are well understood. Their study by
means of the trajectron serves to demonstrate the possibilities and the
limitations of the trajectron method and to give information about the
trajectron useful in interpreting its data for the magnetron case. It
is the purpose of this chapter to present and to discuss trajectron dats

for each of these first three cases.

-oh-
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In the first two cases the beam spots were found to trace out
reasonably well the theoretical trajectrons of an electron starting from
rest at the cathode. The discrepancies are shown to be largely due to
end effects. When an emitting cathode was inserted and the current to
the anode was space-charge-limited the situation was changed entirely.
The electron beam entered the diode in a region of weak electric field
and was deflected into a region of strong field. It is both shown
theoretically and observed that the beam becomes defocussed under
these circumstances. If the beam enters at the potential minimum, the
spot extends back to the cathode. Such a spot cannot be interpreted
as giving directly the displacement as a function of transit time for
emitted electrons. Knowledge of the fields in the diode can be obtained
only as a result of & more thorough study and indirect interpretation
of the data.

In order to study the effects of the initial conditions of
beam electrons, it is necessary to have a description of the beam.
Therefore, the discussion of beam slignment and of size and position
of the beam is included in this chapter. This information is important

also in the discussion of the magnetron case.

4.2 Beam Alignment Procedure and Beam Description

The purpose of the beam alignment was to make the beam path
as near to the cathode surface and as nearly parallel to the axis of
the cathode as possible (when the anode voltage was zero) for all choices
of beam voltage and magnetic field likely to be used in the experiment.
There are three steps in the alignment procedure. First, the

electron beam must be aligned with the earth's magnetic field. Next,
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the diode must be positioned correctly relative to the beam. Finally,
the solenoid must be placed so that its axis is the path of the beam.

A simple calculation shows that if the electron beam is
perpendicular to the earth's magnetic field (of 0.6 gauss), in tra-
velling 9 inches, as in the trajectron, it will be deflected approxi-
mately 1 inch from a straight path if the beam voltage is 300 volts,
1/3 inch if the beam voltage is 4000. This makes clear the need for
the beam to be parallel with the earth's field.

The first step in alignment was to loosen the tangent screws
(Part [30] in Figure 3.2) which positioned the diode, turn on the elec-
tron beam, and move the diode until the beam came through the hole in
the end shield of the cathode, showing a green spot on the fluorescent
screen. Then the tangent screws were tightened. The spot was viewed
through a 7 power magnifying glass while the beam voltage was varied.
If the spot moved, the beam was not aligned with the earth's magnetic
field, and the direction of the motion indicated which way the elec-
tron gun had to be tilted. For example, if the spot moved toward the
south as the beam voltage was decreased, the electron gun had to be
tilted toward the west. The angular position of the electron gun was
adjusted by moving the bench on which the trajectron was mounted and
by adjusting the angle of the plane surface (A) on which the trajectron
was mounted on the bench. (See Figure 3.7.) It was adjusted until
the deflection of the spot was unnoticeable (less than .005") when the
beam voltage was varied from 300 to 4000 volts. This would require
the beam to be within about 3o of parallelism with the earth's magnetic

field.
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For the next step, positioning the diode, the tangent screws
vere loosened again and the diode was brought to approximately its
correct position. Then the tangent screws were tightened and final fine
adjustments were made by moving pairs of tangent screws slightly. The
spot was viewed through the magnifying glass, as before, and was alter-
nately focused and defocused. When it was defocused, the shadows of the
hole at the bottom end of the cathode and of the two .0035" wires mounted
in this hole and at the other end of the cathode were visible. The
shadow of the cathode surface showed also. The appearance of the spot
is shown in Figure 4.1 for a slightly misaligned condition. The diode
position was adjusted until the shadows of the two wire coincided, and
until the beam path was as close as possible to the cathode surface at
both ends of the cathode as indicated by the shadow of the cathode
surface. Then the beam was focused, and the exact position of the
beam spot relative to the wires and the cathode surface was noted.
Typically the beam spot was placed about .010" to one side of the wires
with its center about .015" from the cathode. It probably deviated no
more than .020" in the two-inch length of the cathode from a line truly
parallel with the axis of the cathode, or made an angle of less than
two-thirds of a degree with the axis of the cathode. Its diameter was
approximately .025".

The final step in the alignment procedure was to place the
solenoid over the tube and apply a magnetic field typical of that which
would be used in the experiments, 100 to 200 gauss. The spot was observed
through the magnifying glass, and the magnet was adjusted until the spot

position was, as nearly as possible, the same with all beam voltages and
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magnetic fields as when there was no magnetic field. The adjust-

ment was difficult for three reasons. First, the beam path was no longer
nearly straight, but rather helical. The desired data at any stage in
the adjustment were the radius and the position of the axis of the helix,
and these data could be found only by varying the beam voltage continually
during the alignment. Second, slight movements of the solenoid moved

the beam so that is did not pass through the hole in the cathode end
shield, and when the beam spot could not be seen, it was impossible to
make a systematic adjustment. Finally, there were four degrees of
freedom, two in the relative angle of the beam and the solenoid axis,
and two in the relative position of their intersections with any fixed
plane.

The first two degrees of freedom were adjusted in the tra-
Jectron by adjusting the relative angles of the plane surface (A) on
which the tube was mounted and the surface (B) on which the solenoid
was placed. (See Figure 3.7, page 86.) The adjustment was made with
the three bolts (C). The other two degrees of freedom were adjusted
by positioning the solenoid on the plane surface (B) on which the
solenoid was placed.

The best procedure found for aligning the axis of the solenoid
with the beam was hardly better than trial and error. Initially the
surface (B) on which the solenoid rested was made parallel with the
surface (A) on which the tube was mounted. (See Figure 3.7.) Then the
solenoid was moved on this surface and the beam voltage was varied until
the spot appeared. As the beam voltage was varied, the spot moved in

approximately a circle. By trial and error, the solenoid position and
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angle were adjusted until this circle was no largsr than about one-
eighth inch in diameter. From here on at each stage in the adjust-
ment the center of this circle, which is the axis of the helical path
of the beam, was placed at the point where the beam appeared with no
magnetic field, by aligning the solenoid on its mounting surface. In
this position the diameter of the circle was noted. The angular
position of the solenoid was adjusted by trial and error in small
steps, and the center of the .circle readjusted at each step until

satisfactory alignment was achieved.

TABLE 4.1

Description of Aligned Beam Spot
(Distances Measured in Inches)

Solenoid Current, amperes 1 2.5 4 5
Magnetic Field Strength, 34.3 85.2 137.2 171.5
gauss
Maximum Diameter of Spot 0b5 040 .00 025
Minimum Diameter of Spot 040 015 015 .008
Distance from Center of
Spot to Center of Rotation
At Maximum Radius .018 013 013 .008
At Minimum Radius .015 0 0 0
Distance from Center of
Rotation to Cathode
Surface 017" 017" 017" 017"
Distance from Center of
Rotation to Wires .010" .010" .010" .010"
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When the beam was aligned as well as possible, at all beam
voltages it exhibited approximately a circular cross section. As the
beam voltage was increased, the diameter of the circle would oscillate
between a minimum and a maximum value. Simultaneously it seemed to
rotate around a point within the spot.l The approximate appearance of
the outline of the spot for a series of beam voltages is shown in
Figure 4.2. A typical data for the size and location of the spot are
given in Table 4.1. These data were taken when much of the data on
the magnetron case were taken. They cannot easily be duplicated
because they are affected by even the slightest movement of the solenoid
and also by the condition of the electron gun cathode and the setting
of the electron gun grid voltage.

It is desirable to know the initial conditions of beam elec-
trons in order to permit studying the effects of their initial condi-
tions on the motion of the beam. The different beam electrons have
different initial velocities, and it is possible to give only the
approximate range of initial velocity and position. This approximate
range can be calculated from the above description of the beam.

The case of no magnetic field is simple because the elec-
trons must travel in straight lines from the limiting aperture of the
electron gun to the fluorescent screen, a distance of 8.8 inches. The
aperture of the electron gun was round, with a diameter of .063". The
spot diameter was approximately .025". A sketch of the beam, gun aper-
ture, and cathode with the width of the beam exaggerated is shown in

Figure 4.3. It can be seen from the figure that the largest angle a

1
This is consistent with the behavior predicted in Appendix A for the
motion of an electron beem in an axially symmetric magnetic field.
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L4y
8.8’

or sbout one-third degree. Since the axis of the beam deviated less

beam electron could make with the axis of the beam was arc sin

than two-thirds of a degree from parallel with the axis of the cathode,
a beam electron could make an angle of no more than one degree with
the axis. The initial velocity was thus no greater than the beam
‘velocity times the sine of one degree, or 0.018. It could be in any
direction. The radial displacement of beam electrons as they entered
the diode is seen from Figure 4.3 to be between O and approximately
.035 inches from the cathode.

When there was a magnetic field, the field was essentially
uniform in the diode and very near to the diode. Until the electrons
entered the diode they experienced no electric fields. Therefore, each
beam electron had a helical trajectory as it entered the diode. The
parameters of the helix can be estimated from the data given in Table
4,1. Figure 4.4 shows a convenient set of parameters for describing the
helix. The parameter h is the distance from the cathode to the center
of the helix, s is the radius of the helix, and 3 is the initial angular
displacement. The angular velocity of the electron in the helix is the
cyclotron angular velocity 2wy . Therefore, the beam electron displace-
ment as a function of time is

z = az.t,

2]
]

«//Ea+h)2 + 52 + 2(a+h)s cos (20pt + )~ a+h+scos (2wt +3)

s sin(2wrt + O ) (4.1)
a +h+scos (2wt + d)

tan @ =

where éo is the initial z velocity and a is the cathode radius. The

angular momentum of a beam electron can be found in terms of h, s, and
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$ by noting that  is O when r ;/{a + h)2 - 52, and therefore by

equation (2.48) of Chapter II,

Py = -mop [ (a + h)° - 52] , (%.2)

at the instant when 6 = 0. But P, 1is a constant, and therefore equa-
tion (4.2) is true at any time.

It seems reasonable to assume that at the fluorescent screen
the variation in beam cross section as the beam voltage was varied is
approximately the same as would be observed if the beam voltage were
held constant and the position of the fluorescent screen were varied.
Figure 4.5 shows the shape of the beam. The beam is made up of elec--
trons all traversing helical paths. Possible paths for two such
electrons are shown in Figure 4.5. The dimensions chosen for the beam
in Figures 4.5 and 4.2 are typical of the beam of the trajectron when
it was aligned well.

It is not possible to give the exact range of s and h for
electrons in the beam, but some estimates of the range of s and h can
be obtained by imagining what possible helices could fit into the beam.
Clearly s could not be greater than .020 inch, because the whole beam
could be fitted into a cylinder of radius .020 inch. If s = .020 inch.
then h = .028 inch for the beam shown in Figure 4.5. It appears that
s could be as small as O. An electron with s = 0 would travel a straight
line parallel to the z axis. Such lines could be fitted into the beam
of Figure 4.5 with h anywhere in the range from .008 inch to .023 inch.
The parameter s could take on any value between O and .020 inch, and the
h could be anywhere between .008 inch and .028 inch. The possible values

for h depend somewhat upon s.
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4,3 The Case of s Non-Emitting Cathode and No Magnetic Field

Figure 4.6 shows data taken from the trajectron with no
magnetic field and with a brass "dummy" cathode. The photograph
was taken with the copper mesh shieldl over the fluorescent screen,
and the data from this photograph are replotted on the graph. The
other experimental points on the graph were taken with mesh removed.
The curve on the graph is the theoretical displacement as a function
of time, neglecting end effects and initial velocities. The follow-
ing discussion of the theoretical curve, the effects of initial
velocities, and the end effects shows that the discrepancy between
the theoretical curve and the experimental data can be explained Dby
end effects and beam initial conditions.

First the theoretical curve is derived, neglecting initial
angular velocities but not neglecting initial radial displacement or
velocity. The field is logarithmic; this assumes no space charge

and neglects end effects. The potential is

Ln(g)
= (4.3)
p = 8, ey
a
where ¢a is the anode potential, r, the anode radius, and a the
cathode radius. Then the electric field is
d -$
F = -___g = a R ()4'.)4)
dr rln@&)
a
and the equation of motion is
2
d°r
m — = -eF = _-Egg-— , or (4.5)
at r fn(Z2)
a

lPart 28 in Figure 3.2.
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16 1 2% |a, (4.6)
a dt 2 maE.Zn(fg) r v

a8

It is convenient to denote by 72 the quantity in the brackets, and to
let R denote L . Then

2
d_g = . (.7)
dt 2R

Letting V denote %% , this can be written

d2R av v 2
BT AL L S A (4.8)
dt dt dR 2R
and integrated to
2
v2 = 7 /nR + constant. (4.9)
If the initial radial velocity is fo and the initial radial dis-
placement aRo, then the equation becomes
72 >
2 0 - YA (R >
ve- L =7 n(=—) . (%.10)
a2 Ro
This can be solved for t as follows:
£Z 2 R
v = &R _Jo V4 (—-)
e | = 7 £Ln RS/ or
R dR
Rl a2 Ro
o
Let
.2
ro
u = + An !‘;) 4.12
7282 (RO (h.12)
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Then . 2

. 2
2Ry 2 To
t = - e u- - d o b1
, y Xp ;2;5' u , Oor ( 3)
ry
ya
. 2
To
R
, + UIn B
7282 Ro
i~2 2
o exp [u ] du . (4.14)
t = 2R, exp e
Y o Jcac
To
ya

The integral is tabulated.l For the case of zero initial displacement

and velocity, R, = 1 and r, = 0, and

yt = 2J‘ exp[ue] du. (4.15)

This is the function which is plotted in Figure 4.6.
The effects of initial radial velocity and displacement of
beam electrons for this case can be found by substituting typical

initial conditions for beam electrons in equation (4.12). The
n 2
r
quantity -2 can conveniently be found by noting that
78

t = &. (7'{:)2..0

or 7y =
20 J "T J

1 Jahnke and Emde, Ref. E, p. 32.

(4.16)
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vhere £1is the length of the tube and éo is the beam velocity. Then

r r
o _ £ = . L . (4.17)
ya a ) 7t

The quantity yt can be found roughly from Figure 4.6; it is 3.2 when
R = 3. Typical values for fo/io can be estimated from the dimensions
of the beam given in Figure 4.3; fo/io is equal to the ratio of radial
to z-displacement.

In Figure 4.3 the lines marked (1) and (4) represent the
electron paths of extreme initial displacement. The lines (2) and
(3) represent paths of extreme initial velocity. The values of 7t
calculated from the above formula for these four sets of initial

conditions are summarized in Table L.2.

TABIE 4.2
Calculated Time for an Electron to Reach the
Radius R = 3. (B = 0, non-emitting Cathode.)
Electron Path R To/Zo 7t
(See Figure 4.3) °
1 1.13 | -0.0022 3.24
2 1.08 | -0.005 3.24
3 1.08 | +0.005 3.19
L 1.00 | +0.0022 3.20
The slow electrons should reach the anode 3.24 - 3.19 . .05

4 7
seconds later than the fast electrons. Since the curve of R versus 7t

has a slope of approximately unity at R = 3, at time yt = 3.2 the
fastest electrons should reach a radius .05a greater than that reached

by the slow electrons, and the radial width of the beam should be
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approximately .05a or .014", which is less than the initial width of
the beam. This is plausible because the electric field is inversely
proportional to the radius, and therefore the electrons which are
nearer to the cathode are accelerated more than those farther out,
and the distance between electrons will become smaller.

The observed spots at a radius of approximately three times
the cathode radius had a width of approximately .030", or roughly
twice that predicted. The explanation lies in end effects. An
approximate mapping of the space charge free field of the diode is shown
in Figure L4.7. It can be seen that the field near the cathode surface
where the beam enters the diode is not inversely proportional to the
radius, but instead does not change much with radius. Thus the fo-
cussing action described in the preceeding paragraph would not occur.

The increased width of the deflected spot in the angular
direction is due to the fact that the field is radial, and an electrons
displacement should be radial. Thus each spot has an angular width of
approximately 4°,

The beam axis might have made an angle as great as 2/3o with
the axis of the cathode. This would approximately triple the range of
possible values of .XE. , and approximately triple the discrepancy
in theoretical and obs;:zed values of yt. Consequently one might ex-
pect to find yt increased by as much as 0.15. The observed values of
7t, as indicated on Figure 4.6, differ from the theoretical curve at
R = 3 by about 0.35. Hence the initial velocities of the beam account
for less than a half of the difference between observed and theoretical

values of 7t.
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The remainder of the difference can be explained by end
effects. The electric field which the beam experiences in the first
one-fifth of its path through the diode probably averages little more
than half of what is would in the sbsence of end effects (See Figure
4.7). The displacement should be approximately the same as if the full
field were applied and the tube were applied and the tube were shortened
by one-half of one-fifth, or ten percent. If the tube were considered
ten percent shorter, the calculated yt would be ten percent less, and

would agree with the theoretical value.

4.4 The Case of the Non-Emitting Cathode with Magnetic Field

The deflection of the trajectron beam was studied with a
brass "dummy" cathode in the diode and with the magnetic field applied.
Typical data photographs are presented in Figures 4.8, 4.10, k.12,
and 4.14. In each photograph there are many exposures of the spot.

In each case there is an exposure with no anode voltage. Then there
are exposures with anode voltage applied and held constant at each of
several beam potentials. At each beam potential an exposure was made,
the magnetic field was reversed, and another exposure was made. A
circle showing the projection of the cathode surface was drawn on
each photograph. There was also a curve drawn on each photograph to
represent the theoretical electron orbit neglecting end effects and
initial velocities. The theoretical curves and the data from the
photographs are replotted in Figures 4.9, 4.11, L4.13, and 4.15 to show
R and @ as functions of time. The time was calculated by dividing the
length of the diode (two and one-eighth inches) by the velocity of the

beam, calculated from the potential of the cathode of the electron gun.
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Half of the data presented were taken with the copper mesh shield
placed in front of the fluorescent screen, and the other half were
taken without the shield.l

In the photographs of Figure L4.16 an exposure was made with
no anode voltage. Then an anode voltage was applied, the beam voltage
adjusted until the spot was at its cusp or minimum radius, and an
exposure made with each orientation of magnetic field. This was done
for several anode potentials, in order to show the locus of these
minimum points in the orbit. On the graph the observed angular de-
flection and the theoretical angular deflection are plotted as func-

2
tions of @, which is 40.L5 gg .

B
Without the copper mesh the observed orbits matched the
theoretical orbits very closely. The angle to the first cusp was
slightly smaller than the theoretical value. The calculated times
vere longer, especially near the first cusp. The cusps were well
formed and cccured very near the cathode radius. With the mesh
the maximum radius of the orbit was approximately the theoretical
maximum radius. The orbits did not have a good cusp, but rather had
a loop at the minimum radius, and the minimum radius was observed to
be as small as 0.7 times the cathode radius. The calculated time
appeared to agree more closely with the theoretical time required
for a given displacement. The time required for an electron to

reach the minimum radius appeared to be somewhat longer than the

lThe shield referred to is part number (28) ir the assembly drawing,
Figure 3.2.

a4 1s defined on page 126.
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theoretical time required for an electron to complete one loop of its
trajectory.

The theoretical curves in Figures 4.8 to 4.15 are based on
the assumptions that the beam electrons have zero initial velocity,
and that the electric field is that of infinite concentric cylinders,

i.e. purely radial with a logarithmic potential. The potential assumed

is ¢
= & /n
g In gg (

I

) (4.18)

and the equations of motion can be taken from Chaepter II, page 32.

From equation (2.46a),

mr - mre® + eBr - egg = 0 (2.46a)
r
and from equation (2.49) and the fact that § is initially zero, it
follows that 2
= . a
0= a1 1'.?) . (4.19)
Eliminating © from (2.46a) and using (4.18) to eliminate § yields
2 L
" w1, a ef
mr = aiFr - + ____E?__ L1 (k.20)
r3 mln E?; r
Letting
R:.I;, T=(_0Lt’and Q =___E?E'—.__ ()4.21)
a 22
mwp "8 fnRy
this becomes -
@R - ¢ R+ L_ | (k.22)
a2 R R3

Solutions were obtained for this equation by means of the electronic
differential analyser, as described in Appendix B, and the data for
the theoretical curves in the figures of this section were taken from
these solutions. An equation in closed form for the maximum radius of

the orbits is possible; it is simply the cutoff equation, number (2.60)
of Chapter II.
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The parameter a is proportional to _% » since wp is propor-

tional to B. All other factors in o are either physical constants or
are related to the geometry of the trajectron. Substituting these
constants in (4.22) yields

) o _ fe
a = h‘o.""5 -l;-§ - 0.03“’4’ —1;2- ) (l"'23)

where B is given in gauss, and the magnet current I, is given in
amperes. The magnetic field is taken as 34.3 gauss per ampere of
solenoid current to obtain the second equation.

The discussion of the effect of initial velocities and end
effects will be limited to the effect on the maximum radius of the
orbit and on the radial width of the spot at the maximum radius of
the orbit. This can be discussed rather simply through the use of
the energy integral, while any further discussion would require some
sort of numerical integration of the equations of motion. In the next
three paragraphs the potential distribution is assumed to be an
arbitrary function of r and z, and hence this discussion, and in
particular equation (4.28), apply to the magnetron case, discussed
in Chapter V, as well as to the case with the non-emitting cathode.

The energy integral for the motion of an electron is equation
(2.51) of Chapter II:

_ggf + mr2g° m3°

2 - Y

ef(r,z) = E (2.51)

where E is a constant, called the total energy of the electron. The

canonical angular momentum

Poo= m® (§ - o) (2.49)

is a constant, and it is convenient to use this equation to eliminate

d in favor of PO as follows:
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2 2 P 2 <2
mr mr 'O mz— =
=t 5 ( ;;5 + o) + = ef = E. (4.24)

The value of the constant E can be obtained from the initial condi-
tions of the electron, since it is a constant of the motion. For an

electron starting with no radial or angular velocity and with initial
. mzo° .
position at the cathode surface, E = - and equation (4.24) can be

2

solved for r<, which is a function of r, z, and z.

It is convenient to introduce the function

w22 a2 2 [ 2a2

2 .
¥(r,z,z) = 2ef(r;z) _ re <1 - 51_,2_>2 _ 28 (4.25)

which is called the effective potential.l The effective potential
¥(r,z,2) is the electric potential modified in two ways: (1) it is
normalized, and (2) the energy of the © and z motion of an electron
initially at rest on the cathode is subtracted from it. The effective
potential is a measure of the radial motion, and for an electron

starting at rest from the cathode,

-Tr 5 = v(r,z,é) (4.26)

wr, &

The initial conditions of any electron can be described by

giving rq, 90, fo, PO’ and éo‘ In terms of these constants, E for an

arbitrary electron is
2 2 2
mre mre Pg 2 mzo™
E = 2 mr 2 oL ot T3 eplr,, zo).

2
(2.52)
02

Equation (4.24) can be solved for < in terms of the potential, r, z,

lThe ideal of an effective potential appears to have originated in

connection with the central force problem. For example, Webster,
Ref. I, p. 181, describes an apparent potential, and Goldstein,
Ref. D, p. 64, describes a fictitious potential. It has been

used in connection with the cylindrical magnetron by Allis, Ref. 1.
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Z, and the initial conditions, yielding

. .« 2 2

_{E_ - Yo + cef(r,z) _ 2ef(ro,z0) - r Po + o 2 .
2 P .2 _
. —3 2 A A R OO0
o mr wr 2a’

By using (4.24), this can be put in the form

.2 . 2 2 2

r o r 2 r PQ
w;2a2 o w a2 r,? 82 mzwLeau

(4.28)

At the maximum radius of the orbit, the radial velocity is
zero. Thus if the potential field and the electron initial conditions
are known, the meximum radius can be found by setting r = O in (4.28)
and solving for r. Solutions of adequate accuracy may be obtained
simply if, in the last term, r is approximated by the maximum radius
of the orbit of an electron with zero initial velocity and initial
position at the cathode. Then the only term involving r is the first,
v(r, z, z).

If the electric field is assumed to be purely radial, i.e.,
end effects neglected, Z is constant and the potential is independent
of z. Then the effective potential ¥ is a function of r only. The

potential in the case of no space charge is

__ P r
—jn(fg_) ﬂn(a_> , (4.18)

and the expression for effective potential becomes
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2efy ,gn(g) re a2 \2
W)= e (=) ;§<1 ] ‘5>
= 20 SR - R2(1 - L)° , (4.29)

where o is defined by equation (4.21). This function is plotted in

Figure 4.17. Solutions for the radius R at which r = O can be obtain-
ed easily from equation (4.28) with the aid of the graph of ¥(r).
Solutions for the values of @ appearing in Figures 4.8 to 4.15 were

obtained in this manner, and they are summarized in Table 4.3.

TABLE 4.3

Maximum Radius Reached by Beam
FElectrons with Various Initisl Conditions

Initial Conditions (distances in inches)
h = 0 L0075 .015 .030 .030 .030 .030 .030
s = 0 0 .020 .020 .020 .020 .020
5 = - - - 0° L5e 90° 13%5° 180°
Meximum Normalized Radius
(For a = 1.27)| 1.78 1.76 1.77 1.70 1.7k4 1.80 1.87 1.90
(For a = 2.48)}| 2.55 2.53 2.52 2.41 2.2 2.50 2.58 2.62
(For o = 3.11)| 2.92 2.90 2.88 2.7k 2.78 2.86 2.95 2.98
(For a = 3.76)| 3.32 3.30 3.27 3.12 3.15 3.24 3.33 3.%6

The difference between the largest and the smallest radil for
a given value of a is an estimate of the expected beam width. For
example, for a = 2.48, the expected beam width would be 2.62-2.41 =

0.21 times the cathode radius. In Figure 4.10 the observed beam
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width at the maximum radius is approximately 0.13 times the cathode
radius both with and without the mesh shield.

Table 4.3 also indicates that if end effects are negligi-
ble, the maximum radius of the electrons starting at the cathode with
zero initial velocity would be somewhere between the maximum radius
of the outside edge of the spot and the maximum radius of the inside
edge of the spot; i.e., the spot would lie on the theoretical curve
at the maximum radius.

End effects are the results of the fact that the electric
potential is not independent of distance along the axis.l These
effects on maximum radius of the orbit can be understood if the varia-
tion of the potential with z in equation (4.27) is taken into account.
For simplicity assume that the electrons are initially at the cathode

surface with zero velocity. Then

i2 . 2 2 .2
L = Y(r,z,5) = 2¢8(r;z) . zg(l-%) =2 . (k.25)
o %a2 oy 282 a r wi2a2

At the maximum radius, r = O, and the maximum radius could be found

by solving the equation
¥(r, z, 2) =0 . (4.30)

To solve this equation would require that the orbit be essentially
known, since the variation of r and z with z would have to be given.

This is out of the question. However, the orbit, neglecting end effects,
can be used as a first order approximation. An estimate can be made of

how z varies with z, and a second approximation to maximum radius can be

made.

1The magnetic field is so nearly uniform that it does not contribute
appreciably to end effects in this experiment.
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By equation (2.46b) of Chapter II,

mz = eF = e@ﬁ@z_&l’ or

2 oz
o o . ()".'31)
mzz = erz .

This equation can be integrated to

2 m 2 2
5 - 20 =e] F, 4z (k.32)

The integral of F along the path gives the potential; i.e.

Z2,T2 rp Z5
¢(r2,z2) - ¢(rl,zl) = | Fes = J Fpdr + Fydz . (4.33)
zl,rl r] zy
This can be considered as
¢(r2,22) - ¢(rl,zl) =F_ - (r2-rl) +F, (ze-zl) (4.34)

where F} is the average radial field and Fé is the average axial field
along the path from (rl, zl) to (r2, z2). If the path from one
equipotential to the next is considered, then ¢(r2, z,) - ¢(rl,zl) is
known. The ratio of Fi to Fé can be estimated from the direction of the
field along the path. The distances ry-ry and 2,-2) can be measured
from the field map. Thus the ratio of the two terms on the right of
equation (4.34) can be found. Since the left side is known also, the
term Fé (25-2,) is easily obtained. But this is é%.(ig - 202), by
equation (4.32).

An approximate map of the electric field in the trajectron is

shown in Figure 4.18. The equipotential lines are placed at 0.125 [

0.25 8., 0.5 @, and 0.75 f,. The curves are the trajectories for
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a = 2.48 of electrons starting at the cathode with zero initial
velocities and with end effects neglected. Curve A represents an
electron reaching the fluorescent screen at the maximum radius of
its orbit.

For the section of the trajectory A between the entry point
of the beam and the 0.125 P, equipotential line, the ratio of axial

to radial displacement is

2 = 2
1‘2 - rl

and the electric field on the average makes an angle of approximately

78° with the axis of the cathode, so that

F
—2 = cot 780 = .21. (4.36)
F

(z5-2,) F

e 1 Tz 2.3, (4.37)
(rp-r1) 7y

and since B(z,,r,) - p(zyr;) is 0.1250,,

2,2
- = _ m(z2 —21) _ 2.3 _ |
(22 zl)EZ = — 0.125 ¢a T 0.087 ¢a. (4.38)

For the next section of the trajectory, that between the 0.125 ¢a
and the 0.25 ¢a equipotentials, the ratio of axial to radial displace-

ment is roughly four, and the angle tge fie%d makes with the axis is

m(z, -2, )
2e

¢a' When the copper mesh was not placed in front of the fluorescent

about 87°. Hence for this section is approximately 0.021

l2
screen, the change in z 1is probably negligible for the rest of the
M(iz-éoe)
path, and e at the fluorescent screen is approximately
e

0.087 @, + 0.021 g, =0.108 f,. Also in this case the potential can be
considered logarithmic at the fluorescent screen, so that at the fluor-

escent screen
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br) = Pa IR, (4.3)

4nR,

and the equation ¥(r,z,z) = O becomes

0= _2829__ /R - R2<l - %)2 - 0.108 2efy or(4.39)

2.2 22’
mop “a lhRa R my; g

2alnR - R2<1 - 1_2> 2. 0.108 - 2a/uR, = 0.28 (4.40)
R

The function on the left is plotted in Figure 4.17, and this function
for @ = 2.48 equals 0.28a, or 0.69 at R = 2.28. Neglecting end effects
a maximum radius R = 2.55 is predicted. Thus end effects should reduce
the maximum radius reached by the spot by 2.55 - 2.28 = 0.27 times the
cathode radius. The observed orbits shown in Figure 4.10 reach a
maximum radius of approximately 2.55. The other observed orbits in
Figures 4.8 through 4.15 are quite close to the theorétical orbits, and
although they are generally smaller where there is an appreciable
difference, they are not this much smaller. The discrepancy is only
one or two times the width of the spot.

With the copper mesh in front of the fluorescent screen, the
problem is more difficult to analyze. The only difference would be
in the neighborhood of the fluorescent screen. The potential ¢(r,z) is
zero at the fluorescent screen, of course. The difficult question is:
what is éz-éog? Certainly 32 is less with the mesh than without;
probably most of the energy the electron gives the field in moving to
fluorescent screen, which is at zero potential, comes from the z-

momentum. If m(ée—ioe) _ efa/nR

2 " iR’ (k.41)
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which is the potential that would appear at the fluorescent screen
in the absence of the mesh, then the maximum radius would be the

same as in the absence of the mesh. Apparently equation (4.40) holds
approximately, for the maximum radius observed with the mesh in the
diode is about the same as without the mesh.

The fact that the calculated times are longer for the ex-
perimental data than the theoretical analysis predicts can be accounted
for by end effects. The calculated times were obtained by dividing
the length of the diode by the beam velocity, calculated from the beam
potential. Actually the z-velocity of the beam within the diode is
greater than the velocity of the beam as it enters the diode, and the
actual transit time of the beam is less than that calculated by divid-
ing tube length by initial beam velocity.

A rough quantitative estimate of this effect can be made by
estimating the increase in z by the method used in the preceding
paragraphs. Consider, for example, the case in which a = 2.48, and
the beam spot is at the cusp of the trajectron. The theoretical orbit,
neglecting end effects and initial velocities, is shown as Curve B,
Figure 4.18. This curve can be used as a first approximation to the
orbit, and the increase in ie can be calculated. The calculation is

summarized in the following table.
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TABLE 4.3

Increase in Beam z-Velocity Due to End Effects
for Trajectory B of Figure 4.18.

Section of Beam Path = . 2 2
F Zn~2 -
Between Equipotentials [ -Z 271 m(Z 5 2] )
Corresponding to F. r2'rl
O and 0.125 ¢ 0.28 .2 0.068 gg
0.125 P, and 0.25 P | 0.20 2.0 .036 fq
0.25 . and 0.50 g 0.09 1.8 .033 P,
0.50 @y and @, 0 0
Total 137 fg

Thus the z-component of velocity corresponds to a potential of
approximately @, . + 0.137 ¢a’ rather than fpeqm @lone.

For the data presented in Figure U4.10a, §, = 700 volts
and ¢beam = 280 volts for the spot corresponding to the cusp. The

actual z-velocity in the diode was

. =/2€(¢beam + 0.137 #,) (4.42)

Z
m

while the value used in the caslculation was

v -/ 2Pean (4.43)
beam m

The actual velocity was ¢beam + 0~137¢a » or 1.16, times the value
eam

used in the calculation of the beam transit time. Thus the actual
time was approximately 0.86 times the calculated time. This accounts
for the discrepancy between the experimental points and theoretical
curves of Figure 4.11.

On one occasion when the anode voltage was set at a high

value (2500 volts) a beam spot was observed when the beam potential
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was zero! Evidently the emission velocities of the beam electrons
carried them into the diode, where they received enough energy and
z-momentum from the electric field in the diode to light the

fluorescent screen.

4.5 The Case of an Emitting Cathode with No Magnetic Field

Photographs of the trajectron spot taken with an emitting
cathode and no magnetic field are shown in Figures 4.19 and 4.20.

The arrows at each spot in this figure indicate the theoretical
deflection of a beam electron neglecting end effects and initial
velocities of both emitted and beam electrons.

The striking thing ébout these photographs is the radial
length of the spots. The reason the spots are long is that the beam
enters the tube in a region of weak electric field and is deflected
into a region of strong electric field. A simple example will show
how this effect takes place. Suppose the electric field is propor-
tional to the distance from the cathode of a planar device. Consider
the motion of a beam electron which enters parallel to the cathode
surface at e distance h from the cathode surface. If the field is in
the y-direction, the differential equation for the y-displacement of
the beam electron is d2y

m— = eF = eky, (. k)

with the boundary conditions y = h, and y = O when t = O. The solution

h cosh qv/gg . (4.45)

Considered as a function of initial conditions, the displacement of the

is easily found to be

9]
u

beam electron is proportional to its initial displacement from the cathode.
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Suppose the beam consists of electrons whose paths are all parallel
with each other and with the cathode, and that the cross-section of
the undeflected beam is a circle of diameter 4. Then the cross-section
of the beam after transit time t would be an ellipse with major axis d
cosh E/A%g (parallel with the electric field) and with minor axis d
(perpendicular to the field). The longer the transit time of the bean,
the greater the elongation of the spot is. If the spot initially
touches the cathode, the ellipse will touch the cathode also.

If the initial velocities of emitted electrons are neglected,
the potential distribution in a cylindrical diode is proportional to
(r52)2/3, where 52 is a function of r which is tabulated.l The constant

-of proportionality can be evaluated at the anode, and

g =g, R—j%% 2/3. (4.46)

Since electrons start at the cathode with zero initital velocity, the

velocity of electrons at any given radius is given by

.2 2 12/3
Eg_ = eff = ef, _BE_E , or (4.47)
RePq
;oo e | _R° V3 _ar (4.48)
m Raﬁae dt

The relation between time and displacement is then

rt = { , where (4.49)

lSpangen‘berg, Ref. G, pp. 176-178.
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ed  |1/2
y = %[233} (rapa? ) /3 (1.50)

The curve of R as a function of yt, found by integrating (4.49)
numerically, is plotted in Figure 4.21.

For a given beam potential, the velocity of beam electrons is

v = /g%__?i”ﬂ (4.51)
m

and hence the transit time is

£ m
t=2Z = B h.‘
» ‘Meese (k.52)

vwhere £ is the length of the diode. For these electrons

) ()

t = f<RaBa2>-l/3\/¢—£E = 6.11/;%

for the trajectron. The radial displacement corresponding with these

(4.53)

values of yt are indicated on the photographs of Figures (4.19) and
(4.20), by errows. This would be the displacement of the beam if 1t
corresponded exactly with emitted electrons, and if the initial ve-
locities of emitted electrons could be neglected.

The actual potential differs near the cathode from that given
by equation (4.46) because of the initial velocities of emitted electrons.
There is actually a potentisl minimum near the cathode. An exact theoretical
determination of the potential distribution for this case has been carried

out only for the parallel-plane diode case.1 Consider an ares on the

1pow, Ref. C, pp. 242-246.
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trajectron cathode about 0.10" square, and the region from this area
on the cathode out about .020". This area is probably near enough so
that the potential in this region could be approximated by considering
it to be a planar diode. This approximation to the potential is plotted
in Figure 4.22 for the conditions under which the photographs of Figure
4,19 were taken.l The distance from the cathode to the potential minimum
is roughly inversely proportional to the square root of the anode current.
For an anode current of 500 ma, the distance is only about .00l1", while
for an anode current of 20 ma, the distance is about .006".

The modification of the potential distribution indicated in
Figure 4.22 has an important effect on the deflection of beam elec-
trons. A few trajectories of beam electrons were calculated numerically
for the potential field which would occur if there were no initial
velocities. The calculations were made for a transit time the same
as for the 1880 volt beam spot of Figure 4.19. They indicated that
the initial position, i.e., entry point, of beam electrons was a much
more important factor than initial velocity in determining displace-
ment of a beam electron. The beam deflections were found to range from
approximately the theoretical value for emitted electrons, indicated
by the arrow in Figure 4.19, to a radius of about three times the
cathode radius, which is well beyond the maximum deflection observed

for beam electrons.

lThe cathode temperature was approximately 900O C., or 11730 K. The
cathode area was approximately 20 square centimeters. The largest
current which the cathode delivered was 800 ma., but it certainly
was capable of deliverying more. One hundred milliamperes per
square centimeter, or two amperes, would be a conservative estimate
for the maximum emission. This information together with the data
on Figure 4.19 is sufficient for finding the potential distribution
from the formulas given by Dow (Ibid., pp. 242-246). Note that
B - ET.Zn Jemission
Janode
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When the potential minimum is taken into account, the field
in the neighborhood of the potential minimum is approximately parabolic.
(The space charge density, and hence the second derivative of the
potential curve, is finite and not zero for this case.) The un-
deflected spot is approximately .025" in diameter and is no more than
a few thousands of an inch from the cathode. Thus the edge of the
beam nearest the cathode is very near the potential minimum. The
potential minimum may even lie within the beam at the entry point. The
deflected beam spot should resemble the spots calculated for a
parabolic potential field more closely than a spot calculated for the
field which would occur if emitted electrons had zero initial velocity.
This resemblance is apparent in Figures 4.19 and 4.20. The spots are
not elliptical, but they are very long and they extend nearly back to
the cathode, as would be expected if the spot were initially very

near the potential minimum.

L.6 A Discussion of the Trajectron Method.

The trajectron method, i.e., the interpretation of beam
deflection as equal to the deflection of emitted electrons in the same
transit timel, would seem at first glance to be a very powerful method
for studying electronic devices. The beam spot deflection agreed
reasonably well with the theoretical deflection of an electron starting
at rest from the cathode when a non-emitting cathode was used in the
trajectron dlode. With an emitting cathode delivering space-charge-

limited current in the diode, however, the situation is entirely different.

lSee page 2.
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A beam starting in a region of weak field and moving into a region of
strong field will tend to defocus. The extreme case occurs when the
beam enters in the neighborhood of the potential minimum, as near the
cathode of a tube operating in a space-charge-limited condition. The
part of the beam entering at the surface of zero field will not be de-
flected, while the displacement of other electrons will depend in a
continuous manner upon their initial distance from the point of zero
field. As a result, the beam spot will extend from the surface of
zero field out to some maximum displacement which will depend strongly
upon the relationship between the beam and the point of zero field.
Thus the trajectron method cannot be used to obtain displacement as a
function of time if the beam must enter at a point of zero field.
While the direct interpretation of beam deflection as equal
displacement of emitted electrons is not possible in a large class of
problems, the use of an electron beam as a probe may still serve as a
valuable technique. Indeed, some important knowledge about the fields
in the dc magnetron was obtained by studying the trajectron beam spots.

(See Chapter V.)



CHAPTER V

THE MAGNETRON CASE

5.1 Introduction

The purpose of this chapter is to present data taken from the
trajectron for the magnetron case, to discuss these data, and to present
whatever conclusions can be made on the behavior of electrons in a dc mag-
netron. Most of the chapter is concerned with the magnetron in ti = cutoff
condition. Some data with the anode voltage slightly above cutoff are pre-
sented and discussed in Section 5.7. Additional data for the magnetron
both above and below cutoff is included in Appendix E.

The discussion of the traJjectron data consists of two parts:
in the first part only the maximum radius of beam electron orbits is studied,
while in the second the entire orbits, and especially the configuration of
beam spot, are considered. The maximum radii of beam electron orbits were
observed to be smaller than would be expected if there were no secular
space charge in the magnetron and hence no space charge outside the Hull
radius. From this it can be concluded that there is space charge outside
the Hull radius. Estimates of the amount of this secular space charge indi-
cate that it is far from negligible, and probably more important than the
cathode-accessible space charge. The maximum radius of beam electron orbits
is observed to have a much greater range than predicted by the calculations
in which secular space charge is neglected. Calculations of beam electron

orbits indicate that the explanation probably lies in the presence of secular

-149-
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space charge and fluctuations in the electric field.

Inflections in anode current as a function of anode voltage were
observed in the trajectron magnetron diode. These inflections were associ-
ated by Delcroix® with changes in the character of the (cathode-accessible)
space charge from one type of orbit to another. As the trajectron anode
voltage was varied in the neighborhood of these inflections, the beam spot
was observed to move only a few thousandths of an inch and to change shape
only slightly. There appear to be two possible explanations. The anode
current inflections may not be associated with changes in space-charge type.
The second possible explanation is that the inflections in anode current
are assoclated with changes in the type of orbits of cathode-accessible
electrons, but these electrons contribute so little and the secular space
charge so much to the total space that changes in the orbits of cathode-

accessible electrons have a negligible effect upon the beam spots.

5.2 The Magnetron in the Cutoff Region

Typical data photographs for the cutoff magnetron are shown in
Fig. 5.1. EPEach photograph includes several exposures of the spot. There
is an exposure with the anode voltage removed showing the undeflected, or
initial, position of the spot. The other exposures are made with various
beam potentials. The two photographs differ only in the orientation of
the magnetic field. On each photograph a circle showing the position of
the cathode surface is drawn. (The anode radius is 3.65 times the cathode
radius.)

Clearly the beam does not trace out the orbits of the emitted

1 Rets. 14, 15, and 16.
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electrons. However, significant information concerning the space charge
and potential distributions can be obtained from the trajectron data since
the motion of the beam electrons depends upon the potential distribution
in the diode. The following sections discuss the effects of various con-
ditions or phenomena which may occur in the trajectron on the motion of
beam electrons. The purpose of these discussions is to achieve an under-
standing of how the spot should appear under various conditions, and to
draw conclusions on what conditions prevailed in the trajectron magnetron

dicde.

5.3 End Effects

End effects result from the fact that the electric field in the
diode is not independent of distance in the axial directiont. They are not
as easily discussed for the magnetron case as for the space-charge-free
caseg, since the potential distribution in the magnetron diode 1s not
known. FEven an approximate plot of the field with a hypothetical space-
charge distribution would be more difficult to obtain than in the case of
no space charge. Some idea of the magnitude of the effect can be obtained,
however, by a comparison of the magnetron case with the space-charge-free
case.

The variation of electric field with axial distance can be con=-

sidered the result of placing in the infinite diode the shields which are

at each end of the diode?. These shields were both at the cathode potential;

1 The magnetic field is so nearly uniform that it does not contribute appre-
ciably to end effects in this experiment.

2 See Section L4.6.

3 The copper mesh shield (Part No. 28 of Figure 3.2) was used in obtain-
ing all data presented in this chapter.
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they had the effect of lowering the potential where they were placed to the
potential of the cathode. The presence of space charge had the effect of
depressing the potential, as illustrated in Figure 5.2. The points at
which the shields were placed were more nearly at ground potential with the
space charge present than without. Therefore the changes in the field re-
sulting from the shields in the ends of the diode were smaller with space
charge present than in the case with no space charge.

Since the field was disturbed less in the magnetron case than in
the space-charge-free case, it seems reasonable to assume that end effects
were smaller also. The end efffects for the space charge free case are dis-
cussed in Section 4.4, Typical results were that the maximum radius of the
orbits were changed by a negligible amount and the beam acted as if the
beam potential were increased by approximately one-seventh of the anode

voltage.

5.4 The Effect of Initial Velocities of Beam Electrons on the Maximum

Radius of the Beam Electron Orbit

For any given potential distribution in the magnetron the maximum
radius of the orbit of a beam electron can be found through the energy
integral just as in the space-charge-free case. The initial part of the
discussion of this problem in Chapter IV assumed the electric potential to
be an arbitrary function of r, and hence equation (4.26) can be used in
the magnetron case as well as in the space-charge-free casel. At the maxi-

mun radius of a beam electron's orbit, its radial velocity r is zero, and

by (4.26),

1 See page 127.



15

L

FIG. 6.2

POTENTIAL DISTRIBUTION

IN A CYLINDRICAL MAGN

ETRON

WITH SINGLE-STREAM FLOW

Vi
]

S N T~

- \\\\ \\
i N

@ N

. 2.
R—»




=155~

i.2 o) 2

b =) - 2 9—)(-—-33%-- 1) G
2 2 > 2/\.2 2k
(l)La I'O m&\La

The effective potential qf(r) is the electric potential modified in two
ways: (1) it is normalized, and (2) the energy of angular motion of an

electron initially at rest on the cathode is subtracted from it:

2
Vo = 2 (o) (5.2)
mCl)L a a

The effective potential is a measure of the energy of the radial motion,
and in a region of the magnetron containing cathode-accessible space charge,

electrons starting at rest from the cathode have a radial velocity given by

o2
y(r) = mL;’ s . (5.3)

Using this fact, the function qr(r) can be calculated easily for the By
By, and By solutions if the secular space charge is neglected. Within the
space-charge region { (r) = O for the B, solution, since r = O for all
emitted electrons. For the Bl and B2 solutions r can be taken from differ-
ential analyser data. Outside the space charge region the space charge
distribution is assumed zero, and w'(r) is calculated from equation 5.2
above and equation (2.84) of Chapter II. Curves of Y (r) are shown in
Figure 5.3 for Ry = 2.5.

With (r) and the beam initial conditions known, equation (5.1)
can be solved for the maximum radius. Graphical solutions of equation (5.1)

obtained for a number of cases typical of beam electrons in the trajectron



156

oe

SL'2

S2

62’2

02

VA

Sl

g2l




=157 -

are summarized in Table 5.11.

TABIE 5.1

CALCULATED MAXIMUM RADIUS OF THE ORBIT
OF BEAM ELECTRONS IN MAGNETRON SPACE CHARGE

Initial Conditions of Beam Electrons  (See Figure L.k)

h .03%0" .030" .030" .0151 .0075"
s .020" .020" .020" 0 0
9] 0° + 90° 180° - -
Space
Charge Type| Th Maximum Normalized Radius of Beam Electron Orbit

B, 1.75 1.88 2.05 2.17 1.97 1.91
Bz 1.75 2,03 2.07 2,085 2,01 1.9k
Bo 1.75 2.05 2.08 2.09 2.01 1.94
B, 2.5 2.6 2.72 2.82 2.63 2,58
Bo 2.5 2,82 2.92 2.97 2,79 2.70
B 2.5 2.90 2,96 2,98 2.81 2.71
B 3.58 | 3.5k 3.69 3.77 3.65 3,62

In the previous chapter the effect of the potential minimum at
the cathode of a space-charge-limited diode was found to have a profound
effect on the motion of the beam. The potential minimum was not taken into
account 1n the present discussion. Up to this point only the maximum radius
of beam electron orbits has been discussed. The maximum radius was calcu-
lated from the effective potential. The effective potential curve would

differ a negligible amount if the potential minimum were considered: it

1 The By and By solutions in the ideal cylindrical magnetron do not exist
with Ry = 1.75, so that the effective potential curves could not be taken
from the differential analyser for these cases, The B; and B, solutions
can occur if the conditions in the magnetron are not the ideal conditions
described in Section 2,2, The presence of secular space charge can mske
this possible, for example., (See Section 2,6) The approximation teken
for potential distribution in this case was the potential distribution in
an ideal planar magnetron with a space charge region of the same thickness,
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would be a fraction of a volt lower and would have gppreciably different
slope only within a few thousandths of an inch of the cathode. Thus the
potential minimum should have little effect upon the maximum radius of the
beam electron orbits.

In comparing the calculations summarized in Table 5.1 with the
data photographs, the first question which arises is, how can the range of
maximum radius for the beam electron orbits be found from the photographs?
The maximum radius of the largest beam electron orbit is obviously the
largest radius reached by any beam electron. This might be found by con-
sidering the outside edge of the area swept through by the beam spot as the
beam voltage is varied, as illustrated by Ry in Fig. 5.4, It might seem
that the maximum radius R, of the inside edge of this area would be the
maximum radius of the smallest beam electron orbit. Actually it may not
not be. All that can be sald definitely is that the maximum radius of the
smallest beam electron orbit is at least this large. However, comparing
the range of maximum y-displacementl for beam electrons for the planar mag-
netron case and the calculated "spots" which are shown in Fig. 5.6 in the
next section we see that the maximum y-displacement of the smallest beam
electron orbit for these cases differs very little from the maximum y-dis-
placement of the inside edge of the area swept through by the beam. Thus
it is reasonable to estimate the maximum radius of the smallest beam elec-
tron orbit by Rm.

For the case presented in Figure 5.la, RM = 2.2 and Ry = 1.k
approximately. For Figure 5.1b, RM = 2.5 and Rm = 1.7. These two cases

differ only in the orientation of the magnetic field, and if the alignment

1 The y-displacement in the planar case corresponds to radial displace-
ment in the cylindrical case.
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were perfect, the photographs would be mirror images of each other. The
Hull radius Ry calculated on the assumption of no space charge outside the

space charge cloud is 2.23 for the B, solution, 2.25 for the B, solutionm,

2
and 2.33 for the By solutionl. There are several facts which must be dis-
cussed. First, judging from the calculations summarized in Table 5.1, one
would expect the maximum radius of the smallest beam electron orbit, and
hence Ry, to be either approximately equal to or somewhat greater than the
Hull radius Ry. It 1s observed to be smaller than the Hull radius calcu-
lated on the assumption that there is no secular space charge. In the
second place, the observed range of maximum radius (RM - Rm) is much great-
er than that predicted by the calculations summarized in Table 5.1. 1In

the third place, the difference between Figures 5.la and 5.1b is great
enough to be comspicuous. These data are typical in all three respects,

of the trajectron data taken for the cutoff magnetron. The first point
mentioned above is examined in the next paragraph. The second and third
points are discussed in Sections 5.6 and 5.7.

The beam was not deflected as far as calculations neglecting space
charge outside the Hull radius indicated it should be. The obvious con-
clusion is that the space charge outside the Hull radius is not negligible.
This conclusion is shown more rigorously to be true in Appendix F. A con-
sequence of this fact is that the Hull radius cannot be calculated from
knowledge of the anode potential and magnetic field alone. In this experi-
ment it must be estimated from the data photographs. With the spots as

large as they are on the data photographs, an accurate estimate of Ry is

impossible.

1 See Figure 2.10.
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Even if Rh were known, the amount of secular space charge or its
distribution could not be found from the trajectron data. If the Hull
radius and the form of the secular space charge distribution were known,
however, the amount of secular space charge could be calculated. For the
purpose of estimating very roughly the amount of secular space charge, the
space charge distribution might be assumed the same as the distribution
for the B, solution, and the Hull radius could be estimated from the data
photograph. In Figure 5.la, the Hull radius might reasonably be taken as
1l.ka since all the beam electrons would be expected to reach at least the
Hull radius.(See Table 5.1.) Because Poisson's equation is linear, the
field can be thought of as being the sum of two components, one associated
with the secular space charge and the other the difference between the
entire field and the component associated with the secular space charge.
If the secular space charge is assumed to have a distribution proportional
to that of the B, solution for the magnetron, the secular component of the
potential can be taken as a fraction, say f, of the potential associated
with the B, solution. It is shown in Appendix D1 that with this particular
choice for the secular space-charge distribution, the distribution &6f the
remaining space charge is that which would occur if there were no secular
space charge and the Hull radius were the same, reduced by a factor 1-f,

In terms of the potential, this means that

g (r) = £¢ (r)+ (1-f) ¢ (r) (5.4)

where ¢l is the potential of the B, sclution with space charge reaching

the anode, and ¢2 i1s the potential which would occur with no secular space

1 See pp. 229-231. Equation (5.4) is obtained from equation (D.3) by
_ 1
letting f = 5 k5 .
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charge. At the anode, ¢l is the same as the cutoff potential, .111 B2,
and ¢2 can be found from Figure 2.10 to be .030 BE. The anode potential
for Figure 5.la was .O77 B2. From equation (5.4) f is found to be 0.58.
With the same assumptions the total space charge inside the Hull
radius, and the total space charge outside the Hull radius, can be calcu-
lated. For simplicity the calculation will be made assuming the BO type
solution for cathode accessible electronsl. The result will hold approxi-
mately for other types of solutions since the boundary conditions at the
Hull radius are approximately the same for different type solutions of the
same Hull radius. Then, by equation (2.70), the space charge distribution

between the cathode and the Hull radius is

p = C (l + -ll-) (5.5)
R

where C is a constant depending on the magnetic field and physical con-
stants. Outside the Hull radius the space charge density is assumed to be

of the same form as (5.5) but reduced by the factor f, i.e., outside R,

o = 10 <l+l—:t> (5.6)

1 According to the definition of secular space charge given in Chapter II,
the B, type space charge is secular space charge, not cathode-accessible
space charge. It is a limiting case, however. The electrons in the Bj
type space charge have the same total energy and canonical angular mo-
mentum as electrons at rest on the cathode, and an infinitesimal change
in energy or momentum would make them cathode-accessible. Furthermore,
the B, type space charge is in a sense the limit approached by B, type
space charge as n becomes infinite, and because of its simplicity it is
often convenient to consider it an approximation to B, type cathode-
accessible space charge.
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The space charge Q between any two radii can be found by inte-
grating:

)
f o(R) 2xrdr
)

O
i

(5.7)
T2
a® f p(R) 2nRdR

T

i

For the case in the preceding paragraph, Rh was taken to be 1.4 and f

was found to be 0.58. By equations (5.5) and (5.7) the charge between

the cathode and the Hull radius can be found to be 1.45 - Eﬂa2C. By equa-
tions (5.6) and (5.7), the charge between the Hull radius and the anode is
6.8 - EﬂaQC. There is more than four times as much space charge outside
the Hull radius as inside.

The estimate of Ry is rather crude. Probably Ry was less than
1.4, Certainly it was no larger than 1.7. If R, is taken as 1.7, f is
found to be 35%. The total amount of space charge between the cathode
and the Hull radius turns out to be 2.54 - 27a°C. The total charge be-
tween the Hull radius and the anode is 3.76 * EﬂaQC, about half again as
much as inside the Hull radius.

For a given Hull radius, the amount of space charge required be-
tween the Hull radius and the anode to produce a given anode potential de-
pends upon how the space charge is distriéuted. Space charge near the
Hull radius has a greater effect than space charge near the anode. If all

the space charge were concentrated at the Hull radius, the amount of space

charge required would be reduced by a factor of less than threel.

1 See Appendix F, p. 247.
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The data apparently cannot give an accurate estimate of the space
charge outside the Hull radius, but even a very conservative estimate indi-
cates that the space charge outside the Hull radius is far from negligible.
Indications are that this secular space charge is in reality the most impor-

tant portion of the space charge.

5.5 Calculated Beam Electron Orbits

Calculations were made of the orbits of beam electrons neglecting
end effects but considering initial conditions. The calculations were made
for the planar magnetron for simplicity. Even so, a considerable amount of
numerical work was required; much of this was done with the electronic
differential analyser. The method of calculation is simply to assume the
By, BQ, and Bo type of space charge occurs in the magnetron, with the space
charge region of given width. This determines the potential distribution.
Then the trajectories in this potential field of electrons with initial
conditions typical of beam electrons in the trajectron were calculated.

The method of calculation is described in Appendix C. The results of

these calculations are given in Figures 5.5, C.3, C.4, C.5, and C.6. For
each figure the beam initial conditions and the thickness of the space
charge cloud are fixed. The three solid curves give the beam electrons!
radius as a function of time for the potential distributions of the By, By,
and 32 solutions. The dashed curves *are the radial displacement as a func-
tion of time for electrons starting at the cathode with zero velocity with
the potential distributions of the B and Bo solutions. They are given

for comparison; they represent the motion of beam electrons in an ideal

trajectron.
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The x-displacement for beam electrons can be found from Figures
5.5, C.3, C.4, C.5, and C.6 by applying equation (2.8) of Chapter II.
mx + eBy = Py , or (2.8)

. P
X = -2%y+.nTX . (5.8)

The constant Px can be evaluated at any point in the motion. At a point

where y =h, x = 0, and P, = 2miyh. Thus

x = - 20 (y =h), or
t

x = -2n f (y -h) at . (5.9)
(0]

Thus x(to) can be obtained as an area on the graphs of y as a function of
time, the area bounded by the line y = h, the line w;t = O, the line th =
tho, and the curve of y as a function of @Lt. These x-displacements
were calculated from the curves in Fig. 5.5 and those in Appendix C for
2wt =L, 6, 8, and 10. For each of the three potential fields considered,
the points corresponding to each of the initial conditions are plotted in
Figure 5.6. The points corresponding to a particular th are encircled by
a dashed curve; they give a rough idea what sort of a beam spot might be
expected in the trajectron under the corresponding conditions.

The calculated "beam spots" shown in Figure 5.6 differ markedly
for the three cases, the Bo’ Bl’ and B2 solutions. The differences
are great enough so that if the space charge in the magnetron were known
to be of one of these types, it would be quite obvious from the trajectron
data which one occurred. TFor the Bo or B2 type space charge, the calcu-

lated spots deflected beyond the maximum radius portion of the orbit have
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their leading ends nearer the cathode than their trailing ends, in the
manner illustrated in Figure 5.7a. The opposite is true for the B; type
space charge; the spots for the By case resemble Figure 5.7b. In this re-
spect the trajectron data definitely resembles the "spots" calculated for
the By solution. The difference between the observed spots in the trajec-
tron data and the calculated "spots" for the B, and By solutions is great
enough for us to conclude that these solutions do not occur. ZEven for the
By solution there are differences, however, between the calculated "spots"
and the spots observed on the trajectron. In the first place, the spots
in the trajectron data are somewhat longer than the calculated spots. In
the second place, in the trajectron data for all spots the trailing end

is closer to the cathode than the leading end, while the calculated "spot"
for the Bl solution which is roughly at the maximum radius of the orbit is
nearly parallel to the cathode. The potential minimum certainly accounts
for some lengthening of the spot, but it cannot account for the increase
in radial width of the spots, and hence it cannot account for the fact
that the leading end of the spot always has a considerably greater radial
displacement than the trailing end. The explanation of this latter ob-
servation seems to lie in the presence of secular space charge and elec-
tric field fluctuations in the diode.

The two photographs in Figure 5.1 differ only in the orientation
of the magnetic field. Physically the only important difference is in the
initial conditions of the beam. When the magnetic field was reversed with
no anode voltage applied to the magnetron diode, the beam was observed to
shift only .010 to .020 inches; i.e., an amount somewhat smaller than the

initial displacement of the beam. This difference in initial conditions
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(a.)

(b.)

FIG. 5.7
IDEALIZED BEAM SPOTS
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resulted in a difference in spot displacement between the two photographs
in Figure 5.1 which are of the order of magnitude of the spot width itself.
This difference between the two photographs is another indication of the
strong dependence of displacement of beam electrons on their initial condi-

tions.

5.6 The Effects of Secular Space Charge

Calculations similar to those described in Sections 5.3 and 5.4
were carried out assuming the presence of secular space charge. For both
sets of calculations the secular space charge was assumed to be proportion-
al to the space charge density of the B, solution, i.e., the space charge

density given by equations (2.104) and (2.107). Thus

pg (aR) = m“’LE €, QR) = mmLEe os (1 + ;11) . (5.10)

The calculations of maximum radius of beam electron orbits are
summarized in Table 5.21. In the description of the aligned electron beam
in the trajectron, it appears that h could not be less than about .008".
The values .OO4", .002", and .O0Ll" were included in this calculation for
two reasons. In the first place, for the purpose of calculations h should
be measured from the potential minimum near the cathode (i.e., the virtual
cathode) rather than from the cathode itself. The difference may be sev-
eral thousandths of an inch, especially since the presence of the secular
space charge reduces the amount of current of the cathode accessible elec-

trons. The second reason for considering the small values of h is that

1 The method of finding effective potential for this case is described in
Appendix D. Otherwise the method is the same as that of Section 5.3.
Only the By type of solution was considered.
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there is a greater dependence of maximum radius upon h where there is
secular space charge.

It can be seen from Table 5.2 that the range of maximum radius
of beam electrons increases from .39a without secular space charge to .75a
with secular space charge equal to 75% of the B, solutionl., Thus the pre-
sence of secular space charge can account for the observed range of maxi-
menm radius (i.e., 75% of the B, space charge) agrees reasonably with the
amount of secular space charge estimated from the observed reduction in

maximum radius of orbits (i.e., 58% of the B, space charge).

TABLE 5.2
MAXIMUM RADIUS OF BEAM ELECTRON ORBITS
WITH SECULAR SPACE CEARGE (Ry, = 1.75),

Pg = ma{? €5 k5<l+§:£

[ I
Initial Conditions

h 030" | .030" | .0%30"| .o15"| .oo7s" .oou"| .o02"| .ooL"
S L020" | ,020" | .020" 0 0 0 0 0
5 0° | ¢ 90°| 180° - - - - -

Maximum Radius 9£ Beam Electron Orbit

ks = O |1.88 | 2,05 |2.17 |1.97 |1.91 |[1.86 |1.85 |1.78
ke = 1.0[2.,13 2,28 2,38 2,12 1.99 1.93 1.87 1.83
ks = 1.5(2.45 [2.535 |2.2 |2.30 |2.12 |2.05 |1.95 |1.87

Calculations were made of orbits of beam electrons in a planar
diode with varying amounts of secular space chargeg. The results are pre-
sented in Figure 5.8 in the form of calculated beam "spots" similar to

those of Figure 5.6. Only the Bl type solution was considered and in order

————

1 Equation (5.7) with K5 = 2 1s the expression for space charge density
for the B, solutions.

2 The details of the calculation are described in Appendix D.
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to simplify the calculations, the effective potential was approximated
by a parabola. The results for the case of no secular space charge com-
pare well with those presented in Figure 5.6. The radial spread and the
length of the spots increases with the amount of secular space charge.
(Note that the scales are different for each case in Figure 5.8.) The

spots become very similar to those observed in the trajectron.

5.7 The Effect of Field Fluctuations on the Shape of the Beam Spot

Another possible cause for the increased size of the beam spot is
fluctuations of the electric field in the magnetron diode. Some idea of
what effect might be expected is given by the following very simple ex-
ample. Consider an ideal planar magnetron in an ideal trajectron (i.e.,
one which actually traces out electron orbits). Fluctuations in the field
are introducea by applying to the anode a voltage which fluctuates between
a minimum and a maximum value, the fluctuations being slow enough so that
the anode voltage is essentially constant during the transit time of an
electron, but fast enough so that it appears to spread out the spot. Now
consider the shape of the resulting spot. The orbits for the anode voltage
at its minimum and maximum appear in Figure 5.9 as dashed curves. At
fixed beam voltage, or fixed transit time, the x and y deflections increase
in the same proportion when the anode voltage increases. Thus the spot
would be a straight line between the maximum and minimum orbits, which
would intersect the origin if extended. Several such spots are drawn in
Figure 5.9. They are of the type illustrated in Figure 5.7b, the type
which was found to occur in the trajectron. For the cylindrical case the
transit time is somewhat greater for the larger orbits so that the leading

end would be expected to be a small distance from the cathode when the
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trailing end meets the cathode. The spots have this appearance in the
trajectron data. Field fluctuations would have to be very great, however,
to make the spot as large as it is observed to be.

Three possible causes for the large size of the observed spots
have been suggested. The first, the potential minimum, undoubtedly contri-
butes to the length of the spots, but cannot have much effect on the radial
dimensions of the spot. The other two, secular space charge and electric
field fluctuations are expected to result in a spot configuration similar
to that observed in the trajectron data. On the basis of the evidence at
hand +there appears to be no way to determine to what extent each contri-

butes to the size of the spot.

5.8 The Magnetron at Approximately the Cutoff Voltage

When the anode voltage is a small fraction of the cutoff voltage,
the anode current is extremely small. As the anode voltage is increased,
the anode current increases. It increases rapidly near the cutoff voltage,
and above the cutoff voltage the anode current is nearly as great as it
would be with no magnetic field. Several curves of anode current versus
anode voltage for the trajectron diode are shown in Figure 1.1. These
data are replotted in normalized form in Figure 5.10.

The anode current at cutoff can be found from equation (2.76) of

Chapter II.

b = & (2.76)

2
men eowLBa

where J is the cathode current density. If numbers are substituted for

the physical constants and the trajectron dimensions, this becomes
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I, = L.75 - lO-7 Bob ma (B in gauss)

(5.11)

0.0192 I’ b ma .

At cutoff, Ry = Ra = 3.65, and b is found from differential analyser solu-
tilons to be approximately 2.7. For the values of magnet current appearing
in Figure 1.1, the anode current calculated from equation (5.11) is indi-
cated on the figure. At the calculated cutoff potential the actual current
was always considerably less than the theoretical current. It does not
appear that the discrepancy can be attributed to errors in the measurement
of anode potential magnetic field, or anode current. Probably it results
from the fact that this diode was not an infinite cylindrieal magnetron,
but on the contrary had rather severe end effects.

Two photographs of trajectron data for the magnetron diode approxi-
mately at cutoff are shown in Figure 5.11. The theoretical orbits obtained
from the differential analyser solution and circles representing the cath-
ode surface have been drawn on the photographs. The data and theoretical
curves are replotted in Figure 5.12 to show displacement as a function of
time. The parameter b was calculated from equation (2.76) using the ob-
served value of anode current and taking B as 34.3 gauss per ampere of mag-
net current.

The beam spots are farther from the cathode than the theoretical or-
bit, and they obviously would reach the maximum radius portion of the orbit
sooner and with a smaller angular displacement. The maximum radisl dis-
placement of the beam spot clearly would be greater than the maximum radius
of the theoretical orbit, but since the last beam spot appearing on the

photograph is not at the maximum radius, a quantitative comparison of the
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maximum radius of the beam spots and of the theoretical orbit cannot be
made.

The initisl spot in these photographs appears to be well aligned,
and yet the spots do not spread out as far in this case as in the case with
emitting cathode and no magnetic field (Section 4.5). The diode cathode
was certainly capable of emitting more than the anode current of 280 ma
measured when these data were taken, and hence the diode was certainly
space-charge limited. With so much anode current, however, the potential
minimum was probably very near the cathode. The beam was not as close to
the cathode in this case as when data were taken with no magnetic field.
Furthermore, the beam electrons are traveling in helical paths and have
greater initial radial and angular components of velocity with the magnetic
field present than in the case of no magnetic field, and in this sense are

not so near the potential minimum as beam electrons were with B = O.

5.9 Irregularities in the Volt-Ampere Characteristics of the DC Magnetron

The low current region of a volt-ampere curve like those of Figure
5.10 1s plotted in Figure 5.13 to show the details of the variation of
anode current with anode voltage in this region. The curves show some in-
flection points, and even regions of negative resistance or discontinuities.
It was found that these regions always occur in the same range of values of
¢a/B2 as the anode voltage and magnetic field are varied. Some data showing
this are presented in Figure 5.14, where the vertical lines represent ob-
served reglons of negative resistance and dots represent inflection points
observed in the anode current as the anode voltage was varied. The data

were taken on an early model of the traJjectron diode.
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This phenomenon was oObserved also by Delcroixl, who built a
series of cylindrical dc magnetrons with the ratio of anode radius to cath-
ode radius ranging from 1.25 to T7.5. He interpreted these regions of irreg-
ularity in anode current as regions in which the space charge changes from
one to another of the solution types found theoretically possible in the
theory of the dc c¢ylindrical magnetron presented in Chapter II. The same
explanation occurred to the author when he observed this phenomenon. Indeed
the irregularities occur in very nearly the range of ¢a/}32 predicted by the
theory. Any discrepancy between the location of observed regions of irreg-
ularity and theoretical region of possible transitions for the case of no
secular space charge could certainly be attributed to the presence of secu-
lar space charge.

With the trajectron there was additional information available.
The changes in the beam spot resulting as the anode voltage was varied could
be observed. Such observations are described in the following paragraphs.
They do not appear to substantiate the hypothesis that the irregularities
in the anode current-anode voltage curve associated with transitions from
orbits of one type to orbits of another type.

A series of experiments were run in which the anode current, the
beam spot, and the low frequency components of nolse in the anode current
were observed simultaneously as the anode voltage was increased from zero
through the cutoff voltage. The noise was observed on a Techtronix 514D
oscilloscope, which was connected to the anode circuit of the trajectron in
the manner shown in Figure 5.16. The following data were taken with a mag-

net current of %.5A, and with a beam voltage of 1300 V.

1 Refs. 14, 15, and 16,
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When the anode voltage reached 260 V., a small voltage appeared
on the oscillosxope. It was an oscillation at approximately 8 me. It also
appeared at ¢a = 370 V., I, = 0.05 ma. Noise appeared with an amplitude of
.03 V. at ¢a = 500 V., Ia = 1 ma. The noise had components as high in frequency
=s the oscilloscope could amplify (10 mc). The noise became jumpy at about
¢a = 800 V., Ia = 1.1 ma. (There were fluctuations in noise amplitude with
frequencies of a few cycles per second.) The noise built up to approximately
0.3%3 volt amplitude at ¢a = 850 V., I, = 2 ma. The maximum frequency of this
noise was approximately 0.5 mec. There was a relative maximum in anode current
at ¢a =930 V., I, = 2.1 ma, and a relative minimum at §5 = 960 V., I =
2.0 ma. The noise disappeared at the relative minimum, and the beam spot
jumped at .025" toward its undeflected position. There was no observed
change in the spot size or shape.

An unsteady oscillation at approximately 0.5 mc appeared at ¢a =
1000 V., I, = 2.5 ma. There was a relative maximum in anode current at
¢a = 1050 V., I, = 2.6 ma. The oscillation stopped at this point. There
was a relative minimum at ¢a = 1090 V., I, = 2.3 ma, and the spot Jumped
back .010" at this point. Beyond this relative minimum, noise appeared
which had frequency components in the entire range of the oscilloscope.
The noise increased in amplitude continuously as the anode voltage was in-
creased toward the cutoff voltage, where 1t reached an amplitude of approxi-
mately five volts.

On several occasions the spot took on the shape of a loop, sug-
gesting that some sort of oscillation occurred. Such data are shown in
Figure 5.15. This was observed only with relatively strong magnetic fields

(Im 2 3.5A) and with the anode voltage a little below the voltage at
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which the first inflection point in the graph of anode current occurred.
It was not found to occur consistently. Oscillations were not observed
on the oscilloscope in this range of anode voltage. No further search for
oscillations was made.

Photographs of beam spots in this range appear in Figure 5.18.
Figure 5.17 is a graph of the anode current versus anode voltage, showing
the points at which photographs were taken. Figure 5.18a was taken just
below the inflection point. Figure 5.18b was taken between the inflection
point and the relative maximum. Figure 5.18c was taken between the relative
maximum and the relative minimum, Figure 5.18d was taken just above the
relative minimum. Another set of photographs of this type is included in
Appendix E.

There is one striking thing about these data. The spot does not
change much as the anode voltage is increased through the region in which
inflections occur in the anode current. Judging from the calculated "spots"
of Figure 5.6, one would expect that if the space charge changed from that
of one solution to that of another (as B, to By or By to B2), there would
be a conspicuous change in the configuration of the spot at the same time
as the spot 1s observed to jump back. This did not occur in any observed
situation. The series of photographs shown in Figure 5.17 show no sign of
the change in spot configuration which would be expected to occur if the
space charge changed character from one solution to another. The spots in
these photographs are very similar from one photograph to the next -- cor-
responding spots even have the same general shape. The transition in spot
configuration through this series of photographs appears to be smooth and
uniform -- there is no sign of the change in spot configuration which one

would expect to accompany a change in the type of space charge.
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Certainly, if the space charge in the dc magnetron were closely
approximated by the solutions described in Chapter II for the case of no
secular space charge, and if the inflection in anode current did accompany
changes in the space charge from one type of solution to another, then
changes in the shape of the spot of the order of magnitude indicated by
the calculated beam spots of Figure 5.6 would have occurred. The changes
would have been observed easily. It follows that at least one of these
conditions is contrary to fact. It was concluded in Section 5.3 that a
substantial portion of the space charge in the dc magnetron under cutoff
conditions is secular space charge. The presence of the secular space
charge would decrease the amount of cathode-accessible space charge, and
the effect on the beam spot of changes in the character of this cathode-
accessible space charge would be lessened. It is possible that the changes
from one type of solution to another do occur in the cathode accessible
space charge, but that the amount of cathode accessible space charge is
so small that the effect on the beam is unnoticeable. On the other hand,
the trajectron data does not support the theory that the inflections in
anode current are indications of changes in the solution type of the cath-
ode accessible space charge. A possible alternative theory to account
for the inflections in anode current is discussed below in connection with
noise in the dc magnetron.

The observations of noise in the anode current of the trajectron
are probably not significant because they cover such a small portion of the
spectrum. A measurement of noise could not be considered complete unless
it covered the spectrum from zero frequency to beyond the cyclotron fre-
quency, which for the trajectron would range between 140 and 450 me. Some

measurements in the high frequency range have been made on the dc magnetron
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by Warnecke and his coworkerst, They observed what they described as
oscillation in the microwave region. They gave the following explanation
for the presence of these oscillations. It is apparently possible to have
waves propagate around the cathode and be amplified at the same time. In
the cylindrical magnetron the path of propagation closes on itself. At any
frequency for which the phase shift is an integral multiple of 2x for the

complete path, oscillation is possible. Warnecke2

analyzed the propagation
of waves in the space charge of the By solution, and his analysis indicates
that there is a mode with a different frequency possible for each integral
multiple of 2x in phase shift. The experimental date correlated quite well
with the predicted mode frequencies, and the third mode seemed to predomi-
nate.

The space charge in the magnetron appears not to be the By type,
but is more likely a combination of the B, type and secular space charge.
Certainly the theory based upon B, type space charge cannot be expected to
furnish details of the behavior of the magnetron. It is entirely possible
that certain modes predominate in the actual dc magnetron only in certain
ranges of anode voltage, and that the inflections which are observed in the
anode current as the anode voltage is increased reflect changes in the space
charge accompanying a change in mode in the space charge oscillations. In
more general terms, it appears that the space charge in the magnetron has
certain resonances, and that the space charge is unstable in such a way

that oscillations can be sustained at these resonances. These resonances

undoubtedly depend upon the space charge configuration, and hence upon the

1 Guénard and Huber, Ref. 23,

2 Refs. 46 and L7,
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anode voltage. It is quite possible that as the anode voltage is increased
the oscillation changes discontinuously from one mode to another, and the
accompanying change in space charge results in the inflections noted in the

anode current.



CHAPTER VI

CONCLUSIONS

6.1 The DC Magnetron

In the trajectron, an electron beam is sent through a dc
magnetron diode and its exit point shows on a fluorescent screen.
The beam is deflected by the fields in the magnetron, and through
the study of the deflected spot, significant information can be
obtained about the space charge distribution and potential dis-
tribution in a dc magnetron.

According to the most widely used theory of the dc¢ magnetron
in the cutoff condition, the space charge is confined to a region
between the cathode and a maximum radius commonly called the Hull
radius. One observed fact about the trajectron data is that the beam
electrons' radial deflection was not as great as that predicted by
calculations assuming no space charge outside the Hull radius. From
this it can be shown that the space charge outside the Hull radius is
not negligible. 1In fact, rough calculations based on the trajectron
experiment, for a typical situation in which the Hull radius was
located approximately one-fifth of the distance from the cathode
to the anode, show the quantity of space charge outside the Hull
radius to be several times the amount inside. The space charge

outside the Hull radius must consist of electrons whose energy and

-19%-
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momentum have been changed from initial values by collisions or
irregularities in the fields. Nearly all of these electrons have
had their energy and momentum affected in such a manner that these
electrons are trapped within the magnetron. Such space charge is
called secular space charge.l

A second observed fact is that the spots in the trajectron
data at the maximum radius part of their orbit have a much greater
radial width than predicted by calculations in which secular space
charge was neglected. Two factors which might contribute to this
have been discussed. The first is the modification of the potential
distribution due to the presence of secular space charge. The
gsecond is fluctuations of the electric field, which are known to
occur in the dc magnetron. Calculations indicate that both of these
should have essentially the same effect on the beam spot, to make it
take on the shape and size which it is observed to have. Probably
both factors contribute to the enlarging of the spot, but it does not
appear possible to tell their relative importance.

A third observation on the cutoff magnetron concerns regions
of negative resistance and inflections observed in the anode current-
anode voltage curves in the cutoff region. These inflections in anode
current were associated by Delcroix2 with changes in the character of
the space charge from one type of electron orbits to another. Some
calculations neglecting secular space charge were made showing roughly
the expected spot configuration for a beam entering space charge of the

B Bl’ and B, types. The calculated beam spots indicated that changes

o)

from one type space charge to another should have resulted in a

lsee Section 2.5, or Hok, Refs. 28 and 29,
Refs. 1l, 15, and 16.
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conspicuous change in the spot configuration. No such changes were
observed in the spot configuration. There appear to be two possible
explanations. The inflections may not be associated with changes in
space change type, but rather with some other phenomenon. (A possible
alternative theory is suggested in Section 5.9,) The second possible
explanation is that the inflections are associated with changes in the
type of orbits of the electrons as they leave the cathode (i.e., the
cathode accessible electrons), but that these electrons contribute

so little and the secular space charge contributes so much to the

total space charge that changes in the orbits of the cathode accessible

space charge have a negligible effect on the beam spots.

6.2 The Trajectron Method

If the beam initial conditions could be made to match the
initial conditions of emitted electrons closely enough and if end
effects could be made negligible, the beam displacement as a function
of transit time would be the same as the displacement of emitted
electrons in the same time, making possible a very simple interpretation
of the data. In spite of rather serious end effects the trajectron
data for the cases with non-emitting cathode agreed ressonably well
with the theoretical trajectories. It appears that end effects could be
reduced in many problems to the point where fairly accurate trajectories
could be traced out by the trajectron method.

A different situation arises in the important case in which the
electric field is zero near the cathode, as it is at the potential
minimum in any space-charge-limited electronic device. The deflected

beam spreads out so much because of a defocussing effect of the
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electric field, that the spot extends back to the potential minimum.
This is shown both theoretically and by experimental results. In this
case the beam spots do not represent displacement as a function of

time for emitted electrons. The shape of the orbits of emitted
electrons may or may not be given by the spots. Of course the electric
field may still be studied through its effects on the electron beam,
but the spot position cannot be interpreted as the displacement of

emitted electrons as a function of transit time.



APPENDIX A

The purposes of this appendix are: (1) to show that the
electron beam in the trajectron must be on an axis of symmetry of the
field if its path 1s to be a straight line, and (2) to explain the
observed variation in the beam spot in the trajectron as the anode
voltage is varied. The magnetic field is assumed cylindrically
symmetric, and the paths of electrons as they move from a region of
zero magnetic field to a region of high magnetic field will be dis-
cussed. This was approximately the situation in the trajectron,
since the electron gun was placed outside the solenoid.

The equations of motion can be obtained from the Lagrangian

L = B 22439 . eréa, (a.1)
Just as in Section 2.4. Here, however, ¢ is zero, and Ag is a function

of r and z. The equations of motion are, from (2.45),

v .2
mr - mré + ed O (rag) =0, (A.2)
or
. . OA
mz - erd _ 9 = 0, and (A.3)
oz
4 (mr®d - erA ) = o. (A.4)
at 6

The last equation can be integrated to give

Pg = mr®) - era,, (a.5)

where Pe is a constant of integration.

-197-
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The electrons for which PG = 0 are relatively simple to
study, and a discussion of their motion will indicate the answers

to the two problems posed for this appendix. If PO =0,

. eA
6 = mr"—e ) (Ao6)

and equation (A.2) becomes

mr - + —_ (nAe) =0, or
mr mr Or

2

o e“A

T+ 6 éég = 0. (A.7)
m2 Br
Since B = curl A, the z-component of B is
Z R 5? (rAe) = Br T sy Or ( )
1 £

Ag = L é rB,dr . (A.9)

It can be shown that an axially-symmetric magnetic field in a
region where there is no current flow is determined completely by its
value on the axis of symmetry.l If cylindrical coordinates with the
z-axis along the axis of symmetry are used, the components of the
magnetic field B are

' 3pttt
Bp(r,z) = - Bo , rBo | r530(5) + .
42?  62PP

Bg(r,z) =0 , and (A.10)
2pt b (4)

B, (r,z) = B, - rB , B - ..
22 22.342

where Bo’ a function of z, is the field strength on the axis.

lSpangenberg, Ref. G, p. 396.
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This field can be derived from a vector potential A with the following

components:
Ar =A, =0,
g 5 (L
Ag = Bo _ TB | 7B () Co. . (A.11)
2 }4»-22 6.22.&;
To show this, it is necessary to verify only that the eguation
B=curl A (A.12)

is satisfied.

By differentiating equation (A.11) with respect to r, it can
be seen that dAg/ar will have the same sign as B, near the axis.
Consider a region which includes the axis and in which B, and aAg/ar
are either both positive or both negative. Then by (A.9) Ag has that

0A
same sign. Thus in that region Ae and 5_2 have the same sign, and
T

Agé.._e_ is positive or zero., Thus if Bz is not zero, and if an
r

electron has Pg = O, T will be negative,l and the electron will bend
towards the axis of symmetry. Given time enough the electron will
go through the axis. An electron with Pgq = O outside the region of
magnetic field (Ag = 0) will travel in a straight line (since ¥ = 0)
parallel to or intersecting the axis (since 6 = 0).

Conversely, any electron whose path is parallel to the axis in
the region of no magnetic field must have Pe = 0, and so does any

electron which goes through the axis of symmetry at any time.
1 aAe

From (A.9) it follows that Ag =0 only if B =0. If
3% or

—9=0-= _é.(rBZ) .

r dr

Then rBZ is independent of r, or B, is inversely proportional to r.

= 0 and

B, # 0, equation (A.8) becomes Ag = rB,, or

Such a field can not satisfy Laplace's equation. (See Spangenberg,

Ref. G, p. 396.) Therefore Ag %ﬁ@ #0.
or
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Clearly, an electron beam cannot be sent into an axially
symmetric magnetic field parallel to but not on the axis of the field.
If an electron beam is started outside the magnetic field parallel to
but not on the axis of the field, it bends toward the axXxis upon enter-
ing the field and travels a helix-like path which goes through the axis.
There are other possibilities; the electron need not be started parallel
with the axis of the field. However, in a situation where the beam
velocity and the magnetic field must be varied, the only hope for a
straight beam is for a beam sent along the axis of the field.

If the electron paths are close enough to the axis of the
magnetic field, all terms except the first are negligible in each of

the above expansions. Then equation (A.7) becomes

T+ _EE.BOQr = 0. (A.13)
Lm
BO is a function of z, but it can be thought of as a function of time
as the electrons move along the z-axis. This is the equation of a
harmonic oscillator with varying frequency EEQ. The nature of the

solution can be seen from the approximate solution.t

T = c(‘ﬁao-ﬁyl cos ft ?29_ at |,
2m

where ¢ is a constant of integration. The distance from the axis

oscillates between zero and a maximum distance. The maximum distance

is smaller in the region where the magnetic field is greater. The

approximation is only good enough to show qualitatively the nature

of the solution. A numberical solution was carried out for conditions

typical in the trajectron, and it indicated that the maximum distance

1Schiff, Ref. F, p. 179.
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from the axis would be reduced by a factor of about three. This in
agreement with the observed convergence of the beam when the magnetic
field was strong.

Suppose that a beam of electrons parallel with the axis of
the magnetic field enters the region of magnetic field. Each electron
path satisfies equations (A.6) and (A.13). Since (A.13) is homogeneous,
all solutions with %% initially zero are the same except for a constant
factor; the electrons move toward and away from the axis together. With
the approximation that the distance from the axis is small, equation
(A.6) vecomes . eB

6= —= , (A.15)
and thus all electrons are moving around the axis at the same angular
velocity. It follows that the beam cross-section will always have
the same shape it had initially, but the size will vary between zero
and a maximum, and it rotates around the axis of the field.

This phenomenon was observed by varying the voltage on the
electron gun and hence the beam velocity. Of course, the spot size
actually observed did not become zero, because the electrons were not
initially parallel with the axis. The spot was observed to rotate

around a point, to keep its shape approximately circular, and to vary

in size typically over a range of about three to one.



APPENDIX B

This appendix describes the method of obtaining solutions to
several equations for the motion of electrons in a cylindrical diode
by means of the differential analyser. The first is the equation
for the motion of electrons in the magnetron, taking into account
the space charge of the moving electrons but neglecting secular

space charge. It is, from page ’

2
L§+R-l_=11T_, (2.77)
aT R3 R

R=1, B -0 when T = 0. (2.78)
T

The second equation, that for the motion of an electron in the cy-
lindrical diode with no space charge, is, from page s
@R, p. L _ 2, (4.22)
aTe R3 R
with the same initial conditions as above. The third is the equa-
tion for the motion of electrons in a cylindrical magnetron taking

into account the space charge of the moving electrons and assuming a

distribution for secular space charge. This is, from page ,

2
G;R+R-L=P—T—+£

a2 23 R z J Ra(R)aR (2.105)

=«
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with the same initial conditions as above and for the following

functions Q(R):

Ql (R) =k.l’
k
(R) = _2’
- : (2.106)
2.10
Q3 (R) = E% , and
R
k
Q (R) = 2%,
b Rh

The second and third equations are slight modifications of the first.
The solution of the first equation will be described in detail and
then the modifications in the setup and the method for the other cases
will be discussed.

The electronic differential analyzer is an analogue machine
employing voltages as the dependent variables and time as the inde-
pendent variable. It consists of a number of high-gain amplifiers
which, through suitable feedback connections, can be made to perform
the operations of addition and integration of these variables. The
differential analyser is designed to handle voltages up to 100 volts.
The variable R ranges from one to about four. Therefore, it was ap-
propriate to let the machine voltage E equal 25R. The equations

(2.77) and (2.78) in terms of E become

2 b
dE _ 650 gy B 525, % .0 ymenT=0. (B.1)
are E E3 dT

It is convenient to let the machine time equal T.
The circuit diagram for the differential analyser setup is

shown in Figure B.l. Let the voltage at point A in the figure be
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d2E/dT2. Then the voltage -E can be found by integrating twice and
adding the constant of integration. A voltage proportional to bT is
obtained by integrating a constant voltage proportional to b. Two
servo-multipliers are used as dividers to make available four po-
tentiometers with the ratio 20/E. The voltage proportional to bT

is applied to one to obtain the term 625bT/E in equation (B.1l). The
other three are connected in cascade and a constant voltage is applied
to the first in order to obtain the term 25h/E3. The voltage E is
already available, and a voltage equal to the right side of the
equation is formed by adding, in amplifier (l), these three terms.
This voltage appears at point (B). The equation states that this
voltage should equal d2E/dT2, and hence that the voltage at points

A and B should be equal; i.e., that these points should be connected
together in the circuit.

When the machine is ready to start a solution, the condensers
in the integrating circuits are disconnected and discharged, and the
voltages marked initial conditions are disconnected. The solution
is started by simultaneously connecting into the circuit these
condensers and voltages. It is desirable to have the servo-mechanisms
in their initial positions when the solution is started; their being out
of position momentarily as the solution starts may seriously affect the
accuracy of the solution. Therefore, the circuit is arranged so that
the initial voltages applied to the servo-amplifiers are constant
voltages not removed when the machine is ready to start a solution.

Equation (B.l) states that d2E/dT° is zero initially, since

T =0 and E = 25 initially. Thus the voltage at point B should be
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zero initially. It would be if P-1 were set at 25h/2037¥ 43.8 volts,
and all potentiometers on the servomechanisms were perfectly accurate.
In practice, a small voltage appears at point B initially when P-1
is set at 43.8 volts. The solutions can be improved by adjusting P-1
until no voltage appears at point B initially. This can be accomplished
by setting P-2 to zero, starting a solution, and adjusting P-1 to give
the minimum initial slope in dE/dT, which was connected to a recorder.
The voltages E and E were recorded. In addition a voltage
proportional to 6 was recorded. Equation (2.79) of Chapter II gives
T
o = [ (1-2)ar . (2.79)
0 R2

In terms of E this becomes

T
206 = [ (20 - 1220\ gr. (B.2)
0 E°

The voltage 25“/20E2 is available as the output of amplifier (5) in
Figure B.1. The circuit used to calculate (B.2) is shown in Figure
B.2 A resistor was substituted for the condenser on amplifier (8),
making it an adder, and the potentiometer P-3 was adjusted to make
the output zero initially. Then the condenser was replaced.

Typical solutions taken from the differential analyser are
shown in Figures 2.5 and 2.6 on pages 41 and k2.

When g% is substituted for R, equation (4.22) becomes

5 4
B _ 62 _ .25 (8.3)
B3

=

are E
Solutions for this equation can be obtained by eliminating the integrator

(7) in Figure B.l, and replacing its output by a voltage (from the
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initial conditions) equal to 22X .

20

The differential analyser setup for equation (2.95) in each
case is only a slight modification of the setup shown in Figure B.l.

Consider first the case in which Q(R) = Ql(R) = kl.

R
z [ mm:= Lo L (B.4)

and equation (2.95) becomes

2 T - Ik
R 21 (1.1 k. ) R+ = - (B.5)
d_? R 21 133.
If the machine voltage E is equal to 25R, this becomes
625bT - 3l2.5kl

. 4
a%E _ -<1-.l.kl>y:+§§_ . (B.6)
aT? E 2 E3

The necessary modification of the setup in Figure B.l is quite obvious.
The voltages E-25 and 25 applied to the adder, amplifier (1), must be

reduced by using potentiometers, in the ratio 1- %kl
voltage -3.125k1 must be added to the output l25bT/20 of the integrator

, and a constant

(7) before it is applied to the potentiometer at point (C) in Figure
B.1. The best results are achieved by adjusting this latter voltage to
return deE/de to zero rather than by setting it to -3.125kl.
In the case Q(R) = QQ(R) = k2/R,
ko

1 R
R [ QR =k, - 2
1 R

) (B.7)

and equation (2.95) becomes
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- -R+ L 4k, . (B.8)

With the machine voltage equal to 25R, this becomes

2 625bT - 625k L
d°E 2 25

= -BE + Z£_ 4 o5k . B.
12 - =3 ok, (B.9)

The modification of the setup in Figure B.l required for this case
consists of adding a constant voltage -25k2 to the input of the adder
amplifier (1), and adding a voltage -6.25k2 to the output 6.25bT of

the integrator (7) and applying the sum to the potentiometer at point

(e).

For the case Q(R) = Q3(R) = Ei ,
R3
R
I m@a=- 8- 8, (B.10)
R 1 R R2
and equation (2.95) becomes
2 bT + k k
R _ 227" psLl.8 (B.11)
aTe R R3S R2

With the machine voltage E equal to 25R, this becomes

5 6250T + €25k, ot 2573
2

> = . -E + _E_J, . (B.12)

E

For this case the modification of the setup shown in Figure B.l
consists of connecting the voltage 251*'/20E2 obtained at point (D) to
a potentiometer to reduce it in the ratio hk3/5, and then adding the

result, 253k3/E2, into the adding amplifier (1). Again a constant
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voltage 6.25k_ must be added to the output 6.25bT of the integrator

3
(7) and the sum applied to the potentiometer at point (D) on the

circuit diagram.

For the last case, Q(R) = Qh(R) = E% ’
f; {R RQ(R)dR=§ -13;‘3' ) (B.13)
and equation (2.95) becomes
fﬁzm-R+<l-lk>l (B.14)
4T R e 7h) B3 .

The substitution E = 25R in this equation results in

(B.15)

QEE 625bT + 312.5ky . <l 1, > ock .

dT2 E 2 "k E§_
The simplest way of achievipg a modification of the setup shown in
Figure B.l to solve this equation is to add a constant voltage 3’125kh
to the output 6.25bT of the integrator (7), apply the sum to the po-
tentiometer at point (€), and reduce the potentiometer P-1 in the ratio
1- %kh' This last step is best accomplished by readjusting P-1 to make
dgE/dTE zero initially with the voltage 3.125k) added at point (C).

A total of 215 solutions of equation (2.105) and 2.106) for
various cases were run on the differential analyser. It would not be
practical to include them.. They are all very similar to those shown
in Figures 2.5 and 2.6 on pages 4o and 41. The most important data from

the solutions are summarized in Table B. The first two columns in the
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table give the values of the parameters b and k. The other columns
give data taken from the solutions. The data included are the solution
type, the maximum radius of the orbit, and the transit time. It is
possible to calculate from these data the potential at the Hull radius,
the potential gradient at the Hull radius, the total space charge, and
the acceleration of an electron at the Hull radius. The potential is
obtained from equation (2.58) by noting that ¥ = O at the Hull radius.
B(r) = ™, oy

2
S > . (2.58)

'RJﬂ“

The potential gradient at the Hull radius can be calculated from

equation (2.102),

rF = — 4 = jr rs(r)dr. (2.102)

The total space charge follows from (2.102), and the acceleration at the

Hull redius from the differential equation (2.105).
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APPENDIX C

This appendix describes the calculation of y-displacement as
a function of time for beam electrons in an ideal planar magnetron with
the B, Bl’ and B2 types of space charge, and neglecting secular space
charge.

Consider first the case for which the solution which occurs
is the Bo, or single-stream, solution. Then the potential field is,
from Chapter II,

A (2.25)

The equations of motion for beam electrons can also be taken from

Chapter II, mx + eBy = 0, and (2.68)
my - eBx + e§@.= 0. (2.60)
y

Again the z motion can be disregarded: the z-velocity is constant.

From equation (2.8) Py

X =—- 20y (c.1)

vhere Px is the canonical x-momentum of the beam electron. This

equation can be used to eliminate % from (2.6b):

ny - eB(EK - 2wry) - 3 - 0, or
m dy
(c.2)

y= & a . m»Lgy + 2017
m dy m
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Substituting (2.25) in (C.2) to eliminate @ ylelds

. eerPx
y = : (c.3)
m
This equation can be integrated immediately to give
wp Py .
= 2 4 yt+y. (Cc.4)
m [0} (o]

Where y, and &b are the initial y-displacement and y-velocity of the
beam electron. This is the y-displacement as a function of time valid
for y s Yy

The solution for the double-stream case is not nearly so simple.
The electric potential cannot even be expressed explicitly as a function
of y. The following equations from Chapter II describe the potential

field quantitatively:

$= = (b2 + 5°) (2.17)
y = %% (20t - sin 2opt), and (2.34)
§ =2 (1 - cos aut) , (2.35)

where t is the transit time of an emitted electron. These equations
can be used to describe the potential parametrically. It is con-
venient to change the notation t to p, since t will be used to denote

the transit time of a beam electron. Then eliminating y from (2.17)

ield ; 2 2
e g = 2L - . LW () cos awpp) (c.5)
e 2en?
y = ji.(2wLp - sin 2wpp) . (c.6)

2n
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The equations of motion are the same as in the previous

case except for the potential, and equation (C.2) can be used:

y=2 8ol B (c.2)

Multiplying both sides by y and integrating yields

=€ 2wy P 2 v.2
=200 - Bl) + Sy - vo) - 2eP(P - 5D ¢ Yo
(c.7)
Now (C.5) can be used to eliminate § and (C.6) to eliminate y.
2 2yl
y© . OcW 2 ef(yo) 2w P W
T = a2 (1 - cos 20yp)° - 0 + eﬂ;x (2wpp - sin 2wpp) -
2 72
w1 Px¥o 2 Yo
- — + 20pyo + — , OT
m 2
2
2 _ (dy
= (%)
242
- X —>—|(1 - cos QwLp) + a(2w p - sin 2uxp) + k (c.8)
L O p
vwhere 2nPy
a = — , and
2
| .2 2 hoop Py 2ef(y,)
kK = —-§a§ Yo + Moop y02 - ° . AL (c.9)
Wy, m m

Then the transit time of a beam electron is
dy

y
jﬂ ‘Vél - cos QwLp) + a(2w;p - sin 2opp) + k. (C.10)

Equation (C.6) can be used to eliminate y:
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(1 - cos 2wrp) ap

by
= 2
t j; (1 - cos 2wpp) + a(2wpp - sin 2wrp) + k ,(C.11)

where Po corresponds to the starting position Yo and p corresponds
to y in (C.6).
Equation (C.11) cannot be evaluated in terms of tabulated
functions, but is is in fairly convenient form for numerical computation.
The integral was evaluated with the aid of the electronic
differential analyser; answers could be obtained quickly and with
sufficient accuracy in that way.
In the differential analyser setup, machine time was made
to correspond to the parameter awLp. The function £ = (1l-cos awLp)

was generated as the solution of the differential equation

| (]
o

+ b ®r = ke 2 (c.12)

\bl

dp

with the initial conditions

£f =3 - 0 when p = 0. (c.13)

dp

The function 2o p - sin 2w p was obtained as 2wp [T dp. These two
functions then were conbined to form the integrand by means of adding
circuits and servo-multipliers. (Note the use of a servo- multiplier
for taking square root.) The integral was obtained by applying the
integrand to an integrating circuit. The circuit for the differential
analyser setup is shown in Figure C.l.

One difficulty which arises in setting up this problem
is that the integrand becomes infinite at a point p near zero. The

integration should be carried out from this point to as large a value
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of p as one expects to encounter. (The singularity occurs when the
beam electron has no radial velocity initially: the integrand becomes
infinite whenever r becomes zero. If the beam electron has an initial
radial velocity, its motion can be found from the same data as a part
of the integral.) The integral was evaluated for the beam electron's
motion to w;p = 3. The problem was simplified by integrating from
the upper limit towards the singularity; this was accomplished by
letting the machine time equal (6n - 2aip). The point in the approach
to the singularity at which the servo-mechanisms became inoperative
showed clearly as a discontinuity in the derivative of the integrand.
The integral, the integrand, the expression under the square root
sign, and W
yo= (20p - sin 2opp) (c.6)
were all recorded. The value of the integral from the point where the
servo-multiplier becomes inoperative to the point of discontinuity

in the integrand was found approximately by assuming that the expression
under the square root sign to be linear in the interval in question. It

is zero at the discontinuity. Then the integral is approximately

p 2p
1 4 Pl 1
AT = [+ 2 = 2|== —— (C.14)
o +kp k ./ kp;

where A I is the contribution to the integral of this interval, Pl is t
the length of the interval, and k is a constant. Since l/vfiil is the
value of the integrand where the servo becomes inoperative, A I can be
obtained simply as twice the product of the value of the integrand where
the servo becomes inoperative and the length of the interval between

there and the point where the integrand becomes infinite. The point
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at which the integrand becomes infinite shows on the differential
analyser tapes as the point where the expression under the radical
becomes zero.

Examples of the differential analyser solutions and the
calculation of the integral in the interval near the discontinuity
in the integrand are shown in Figure C.2. These data, like equation
(C.4), are valid only for y = Yy

In Figure 4.4, the beam initial conditions are described in
terms of the parameters of the helical path the electron would follow
with no electric field. The convenient parameters are h, the distance
from the cathode to the axis of the helis; s, the radius of the helix;
and & » the initial angular position of the electron with respect to
the axis of the helix. In these terms, the coordinates of an electron
can be written X = -s sin (3+-2th)

(c.15)
Yy = h+s cos (84—2th);

and the initial conditions are

5o
n

o - ast cos O )

—-2st sind )

h+s cos ©, and (C.16)

X 2mw1h.

SN
1] n 1

Substituting these expressions in (C.k4) yields

y = zhai?tz - (28 sin 8 )ayt + h + s cos 8, (C.17)

for the single-stream case.

In terms of these constants, equations (C.9) become
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(c.18)
2 2ep(y,)
x = XL hsg - hha - __?_59_ .
oy,
Note that if s <h, k < 0. In fact equation (2.17) shows that
2.2
5 em Sy
Bly) = — (c.19)
and hence >
2Yo
k < - by . (c.20)
W

Beam electrons are generally not at their maximum y-
displacement when they reach the edge of the space charge cloud, yh.
If the y-displacement curve is continued to its maximum displacement
(turning point), then the y-displacement for all times can be found
simply: the electron returns to the cathode on the mirror image of its
outward path and the y-displacement as a function of time for the
.return path is the mirror image of the first portion of the curve.

The y-displacement as a function of time for the remainder
of the orbit can be found from the equation of motion (C.2)

e 2.2 e d 2‘”I,Ix
+ )4(|) = + —=a C-2
J L Y m dy m ( )

From equation (2.40) of Chapter II,

L - 2oy (2.10)

at y = Yy But the potential gradient is constant because there is no

space charge. Then equation (C.2) becomes

y + %Ley = %Lz(yh + Q:;L ) . (c.21)

The solution of this linear differential equation is
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Py

y=C cos(ath +N) +yp + (c.22)

vhere C and A\ are constants of integration. The maximum displace-

ment is Py
Yp = C+uy, + , (c.23)
h 2mwy,
Py
C = ym -Yn - (C.21+)

The maximum displacement y, can be calculated from the
energy integral, as was done for the cylindrical case in Sections
4.4 and 5.4. The Hull displacement Y, is known, and P, can be eval-
vated from the initial conditions of.the electrons. Then if A can be
determined, this portion of the curve can be calculated. Changing A
simply translates the curve along the time axis, so choosing A amounts
to simply starting this portion of the curve where the previous portion
ended.

The data which are required are the graphs of y as a func-
tion of t. These are given parametrically by the differential analyser
tapes, since both y and t, which is the integral, were recorded as
functions of p. The data were plotted and appear in Figures 5.5 and
C.3 through C.6 for values of ¥ and beam initial conditions typical
of conditions met in the trajectron. The calculated y-displacement as
a function of time for the B, solution (Equation C.k4)), the Bl solution,
and the B, solution are plotted together. The curves have been extended

to their maxima by the method described above.
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APPENDIX D

In this appendix, the effect of the presence of secular
space charge on the motion of beam electrons is discussed. First
the change in the effective potential is considered. Then the mo-
tion of beam electrons in a planar magnetron with secular space
charge is derived with the effective potential approximated by a
parabola. For both problems the secular space charge is assumed to
have a distribution proportional to that of the BO solution.

Because Poisson's equation is linear, the potential in the
magnetron can be thought of as the sum of two components, one as-
sociated with the secular space charge Pg, and the other associated
with the cathode accessible space charge Pe These two components
of the potential are uniquely defined if it is required that each
be zero and have zero gradient at the cathode. They can be found by

integrating Poisson's equation. Let Ps be the fraction %ks of the

space charge of the B° solution.l Then the potential associated with
. 2.2
p_ is . 2
s 1, mbpa 2 1
p(r) = s — R°(1 2 (D.1)

i.e., the fraction %ks of the potential of the B, solution. (See

equation [2.69] .)

lThe notation %k5 is used in order to make this notation correspond to
that used in Chapter II.
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The differential equation for the motion of the cathode
accessible electrons for this case was discussed in Chapter II.
It was found to have the same form, after @& simple change of varia-

bles, as the equation for the case of no secular space charge; i.e.,

2
d32+ R-4L =BT (2.109)
aT R3S R
-3/2 -1/2
where b' = b(1 - %k5) 3/ and T' = T(1 - %ks) / . Compare the

solution taking into account secular space charge with the solution of
the same type and same Hull radius neglecting secular space charge.
Because of the change in scale in time in the equation, the r-velocity
'is reduced by a factor (1 - %-ks)l/2 if there is secular space charge.

In order to have the parameter b' for the case with secular space charge
equal the b without, the current, and hence the current density, would

2
have to be reduced by a factor (1 - %k5)3/

. This is the only change
in the space charge distribution, and hence p, is equal to the space
charge density for the corresponding solution with no secular space
charge and the same Hull radius r,, reduced by a factor (1 - lks). The
same is true of the associated component ¢c of the potential.2 If the

potential for the solution with no secular space charge is denoted by

Bo(x), then Bo(r) = (1 - 2 Bo(x), (D.2)

and the potential with secular space charge is,

my; %o
B(x) = fo + 85 = (1 - B () + L——F°(1 - )%, (0.3)

The effective potential is defined as



2ep(r)
- a0 )", (5.2)

Substituting from equation (D.3), this becomes

_l'.k)w+lk

- e 1,2 2
V) = (- 3k —25+ IR (- ) -G - )
(D.4)
=(1-£k)[?22%(.1‘2.l-R2(1-_1_2} .
25" | my e Re

The expression in the brackets is the effective potential for the
solution with the same Hull radius but with no secular space charge.
Thus the presence of secular space cbarge with a distribution equal
to %ks times the space charge of the Bo solution simply reduces the
effective potential by the fraction (1 - %k5)- (This statement is
true also for the planar case.)

The equations for the displacement of beam electrons in a
pPlanar magnetron can be made to come out in closed form if the effec-
tive potential is approximated by a parabola. This facilitates greatly
the calculations required for a plot of "calculated beam spots". The
effective potential for the Bl solution can be fitted quite well by a
parabola made to meet the effective potential curve at the cathode, at
the Hull displacement, which is W, and half way between these points.

It turns out that the two curves meet again at approximately 2W.

The convenient definition of y(y) for the planar case is

V(y) = 2e¢(y,) SV (0.5)
mu)L2W‘£ W2
This leads to ¥(y) = &§w2 (D.6)
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in the space charge region for emitted electrons. Then

¥(0) = ¥(W) =0 , (D.7)

and from equations (2.34), (2.35), and (D.6), it follows that the

maximum of ¥ occurs at W/2 and

L
\V(g')= ;’2 . (D.8)

Thus the approximate effective potential for the case of no secular
space charge is the parabola

Wy = -9 (D.9)

W2ﬂ2

If there is secular space charge with a density %ks times that of the

Bo solution, this becomes

W -
w(y) = (1 - %E)%l)_ ) (D.10)

From equation (D.5), the potential is

2ef(y) = 2,2 2we y(y) (D.11)
= ye + y). .
- hopTyE + o
Then the potential gradient is
edp _ o, Py + l.mL2W2 a_ y(y) . (D.12)
m dy L 2 dy

From Chapter II, the necessary equations for the motion of beam

electrons are

o

my - eBx - edd - 0, and (2.6b)
dy
mx + eBy = Px , or
P

x=%- 2wy . (2.8)
m
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When (D.10) and (D.12) are used to eliminate %@-, and (2.8) to
N

eliminate x from (2.6b), it becomes

. 207Py 2 BWere
e I e S

y =0 or
m 577 42 72 ?
Y + 2%y =22, where (D.13)
—
(" ) , and
x 2%
(D.14)
W 1Py
Ho= 5+
2 1
1 -
Soopm( §k5)
The sol tion of this linear differential equation is
y =Cpcos At +C,sinht +p (D.15)

where Cl and 02 are constants of integration. The values of Cy

and C2 can be found from the initial conditions of the beam electron,

and
A

the x-displacement can be found by substituting (D.15) in (2.8),,

and integrating.

2wrC
sin At + ——i—g(l - cos At)+ 2wput
(D.17)
Figure 5.7 was plotted from calculations based on equations (D.lh),

(p.15), (D.16), and (D.17).



APPENDIX E

The purpose of this appendix is to include data for the magne-
tron case to supplement that presénted in Chapter V,

The series of Figures E.l, E.2, E.3, and E.4 present typical
data with ¢a/32 ranging from above cutoff to well below cutoff.

Figure E.5 presents data in the region of anode voltage in
which inflection points were observed in curves of anode current as a
function of anode voltage. These data are similar to that presented
in Figure 5.18., The relationship between the anode current--anode
voltage curve and the data is illustrated in Figure E.6.

In Figure E.7 a series of photographs in which the beam voltage
was fixed and the anode voltage was varied are shown. There is only one
spot in each photograph. It corresponds to a beam potential of 810
volts; at this potential the radial deflection of the spot is near its
maximum, The spot for which the anode potential was 850 volts has an
odd, loop-like configuration which is suggestive of oscillation. This
phenomenon was not observed to ocecur consistently. (See also Figure

5.15.)
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a

¢a““50\’~, I,4°335ma, 1 =3A
$aeam = 1000, 1480, 1980, 3520 V.

p
-4

qsu:uzsv.,z = 9ma., I_= 3A

a m
$geam = 400, 610, 910, 1380, 2400, 4020 V.

FIG. E.3
TRAJECTRON DATA BELOW CUTOFF
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#’a = 870 V., Ia =22ma,I,= 3 A

‘l’ssm =400, 710, 1180, 1980,4020 V.

¢, =655V, 1o = 0.4ma, In=35A
¢aem" 400, 810, 1580, 3220 V.

FiG. E.4
TRAJECTRON DATA BELOW CUTOFF
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APPENDIX F

The purposes of this appendix are (1) to show more rigorously
that the trajectron data indicate the presence of space charge outside
the Hull redius, and (2) to give some quantitative relations between the
amount of space charge outside the Hull radius and the increase in anode
potential resulting from the presence of this space charge.

The first step is to derive inequalities concerning the elec-
tric field from the equations of motion of beam electrons. Equation

(4.27) applies in this case,

. s 2 2
2 . Jfo . 2eg(r,z) _ 2ep(rorZo) . e [%9 . } .
%282 lDL282 mDLZaQ II'KDL232 %282 nre
2 2 2 o2
To Pg z° . 2o
+ —=5|—stoL -—s%— - (&.27)
mL2a2 [:mro?' ] mLQa
2 e 2 a2 2 2 2
2e¢(r,z) e¢(r0,zo) Ty + Zc=2Z¢ T, Pe .
—5.2 = - - @r,
oy a2 oy a2 o2 oPa? aglal |megl
2 |P 2
T 2)
I o (F.1)

The beam was certainly decelerated in the z-direction at least as by

the copper mesh at the fluorescent screen as it was accelerated upon

entering the diode. Thus 32 . 502 must be negative. Hence

2

2ef(r,z) < 2ef(ryr20) r02 Fo . 2 | Fo 2

o 2a2 pv- ity Dovney- i1 I3t oo
L oy, o, @

-242-



243

or
2 2
olen) | wgr) RN TR
2.2 2.2 T2 22 2 g2 25202 2
mwy ~a moy,-a mwa T, my, a
Rearranging the terms, this can be put in the following form:
2_2 2.4
2ef(r,2) . 2ef(ro,%0) | ﬁ (1 - _a_E) _ (Pg"-n*wy )( 1 _1,
o, 2a? MLéaa a2 2 w2wr 28’ r 2 2
To a .2
“lEeo) o (r
o
By equation (4.2) of Chapter IV,
P. = mnZ [(a+h)2 - 32] (4.2)
o - ™y .

vhere h and s are parameters of the helical path of the beam electron,
as described in Figure (4.4). Since h is greater than zero and s smaller
than h for all beam electrons,

Pgy < nmLa2 , (F.5)
and hence the factor (PGQ - mezah) is positive. Since r is greater than

r,, the last two terms in (F.}4) are negative. Hence

2ef(r,2) _ 2ef(ro,z0) , x? (| _ s
) + (1-%5). (F.6)
L. 2a® lm>L2‘3 o r°

The essence of this inequality is that the potential at the
maximum radius of a beam electron orbit is equal to the kinetic energy
of its tangential motion, which is smaller than it would be if the beam
electron had started at rest from the cathode.

A bound on the potential gradient at the maximum radius of the

beam electron orbit can be found from the equations of motion:

ny - or &° - e Qﬂ&gﬁﬂi. +eBré = 0 (2.46a)
r
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The angular velocity © can be eliminated by using the angular momentum

integral:
De 2 )
mr-o- eB; P9 , or
5 . . (2.148)
mro(e - o)< = Py
Then equation (2.46a) becomes
2
e a¢ (13 Pg 2
— ——— - r - a———————— + “)L r . (F'7)
m Jr meszp

By (F.6), Py < me282, and at the maximum radius of the beam electron
orbit, r< 0. Hence
%gg < ng (r -%) . (F.8)
r :

This equation states essentially that the magnetic force is greater
than the electric force at the turning point.

Now suppose that a beam electron has its turning point at a
a radius at least as great as the Hull radius, and suppose there is no
space charge outside the Hull radius. Then, given the potential and
gradient at the turning point, the anode potential could be calculated.
Equations (F.6) and (F.8) give upper bounds on the potential and the
gradient, and from them en upper bound on the anode potential can be found.

Equation (F.6) states that the potential at the maximum radius
of the beam electron orbit is less than the potential of the BO solution
plus the potential at the point where the beam entered. (This last
term is for all practical Purposes negligible.) Equation (F.8) states
that the gradient at the turning point is less than the gradient of
the B, solution., It follows that if there is no space charge at a radius

greater than the maximum radius Rq of a beam electron's orbit, then the
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potential at the anode is less than the potential which would occur if
there were B0 type space charge in the magnetron with the Hull radius
Ry equal to Rp. Anode potential as a function of Hull radius is
plotted in Figure 2.10. For example, suppose an electron has its turn-
ing point at RT = 2. Then if there is no space charge where R > 2, the
anode potential must be less than .06732. (At Rh = 2 on the Bo curve
in Figure 2.10, @, = .067B°.) If the anode potential is observed to

be greater than .06732, there must be space charge at radius R >2,

The application of this principle to the trajectron data to
establish the presence of secular space charge, is now straightforward,
The Hull radius is estimated on the basis of Table 5.1 and a data photo-
graph. Judging from Table 5.1, some beam electron has its maximum
radius at or slightly beyond the Hull radius. Hence an upper bound for
the anode potential can be obtained if it is assumed that there is no
space charge outside the Hull radius. The anode potential is observed
to be greater than this, and hence it can be concluded that there is
space charge outside the Hull radius., This is essentially what was
done in Chapter V on page 161.

Next, bounds for the amount of space charge outside the Hull
radius will be established. The difference between the potential which
occurs and the potential which would occur if there were no space charge
outside the Hull radius can be considered as a potentiel; denote it by
¢q(r). This potential ¢q(r) must be zero and have zero gradient at
r = ry. At the anode it has the value which is the difference between
observed anode potential and the potential which would occur with no
space charge outside the Hull radius. If the space~-charge distribution

is denoted by ps(r), ¢q(r) satisfies Poisson's equation
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ap (r)
14 qQ. _ Ps
rar Tt oC - (F.9)
€
0
This can be integrated, and
1 1 T
fo(x) = - = f = r' p(r')dr'dr (F .10)
Th r‘=rh
The integral
r'=r
f r' pgr')dr' = qé;') (F.11)
T
risry

where q(r) is the amount of space charge between the radius rh and the

radius r. Substituting this in (F.10), and considering only the poten-

tial at the anode, (F.10) becomes

Bory) = 5= j‘ alr) 4y, (F.12)

2neo

The total space charge outside the Hull radius is a(ry), and the ratio

of increase in anode potential to total space charge is

Tg
¢q(r ) 1 ( )d
'EI?ET - - I gqrrar (F.13)

Tn
The ratio q(r)/q(ra) is monotone inereasing and has maximum
value unity. It describes the manner in which the space charge is dis-
tributed., If all the space charge is concentrated at the Hull radius,
a(r)/q(r,) is identically unity, end the integral (F.13) takes on its

maximum velue. For that case, equation (F.13) yields

¢q(ra) N lni&l . (F.1k)

qirai T 2ne€ Ty
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If the space charge density is constant, then by (F.11)

a(r) ~ - rh2 , (F.15)
and hence
2 2
or) _ I "Th (F.16)
a(r,) re? - 1,2
Then equation (F.13) yields
AU U PR, . I
qlra$ 2neo 2 (rag _ rha) N .

Equation (F.l4) is certainly an upper bound on the ratio of
inc ease in anode voltage to space charge outside the Hull radius. The
space-charge density probably decreases as the radius is increased; if
so, equation (F.17) is a lower bound on the ratio. The space charge
distribution of the B, solution will lie between these two limits., If
ry is taken as 1.5a and r, as 3.65a, then equation (F,14) gives O.89/2:reo

2

equation (F.17) glives O.51/2neo, and the B, solution gives O.58/2neo as

values for this ratio.
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LIST OF SYMBOLS USED IN THE TEXT

a cathode radius

A vector potential of the magnetic field

Ax, Ay’ etc. components of vector potential

b constant proportional to current (p. Lo)

B magnetic flux density

B,, B, ete. types of solutions of magnetron equations (p. 5)

e charge of an electron

E energy of an electron

F electric field strength

h distance from cathode to axis of helical path
of a beam electron (p. 105)

I current per unit length in a cylindrical
magnetron

I, anode current in the trajectron

magnet solencid current

g

current density

kl’ ko, ete. constants in hypothetical secular space charge
distributions (p. 61)

4 length of trajectron diode

In natural logarithm

m mass of an electron

P, canonical x-momentum (p. 20)

Py canonical angular momentum (p. 33)

Q(R) ?ormzlﬁzed secular space charge distribution
p. 61
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LIST OF SYMBOLS USED IN THE TEXT (cont.)

radial distance from axis of cathode
anode radius

Hull radius; i.e., maximum radius reached by
an electron initially at rest on the cathode

(p. 26)

initial radial displacement

initial radial velocity

normalized radial distance

ratio of anode radius to cathode radius
normalized Hull radius

normalized radius of outside edge of spot
at its maximum deflection (p. 159)

normalixed radius of inside edge of spot
at its maximum deflection (p. 159)

radius of helical path of a beam electron
(p. 105)

time
normalized time

distance between successive zeros in velocity
in a planar magnetron (p. 26)

rectangular coordinates (p. 18)

velocity components in the rectangular system
initial position coordinates

initial velocity components

Hull displacement in a planar magnetron;
i.e., maximum displacement of an electron

initially at rest on the cathode (p. 22)

distance between cathode and anode
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LIST OF SYMBOLS USED IN THE TEXT (cont.)

a time constant defined on page 126
7 time constant defined on page 104
S initial angular position of a beam elec-

tron in its helical path (p. 105)

€ dielectric constant of free space

g, #(r), d(r,z), B(y) electric potential

v(r) effective potential for the cylindrical
magnetron (p. 128 )

p space charge density

ps secular space charge density

2 angular coordinate

6 angular velocity

90 initial angular displacement

éo initial angular velocity

wp = iﬁ Larmor angular velocity

The units used in all equations are MKS unless otherwise noted. When
numerical values of B or ¢a/B2 are given, B is measured in gauss.

Since R = r/a, any function of r defines a function of R and vice
versa. The same notation is used for both functions: for example,
#(r) = §(R) is the potential in a cylindrical magnetron at radius
r = aR.
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