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In order to obtain the polarization dependence of optical transitions in GaAs/AlGaAs quantum 
dot structures, a three-dimensional SchrSdinger equation describing the heavy hole-light hole 
mixing via a k * p formalism is solved. The polarization dependence is investigated as a function 
of the symmetry of the quantum dot, indicating that the polarization dependence is very 
sensitive to the symmetry of the confining structure. We also examine how the optical properties 
of the quantum dot evolve towards those of a quantum wire by allowing one axis of the dot to 
increase. 

Recently there has been an increasing interest in sub- 
two-dimensional structures such as quantum dots and 
quantum wires. 1-4 The motivation for the interest is due to 
the greater degree of tailoring of the electronic spectra that 
is possible in such structures. In particular the electronic 
density of states can be greatly altered in such structures. 
The altered density of states can be exploited for both elec- 
tronic and optoelectronic devices. Additionally, the nature 
of the valence band states can be dramatically altered to 
provide tailorable polarization dependent effects. Quantum 
dot structures can be fabricated in semiconductor hetero- 
structure technology by a combination of lithography, 
etching, and epitaxial techniques. They can also be pro- 
duced in certain glass manufacturing processes where 
quantum dots as small as - 50 A diam can be imbedded in 
the glass. It has also been shown that in quantum wires 
which have interfacial disorder, the electron and hole 
states are localized, and for low lying carrier states, the 
quantum wire appears to be a collection of quantum dots.4 
It is important to develop techniques which can identify 
the symmetry of the quantum dot structures and also allow 
design of quantum dots with tailorable polarization selec- 
tivity. 

In quantum well and quantum wire structures, near 
band edge polarization dependence is known to have a 
strong influence of confinement and dimensionality.5-8 This 
polarization dependence is useful for designing special de- 
vices. In quantum dot structures, there is little understand- 
ing of the optical properties, particularly the polarization 
dependence. Such studies are important for both future 
optical devices as well as for the purpose of optically char- 
acterizing quantum dots. To address this problem one 
needs to solve a three-dimensional Schrodinger equation 
which includes the heavy hole (HH)-light hole (LH) in- 
teractions in the valence band description. In this letter we 
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report results based on such a solution. Our results show a 
strong sensitivity of polarization dependence on the sym- 
metry of the quantum dot. 

The conduction band states in the GaAs/AlGaAs sys- 
tem are well described by an isotropic effective mass. The 
states can thus be described by a single band Schrijdinger 
equation. The valence band states, however, are not so 
simple due to the very strong coupling between the HH 
and LH states. This coupling leads to strongly nonpara- 
bolic and anisotropic bands and in the case of quantum 
well and quantum wire structures leads to bands with neg- 
ative hole mass. To solve for the valence band spectra in 
quantum dots one therefore needs to solve a Schrijdinger 
equation which is capable of including the HH-LH cou- 
pling in the three-dimensional confined structures. The 
Kohn-Luttinger formalism9 has been widely used to de- 
scribe valence band states. This approach describes the 
hole masses and density of states quite accurately and can 
be conveniently applied to the three-dimensional confined 
structures where periodic boundary condition is not avail- 
able. 

In the three-dimensional confined heterostructures, the 
Kohn-Luttinger formalism yields the 4-band Schrodinger 
equation (describing the HH and LH bands), 

Hhh c b 0 - -g;(x,Y,d - '&,YJ> - 

c* eh 0 -b ~~,(x,Y,z) &$&YJ) 
b* 0 % C g;b,Y,d =En g&Y,d ’ 
0 -b* c* Hhh _ .&X,Y,Z> . .g:(x,Y,d I 

(1) 

where gz(x,y,z) are the envelope functions of the nth eigen- 
states and the basis u, (Y= 1,2,3,4) are those of the angular 
momentum J, J,: 13/2,3/2), I3/2, - l/2), 13/2,1/2), and 
I3/2, - 3/2), respectively. Here, I3/2, f 3/2) and /3/2, 
f l/2) are the HH and LH basis, respectively. The ele- 
ments in the Hamiltonian are given by 
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Ai2 
&h== 2m --1.(k2,+~)(Yl-Y2)+~(Yl+2Y2)l+Y(x,Y,z), 
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(2) 

VW 
b=2m -(kx-jk,)y3k, 

0 

where yl,yDys are the Kohn Luttinger parameters and 
Y(x,y,z) is the confining potential arising from band dis- 
continuity in the structure. Since the periodic boundary 
condition is not available, then k,,k,,k= are replaced by the 
operator k,= -i(a/Jx), etc. The 4X4 differential equa- 
tion is written as a ~xN,xN,xN, matrix equation by 
discretizing the equation as a difference equation. The 
three-dimensional space is discretized by a N,,N,,,N, mesh. 
The eigenvalue problem is then solved by standard matrix 
diagonalizing subroutines.” The convergence of the results 
are checked by increasing the volume of the barrier region 
included in the calculation and by reducing the mesh size. 
In this study, the maximum dimension of the matrix used 
for calculation is 24024X24024 and the error of eigenen- 
ergy is estimated under 2 meV. 

For the finite size structure, the eigenspectra is discrete 
and we calculate the density of states by including a simple 
Gaussian broadening function. A linewidth of 2 meV is 
used for our results presented here. Once the electron and 
hole envelope functions gC,(x,y,z),gE(x,y,z) are known, the 
polarization dependence is obtained by 

g;W,zk;(x,y,zW dy ddu,l PI u,J, 

(3) 

where ( uCl p 1 u,) is the momentum matrix element along 
the polarization direction between the conduction and va- 
lence band basis, and is given by Lawaetz.” Optical tran- 
sition strength for polarization E is proportional to the 
square Of I E * Pijl . 

Here we show results for five structures of GaAs/ 
Alo.aGac7As with dimensions: (t) 70 A X 70 A X 70 A; (b ) 
70 AX70 AX200 A; (c) 70 Ax70 AX500 A; (d) 70 
AX70 AX 1000 A, and (e) 70 AX 100 AX200 A. The 
first four structures maintain x,y symmetry and allow us to 
go from a cubic dot towards a quantum wire. The fifth 
structure is asymmetric in all axes. 

In Fig. 1 we show the conduction band density of 
states. These results are only shown for comparison since 
the conduction band problem with isotropic electron mass 
is rather trivial in the confined structure. In Figs. l(b)- 
l(c), the discrete peaks are exhibited, which are corre- 
sponding to the states (n,,n,,n,)=(l,l,,u)(p=1,2,3 ,... >, 
where nx,n,,,nz are quantum numbers. The density of states 
is quite well behaved and as the quantum dot tends to- 
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FIG. 1. Density of states for electrons in G~.~s/A~,~G~o,,As quantum 
dots of various sizes. A 2 meV Gaussian broadening function is used to 
show the density of states. 

wards a wire structure, the density of states develops a 
band edge singularity expected from quantum wire struc- 
tures. 

In Fig. 2 we show the valence band density of states for 
the same structures. One immediately sees the. contrast 
between the conduction band and valence band density of 
states. In the valence band since there is very strong HH, 
LH mixing resulting in highly anisotropic and nonpara- 
bolic bands, the spacing of the various energy levels does 
not follow the relation, 

(4) 

where L,L,,L, are the dimensions of the confined struc- 
ture, m* is the effective mass. The relation in Eq. (4) is 
what leads to the density of states of Fig. 1. The valence 
band density of states shows a peak away from the band 
edge arising from the energy points where the primarily 
HH and LH states come close to each other. This is due to 
the fact that ]3/2, f 3/2) (or HH) states which have no z 
component are excited in longer structures along z direc- 
tion. This characteristic can be understood by examining 
the wave functions of the eigenstates. The peaks in Fig. 
2(d) come from LH states (at -38 meV), higher LH and 
HH states with strong band mixing <at - 52 meV) and 
HH states (at - 6 1 meV) . These results are consistent with 
the nonparabolic band properties in quantum wires with 
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FIG. 2. The valence band density of states for the GaAs/AlesGae,As 
structures of various sizes. 

infinite length. 12*13 The density of states thus looks almost 
like a three-dimensional density of states. Note that the 
density of states function for the holes tends to saturate 
when the long axis becomes -500 A. For example, the 
density of states for the 70 AX 70 AX 1000 A is simply 
twice that for the 70 A;~70 AX 500 A case. 

The strong HH, LH mixing which reflects itself in the 
valence band density of states is also reflected the polariza- 
tion dependence of optical transitions. These results are 
shown in Fig. 3. In the cubic dot there is no difference 
between the transitions due to x,y,z polarized light transi- 
tion. However, as the L, axis increases, the low lying states 
have a primarily ]3/2, f l/2) (or LH) character ensuring 
a preference for the z polarization (i.e., the long axis) tran- 
sitions. The excited states have a primarily a I3/2, f 3/2) 
(or HH) character for which z-polarization transitions are 
forbidden. By the time the quantum dot long axis ap- 
proaches 1000 A, the optical properties look essentially 
like those of a quantum wire (with the line broadening 
included). 

The case of the 70 h;X 100 AX200 A dot is quite 
interesting and must be contrasted with the dot of similar 
dimensions 70 AX 70 ii X 200 A. In the 70 A X 70 h; X 200 
A case there is no difference between the x and y polariza- 
tion results. However, for the 70 AX 100 AX200 A case 
there is strong anisotropy due to the loss of symmetry in 
the structure. It is quite clear that the polarization depen- 
dence is a very sensitive tool to study the quality of the 
structure fabricated. 

In summary, we have solved the full three-dimensional 
Schriidinger equation including the HH-LH mixing. The 
results are used to study the polarization dependence of the 
optical transitions on the symmetry of the quantum dot 
structure. The polarization dependence is found to be very 
sensitive to the symmetry of the confining structure. In 
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FIG. 3. Polarization dependence of the optical transitions. (a) 70 A~70 
Ax70 A cubic structure;-(b) 70 Ax70 Ax200 8; (c) 70 Ax70 
AX500 A; (d) 70 AX70 AX ICOO A; and (e) 70 AX 100 Ax200 A. 

addition, we examine how the optical properties of the 
quantum dot evolve towards those of a quantum wire by 
allowing one axis of the dot to increase. 
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