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1. Summary and Recommendations

1.1 Introduction

The objective of this project was to develop a computer

simulation program for vehicle impact meeting the following

criteria:

1.

5.

Ability to compute three dimensional structural
response under general crash conditions.

Flexibility for user to specify arbitrary structural
configurations using modeling elements appropriate for
realistic vehicle structures.

Modular structure for input data representing actual
sub-assemblies of the vehicle.

Prediction of appropriate crashworthiness variables
including energy dissipation, impact forces, relative
displacement of components, and acceleration and velocity
time histories of all significant points.

Cost effective numerical integration procedure.

The activities undertaken to accomplish this objective can

be grouped into three major categories. They are:

(1) the theoretical development of modeling elements for

the large plastic deformation of structures.

(i1) the development and programming of the computer simulation.

(iii) an experimental program including validation tests of

the basic theory, dynamic impact tests for validation of
the computer simulation, and a test program to obtain data
for modeling the large deformation of plastic hinges.
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The Final Report describing these activities is organized
into three separate volumes. They are:

Vol. 1: Summary Report, Test Results and Theory

Vol. 2: Plastic Hinge Experiments '

Vol. 3:. User's Guide - University of Michigan Vehicle

Crash Simulation - Version 1

In the next section a summary of the major results of the
project is given followed by our recommendations for future in-
vestigations. Chapter 2 presents a description of the structure
and modeling capabilities of the computer simulation program.
It includes a discussion of the overall simulation procedure and
the numerical integration method employed in the program. Chapter
3-5 contain a discussion of the various validation tests and
comparison of the results with simulation predictions. 1In
addition to demonstrating the predictive ability of the simula-
tion, the discussion also illustrates the range of modeling
capabilities. Results for static tests involving combined
loading and crush of space frames are given in Chapter 3. The
results of the dynamic validation tests conducted on the HSRI
Impact Sled are given in Chapter 4. Chapter 5 presents the
results of a modeling study for a dynamic frame test conducted
by Dynamic Science on a '68 Plymouth Fury. Finally the major
analytical results obtained during the contract are presented

in the Appendices.



1.2 Summary of Results

The major results and conclusions of the project are:

A. Analytical Studies

1.

A new structural theory for dynamic large plastic
deformations of three dimensional frame structures
was derived. The theory is based on the generali-
zation of the concept of a plastic hinge.

As part of this analysis a nonlinear consitutive
theory for generalized plastic hinges was developed
which includes the effect of localized deformation.
The theory requires consitutive data from standard-
ized tests. Such data has been obtained for box
and channel sections over a range of sizes appropriate
for vehicle structures.

An incremental form of the equations of motion for
general rigid bodies has been derived. The formu-
lation permits interaction of the rigid body with
Structural elements at an arbitrary number and
location of points on the body.

The concept of generalized springs used in one
dim=nsional mechanical simulations has been exteanded
to three dimensions. Incremental stiffness matrices

have been derived for a variety of mechanisms

-9-



transmitting vector force and moment couples.
Each mechanism is characterized by a '"load-stroke"
curve which may be arbitrarily specified. These
mechanisms provide modeling elements for non-frame
components of the vehicle. They may also be used
for modeling a variety of connections between
components.
Details of the above analytical studies are given in
Appendices A, B, C. |
B. Simulation Program

1. Based on the above studies a ccmputer program has
been developed satisfying the basic objective of
the project. This program, University of Michigan
Vehicle Crash Simulation (UMVCS-1), is an operating
version which meets the criteria specified above.
A description of the program structure, details of
the numerical integration procedure, and a discussion
of cost effectiveness is given in Chapter 2. A
complete User's Guide including a detailed example
problem is contained in Volume 3.

2. The Executive System of UMVCS-1 has an open-end
design, i.e. additional modeling elements (mechanisms)
can be added without any structural changes in the

simulation program.

-10-



C. Validation Studies

1. Two dynamic validation tests involving symmetric
and unsymmetric configurations were conducted on
the HSRI Impact Sled. The structure was a combination
of a space frame and rigid body mésses similar to
those used in previous scale modeling vehicle impact
tests. The results validated the predictive
capability of the simulation program for such
structures under conditions characteristic of vehicle
impact. Details of the test and comparison with
predicted results are given in Chapter 4.

2. A modeling study of a dynamic frame test conducted
by Dynamic Science on a '68 Plymouth Fury was
carried out. The study did not rigorously demonstrate
the predictive validity of the simulation since
much of the input data and interpretation of the
test conditions were speculative. Nevertheless
sufficiently good agreement was obtained on the
basis of reasonable assumptions to demonstrate
the applicability of the simulation to actual
vehicle structures. Details of the study are given
in Chapter 5.

D. Constitutive Tests to Obtain Hinge Properties

1. Biaxial bending, torsion, and axial tests were

performed on 10 different box and 14 different

channel sections. Section sizes and material propertics

-11-



span the range of interest in vehicle structures.
Test results are presented as force-deformation
(moment-rotation) curves.

2. The constitutive parameters for the plastic hinge
theory were obtained from an analysis of the data
for each test.

3. This set of test parameters was used to extablish
scaling laws for computing the constitutive para-
meters for other box and channel sections. Dimen-
sional analysis was used to obtain the analytical
form of the scaling law. Numerical coefficients
were determined by least square fit of the test
data.

A description of the hinge properties tests and the detailed

experimental results are given in Volume 2.

1.3 Recommendations
A. DProgram Improvements

1. The basic mechanism algorithm needs to be generalized
to include unsymmetric behavior, i.e. cdifferent
characteristic curve in tension and compression, and
unloading hysteresis behavior. Also the present
version of the simulation program does not explicitly
compute the energy dissipation in mechanisms.

2. In the present version all input data must be specified

with respect to the global initial reference frame.

-19-



For convenience in data preparation the program
should be modified to accept data in a modular
reference frame. Also the output processor should
be modified to permit user specification of re-

~ ference frame for output quantities.

3. The versatility of the program could be increased
by the development and incorporation of additional
mechanisms. In particular there is a need for
"friction mechanisms'" for use in regions of
contact, and "hydraulic mechanisms" fof modeling
components where force transmission depends upon
the deformation rates.

4. Tne current version has no provision to account
for fracture. Procedures for incorporating jump
discontinuities in forces should be included in
the program.

5. Data input could be simplified by the addition of
default modes and the internal calculation of some

direction cosine matrices now required as input.

Numerical Integration Studies

As discussed in detail in the next Chapter, UMVCS-1
employs a variable step implicit integration procedure. The
acceleration increment is approximated by backward

differences. Current step size is choosen on the basis

-13-



of the yield function error in the previous step. Our

resuits demonstrate that the procedure is efficient and

sufficiently accurate for the applications of interest.

Nevertheless there is a need for additional numerical

studies to establish the optional integration strategy.

Two suggested studies are:

1. Step size is controlled by user specified upper
and lower bounds on the incremental yield function
error. In general wide bounds increase step size
and efficiency at the sacrifice of accuracy. There
is a need for numerical studies to determine in
detail the accuracy-efficiency tradeoff as a function
of error bounds.

2. The backward difference approximation for the
acceleration increment was choosen because of
previous studies indicating its stability properties
in plasticity applications. There may be, however,
more accurate representations which would retain
the essential stable character. Thus an optimal
integration study requires some comparative studies
petween results obtained with different acceleratica

approximations.

C. Modeling Studies and Additional Research
The simulation program UMVCS-1 is a special purpose

program since the available modeling elements and modular
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input structure are directed specifically towards vehicle
impact. In many respects, however, it provides the user
with the generality associated with more conventional
finite element programs. The flexibility c¢f the program
permits the user to employ the available structural
elements to model specific vehicle sub-assemblies in a
variety of ways appropriate to the particular problem
under consideration. The physical validity of the
results is of course dependent upon the appropriateness
of the assumed model.

Under the present contract we have gained considerable
experience in modeling frame type components of the
vehicle, but only limited experience in employing three
dimensional mechanisms for modeling non-frame components.
Thus we recommend that the simulation be employed in a
‘'variety of modeling and sensitivity studies. 1In parti-
cular these studies should include:

1. Crash configurations involving interaction between
frame ahd non-frame components.

2. Crash configurations (e.g. side impact) for which the
passenger conpartment should be modeled as a deform-
able body.

Vehicle to vehicle impact involving relative motion

(@S]

of the impact point.
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It is expected that such studies would both identify
new mechanisms to be incorporated in the simulaticn and
develop a methodology for determining mechanism parameters

from more detailed studies of specific components.
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2. University of Michigan Vehicle

Crash Simulation

2.1 General Description of Program

The program UMVCS-1 is designed to facilitate tlhie synthesis
of vehicle structures from a variety of modeling concepts. With-
in the context of a single program it allows the creation of
essentially different vehicle models that are appropriate for
a particular crash situation or design purpose. This flexibility
is achieved through a modular concept. The program views the
vehicle as a collection of modules, each reprresenting a
particular physical sub-assembly such as passenger compartment,
stub frame, drive-train, suspension system, etc. The user may
specify each module independently both in modeling concept and
detailed numerical description. Any number of modules may be
employed in a given simulation. Moreover a particular sub-assembly
may be characterized differently in different applications. For
example the passenger compartment may be modeled as a rigid
body in one simulation and a deformable frame in another. The
user need only change the input data for the particular module.
It should be noted that storage requirements, internal designa-
tion of variables, and dimensioning are all handled automatically
within the program. Thus the user may use any number and type of
modules without specifying any additional information or making
any changes in program instructions.

Input to the program is organized in three levels as summarized

in Table 1. Fach module is specified in terms of structural com-

ponents and the connections between components. In the present
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Table 1: Data Input Levels

Vehicle: Position and Orientation
Connections Between Modules

Module: Position and Orientation
Connections Between Components
Within Module

Component: Position and Orientation
Component Parameter Specifications
Nodal Location and Parameter
Specification
Element Orientation and
Parameter Specification

~18~




version of the program components may be either a general deform-
able frame or a rigid body. The frame components are dofined

by a set of nodal points connected by elements which are described
in more detail in the next section. Connections between components
or modules may either be idealized connectcrs like ball and

socket and rigid joints or by any of the deformable elements
employed in components. At each level of input the description

is in terms of user specified alphanumeric names which need only

be unique within a given level. Thus the input format is directed
toward mocdel synthesis. The resulting data set is essentially

a literal physical description of the vehicle.

The program structure which implements the above concepts
consists of two main processors. These are illustrated schematically
in Fig. 1. The Input Processor transforms the input data set
into a binary data file for the Computation Processor. In the
process storage requirements are computed and storage tables
established. An identification index variable is established which
locates all variables required in the Computation Processor. Finally
the Input Processor writes a dummy main program with the correct
dimension statements for exercising the computation pnase. A
complete description of the program and an example of the modular

input is given in Vol. 3.

2.2 Simulation Procedure
As indicated above two component types are available in the

present version of the program. The rigid body component is used

-19-
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to model masses whose finite dimensions and rotational inertia
cannot be neglected. This component permits the mass to interact
with other structural components at any number of nodes arbitrarily
located on the mass.

The deformable frame component may consist of an arbitrary
number of elements connected at node points. Three translational
and three rotational degrees of freedom are associated with
each node. The modeling elements available for use in frame
components are summarized in Table 2.

The basic beam element is based on a structural plasticity
theory which generalizes the concept of a plastic hinge to large
three dimensional rotations. This theory is given in detail in
Appendix A. The theory accounts for local deformation at the
hinge. The remaining elements are three dimensional extensions
of the nonlinear 'resistances'" used in one dimensional crash
simulations. Each mechanism is characterized by a '"force'" curve
(or curves) which may be arbitrarily specified in tabular form
as a function of an appropriate kinematic variable. When the
four elements of this type are used together, they transmit a
force and couple vector characterized by six '"force-deformation"

curves.

For both the beam element and generalized mechanisms we have
in incremental form

roi i

| AR = KE(t,) AQJ} (1)
| ARI | k+1 AD Jk+1

L ~ L~

where i and j denote the node points connected by the element, R is
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Table 2:

Element

Plastic Hinge Beam

Extensional Spring

Shear Connector

Bending Connector

Torsional Spring

Available Modeling Elements

Type

Finite Element

Generalized

Generalized

Generalized

Generalized

Mechanism

Mechanism

Mechanism

Mechanism

Specification

Beam and Hinge
Properties

Tabular Force
Deformation Curve

Two Tabular Force
Deformation Curves

Two Tabular Force
Deformation Curves

Tabular Force
Deformation Curve




the generalized force vector (three force and three couple
components), and Q is the generalized nodal displacementiz. The
element stiffness matrix depends upon the current state. . The
erivation of KE for a beam element may be found in Appendix A.
The results for the generalized mechanisms are given in Appendix

C. The notation Agk+1 denotes

BUpep = UCtyyy) - UGty (2)

The first step in assembling the system equations is done
by the Input Processor. It identifies all frame components
and sequentially assigns internal node numbers. Likewise it
identifies all rigid body components and sequentially assigns
a rigid body identification number. Thus the input data specified
by the user in terms of a physical description of the vehicle
model is translated to a data set for a single frame module and
several rigid bodies. In terms of this description the Input
Processor sets up connector arrays which identifies the type
of connector (beam element, mechanism, or ideal connector) be-
tween each frame and rigid body node.

With the input in this forﬁat the Computation Processor
assembles the system matrices from the nodal and rigid body
equations of motion. The equations of motion for the ith frame node
are in incremental form

Ao i i
MTADy 4 E ARy + 8y (3)
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where Di are the generalized nodal displacements of the ith node
and Mj i the nodal muss matrix. ‘The summation on the right hand
side denotes the sum of internal connector force increments,
and Agi is the increment in external force. The external
forces Z:é specified by the user in tabular form. The program
computes the appropriate increment at each time step.

In incremental form the rigid body equations of motion have
the form (see Appendix B)
ap? o+ ctoap

i B

WADY Dies1
(4)
R R N m m
RS TS

where AQR denotes the displacement increments of the center of
gravity and the rigid body rotation increments, gm are the external
generalized forces (force and couple) acting on the rigid body
nodes, r™ are the cornector forces, and Tm are appropriate trans-
formation matrices depending on the location of the node relative
to the rigid body c.g.

Eq. (1) is used to eliminate the internal forces from (3)
and (4). If a node is a rigid body node, the corresponding
generalized displacement increment on the right hand side of (1)
is expressed in terms of AQR through an approximate transformation
matrix. For ideal connectors the unknown connector force is
eliminated between the appropriate ith and jth node equations.

The ith equations are then replaced by the constraint conditions

—24-



implied by the connector (for example AQI - AQJ = 0 for a rigid

connector). The resulting global equations have the form

MAU  + CAU  + KAU = AF (5)
“k+1 “k+1 “k+1 “k+1

where the coefficient matrices are functions of the current state
and AE is a known vector.

Displacement boundary conditions or imposed displacements
are treated by contraction of the matrix equations. In UMVCS-1
the displacement time history of a node may be specified
arbitrarily in tabular form. In addition nodes may be stopped
in a specified time or stopping distance. The stopping distance
may be either with respect to the inertial frame or relative
to a second node. Details are given in Vol. 3. An example of
the use of such conditions is described in Chapter 5. After
contraction the system equation retain the form (5), the
right hand side now containing the imposed displacement increments
as well as the increments in external forces.

2.3 Numerical Integration Procedure
To integrate (5), the acceleration and velocity increments

are replaced by the backward differences

AU = (At )Trau - (Atk)"lAU1
“k+1 K+1 “k+1 ~
(6)
B0 41 = by AU, —hy AT, 4 by AUy 4
where Atk+1 denotes (tk+1 - tk) and



s

~ -2 ‘ 21
hl = (Atk+1) , h2 = (Atk+Atk+l)(Atk+1ALk) (7)

_ -1
h3 = (AtkAtk_l)

Introducing (7) into (5) gives

AU, = P
where
f -1
= 'h.}
H {hld + (Atk+l) C + K

‘ -1
[hzm +(bt)7C

]

P AUy = g AUy

| SURONBEE |

(8)

(9)

AN

Eq. 8 is solved by a modified Gaussian elimination procedure.

There are a number of reasons for this particular choice

of integration procedure. For linear operators backward differences

are inherently stable. From our experience it appears that they

are also stable for the nonlinear problem of interest here.

Numerical stability is an essential requirement in the modeling of

vehicle crash. In structural crashworthiness applications the

dynamic plastic collapnse is of prime interest. The inherent time

scale of this phenomenon is generally much
scale of elastic wave propagation and high
For efficient integration we would like to
suppresses these effects. 1In general this
stability is not an issue.

The use of variable step size is also

sent application. The form of the element

~26-
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depends upon whether a plastic hinge has formed at one or both
of the element boundaries. An inherent difficulty with the
plastic hinge concept is that a given increment may cauce the
solution to "overshoot" the generalized yield function which
governs the hiage behavior. Since the yield function depends
nonlinearly on the increment, an iterative scaling procedure 1is
required for which the variable step form is convenient.

The variable step procedure is also a major factor in
integration efficiency. We have found that during the initial
stage of motion, which is the period of active hinge formation,
relatively small time steps are required. Once a collapse mode
has formed, however, the response may be followed employing much
larger steps. The error measure used to control step size in the
present program is the incremental change in the yield function.

Denoting the yield function by f, the exact solution satisfies

£f=0 (10)

Je define

e = [Tt - f(tk_l)/ (11)
If ¢ exceeds a specified upper bound, the time increment for the
next step is reduced. Conversely if € is less than a specified
lower bound, the step size is increased. In addition a maximum
step size is imposed wnich insures that the rotation increments
are sufficiently small for accurate updating of the deformed geometry.
The simulations discussed in the next three Chapters illustrate

the use of this procedure and demonstrate its characteristic

features with respect to efficiency and accuracy.
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3. Static Validation Tests

3.1 Introduction

One of the advantages of the present formulation is its
direct applicability to static crush problems. A static solution
is obtained by setting all mass terms to zero. In this case time
is simply a parameter which is used to specify the increment in
external force or imposed displacement. In this Chapter we -
compare experimental and predicted results for two static tests.
The first is a combined bending-torsion test of a single beam
specimen. The test was designed as a preliminary validation
of the plastic hinge theory including the effects of local
deformation.* The second test is the static crush of a frame
structure.

The frame elements for both tests were 1"x1"x.075" 1040
mechanical steel tubing. Tensile test data (see Appendix D)
indicated the material could be considered as an elastic-per-
fectly plastic with an elastic modulus of 20x106 psi and a yield
stress of 61,500 psi. The required plastic hinge properties were

obtained from the tests described in Appendix D.

* Additional compined loading tests are described in Volume 2
in connection with the determination of hinge properties for
a variety of cross section shapes.



3.2 Combined Loading Uinge Validation Test

The test configuration for the combined load test is
shown in Fig. 2. It consists of a double cantilever specimen,
ecach specimen 5.5 inches in length. The ends of the catilevers
are attached to rigid bars at right apgles. The system is
loaded through high strength cables and a system of universal
joints that approximate a ball and socket joint. Symmetry insures
a zero slope at the root of the catilever. The initial geometry
is shown in Figure 3.

The cable used in loading was standard 1/8 inch diameter
stranded cable commonly used in aircraft control systems with
breaking strength of 2000 lbs. The cable was loaded and un-
loaded seven times in order to align the fibers in the most
inextensible position. After five cycles the load displace-
ment curve was repeatable with a stiffness of 5,830 #/in.

Test results are shown in Figure 4 as the vertical fecrce
component in the cable versus the vertical displacement of
the upper end of the cable. At low loads the system is elastic.
A hinge then forms at the root of the cantilever under essenti-
ally combined bending and torsion. Torsional rotation dominated
early in the hinzing action with bendirz becoming more pro-
nounced with increasing deformation. At very large displace-
ments the load becomes more aligned with the tube axis accounting
for the rapid hardening of the system for displacements greater
than five inches. Throughout the test, changes in geometry tend

to harden the system. Over most of the test this is counteracted
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by the decrease in the load carrying capacity of the hinge.
The final deformed shape is shown in Figure 5. The rotation in
boti: bending and torsion exceeded 45 degrees.

The computed force-deformation curve is compared with the
test result in Figure 4. Agreement is g5ood over the entire de-

formation range.
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3.3 Static Crush of Space Irame

The welded space frame is shown in Tig. 6. It consists
of a forestructure welded to a rigid plate which is connected
to a second plate through a rear structure. The rear plate
was clamped to the bed of the testing machine, anq the frame

was moved in the negative X, direction (see Fig. 8) against a

2
rigid pole indenter. The rear structure remained elastic, but
the forestructure was crushed longitudinal about 4.8 inches
which is over 50% of the original forestructure dimensions.
The final deformed configuration is shown in Fig.7l

The model employed for the computer simulation is shown
in Fig. 8. It consists of 15 nodes, 12 beam elements and 2 rigid
plate elements. Beam properties were computed from cross
sectional dimensions.

The experimental force-deformation curve is given by the
circled points in Fig. 9. The anomalous behavior of the test
in the region of maximum load is best explained by Fig. 10 which
shows the transverse displacement of the contact node U, versus

1

the longitudinal displacement U Initially the transverse displace-

9"
ment was evidently constrained. A sudden slipping of the contact
node along the icdentor occurred at about 3/4 inches of loangi-
tudinal displacement. This sudden slip is accompanied by a

sharp drop in load. The transverse displacement then increases
monotonically as the deformation proceeds. It should be noted

that the experimental transverse displacement is subject to a fairly

large relative error. Due to severe local deformation at the



contact node, accurate measurement of the nodal displacement
was difficult.

It is clear that the test boundary conditions at the contact
node are complex. To examine the effect of boundary conditions,
preliminary computations were made for two different cases:

(1) Transverse Force F1 =0

(ii) Transverse Displacement U1 =0
In both cases the contact node was assumed free to rotate. The
computed results for the first fwo inches of crush are shown
in Fig. 9. As anticipated these limiting cases bracket the
experimental result.

As a more severe test of the theory, a third case was

considered in which the transverse displacement U, was specified

1
by the piece-wise linear approximation to the eXperimentally
observed curve shown in Fig. 10. It was again assumed that the
contact node was free to rotate. The predicted force-deformation
curve 1s shown as the dashed curve in Fig. 9. The most pro-
nounced discrepancy is that the computed result shows a greater
softening rate for displacements in the range of 1.5 to 2.5 inches.
In general, however, the overall agreement is good.

Computactions were carried out on The University of Michigan
IBM 370/74 computer. The 4.8 inches of crush required 125 steps.

Total CPU time was 87 seconds.
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FIG. 6 SPACE FRAME BEFORE DEFORMATION

FIG. 7 SPACE FRAME AFTER DEFORMATION
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4. Dynamic Validation Tests

4.1 TIntroduction

This Chapter presents the results of two experimental
crash tests designed to validate the computer simulacion. The
test structures were idealized quarter scale models consisting
of frame and rigid body elements. The model is shown in
Fig. 11. Similar structures have been previously used in scale
modeling studies.* In both tests the models were impacted
against a pole obstacle at 30 MPH. The first test was a direct
symmetric impact. 1In the second test the frame was rotated 18°
to the direction of travel. The test procedure and instrumenta-
tion are described in a later section.

For the purpose of validating the simulation program attention
is focused on response variables of importance to crashworthiness
applications. 1In particular detailed comparison is made of pre-
dicted and experimental results for the collapsed shape of the
structure, accelerations at two locations on the rear (passenger
compartment) plate, and the impact force at the pole barrier. For
the symmetric test agreement is good for all variables. In addi-
tion the simulation accurately predicted the duration of the crash
event. The results for the unsymmetric test are not as uniformly
good. The collapse mode is qualitatively correct, but quantitative

differences are observed. The actual crash duration was about 25%

* B. §. Holmes, G. Sliter, "Scale Modeling of Vehicle Crashes",
SAE Paper No. 740586, 1974.
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longer than predicted. Accelerations and the barrier force

show reasonable agreement over most of the test event but in
general are less accurate than the symmetric case. In the
unsymmetric test a partial fracture occurred in the front beam

in the contact region. Fracture is not accounted‘for in the
simulation, and this is the probable reason for the discrepancies
observed.

The comparison of predicted and observed accelerations
requires some additional comment. The raw acceleration data
contained considerable high frequency content due to elastic
ringing of the plates. The simuiation necessarily modeled the
plates as rigid bodies which precludes comparison with the raw
signals. Thus the comparison of simulation and experiment is
sensitive to the filtering of the raw test data as well as to
the method of numerical integration.

In this paper the simulation results are compared to the
experimental signal at three different filtering frequencies
(350 Hz, 150 Hz, 60 iiz). The upper frequency for comparison
was chosen on the basis of the predicted signal. As discussed
in Chapter 2 the program uses an implicit, variable step inte-

gration procedure which determines the step size appropriate

©
»e

for following the dynamic plastic collapse. For the simulated
tests the frequency content of the computed signal was approxi-
mately 300 Hz. Thus 350 Hz was chosen as an appropriate frequency

for comparison.



4,2 Test Procedure

The test structures (Fig.1ll) are idealized quarter scale
models made from one inch square mechanical steel tubing with
0.075 inch wall thickness. The material stress-strain curve icr given
in Appendix D. Over the strain range indicated it can be
approximated by an elastic-perfectly plastic material with an
elastic modulus of 20 x 106 psi and yield stress of 61,500 psi.
Characteristic features of the formation of plastic hinges in this tub-
ing are discussed in Appendix D. Two half-inch thick steel plates
each weighing 20 lbs. act as rigid body masses. The structures
were Heli-arced, and no welds failed during the tests.

A schematic of the experimental set-up is shown in Fig. 12.
The frame models were mounted on a "mini-sled" on rails. The two
models were essentially identical, except that the oblique model wvas
mounted differently on the mini-sled and required different gussets.
The orientation of the models for the two testsis shown in Fig.13.
The mini-sled was made from solid 3" square bar. It was lightened
by boring each piece to remove as much material as possible.
Thomson split ball-bushing bearings were inserted at four places.
The total weight was 25.5 1lbs. The track on which the mini-sled
rides was made of 1-1/2" diameter steel rod supported by commercial
aluminum rails. The rail system was in turn supported by a steel
framework welded from 3" square tubing. This frameworl wus boltod
to The University orf Michigan's impacc sled using special shims Lo
insure a horizontal surface. The purpose of mounting a "sled upon a
sled" was to increase the relative velocity between mini-sled and pole
and yet work at lower impact sled speeds.

The mini-sled was restrained to prevent relative motion

during the acceleration of the impact sled. During the rebound of
—44-
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the sled from an air spring, the mini-sled was free to move to
the right and collide with the pole barrier. In both tests the
differential impact velocity was 30 + 0.1 MPIH.

The pole barrier was o 3-1/2 inch diameter steel pole

bored out 2 inches to save weight and improve frequency response.
The pole was connected to a rigid box by four Kistler piezoelectric
load links in the horizontal direction and one such link in the
vertical direction. This allows resolution of all force components
on the pole with 1 millisecond response time. The pole was
statically tested to obtain calibration factors to account for

the bending stiffness of the load links.

Acceleration data for the rear plate (passenger compartment
mass) were obtained from four Setra + 250 g accelerometers placed on the
back side of the plate. Two were located on the vertical plate
axis one inch from the top and bottom of the plate. The
accelerometer axis was oriented normal to the plate. The other
two were located on the horizontal plate axis and were oriented
in the vertical and transverse direction in the plane of the plate.
The latter two accelerations were small compared to the top and
bottom normal accelerations and are not reported here. The electric
signals from the accelerometers and load cells were carried from
the mini-sled in an umbilical bundle of cables, fed to a control
room and magnetically recorded.

To obtain the barrier force the load cell signals needed
to be corrected for bending effects and vectorially summed. To
facilitate this data reduction, the signal was digitized at 11,300 Hz

and then digitally filtered with a cutoff frequency cf 1000 Hz. The
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raw accelerometer signals were filtered by electronic (Kronhite)

filters at three different frequencies (350 Hz, 150 Hz, 60 Hz).

4.3 Comparison of Simulation and Experimental Results

The simulation program was exercised on the model shown
in Fig. 14. It consists of 21 nodes, 18 beam elements, and two rigid
bedies for a total of 138 degrees of freedom. For the direct test
symmetry of the model was exploited reducing the size to 78 degrees
of freedom. It was assumed that the front plate was rigidly connected
to the mini-sled. Thus the front mass was constrained except
for translation in the direction of travel. The only other boundary
condition was imposed on the contact node. Instantaneous stopping
of the contact node is an overly severe approximation of the
complex local conditions in the impact region. To account for this
the contact node was brought to rest in the direction of travel in
& stopping distance of 0.25 inches. The associated stopping time
was one millisecond. Rotations and motion normal to the direction

of travel were unconstrained.

Plastic Collapse

The deformed shave of the collapsed ferestructure was
measured after the test relative to the front plate. Tor comparative
purposes the simulation was exercised until the relative displace-
ment between the nodes and the front plate was constant giving
the predicted crush after rebound. A comparison of the predicted
and test results for the symmetric test is shown in Fig. 15. The

scales of the undeformed and deformed frame are the same indicating

-4 8~
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the severity of the crush. The crush displacement of node 1
was 7.2 inches or 80% of the original clearance. The side view
illustrates the pronounced upward rotation of the structure during
crush. In general the predicted and experimental results are in
good agreement. The largest discrepancy is the somewhat larger
predicted rotation of node 4.

Analogous results for the unsymmetric test are shown in
Fig. 16. Although showing qualitative agreement, the comparison
is considerably less satisfactory. The predicted structure is overly
stiff. Consequently rebound occurs too soon (as will be evident
from the acceleration resﬁlts). Also the prediction indicates
greater plastic rotation at the left plate nodes than exhibited
by the test.

The interpretation of the unsymmetric test is complicated
by the fracture that occurred about 1-1/2 inches to the right of
node 1. (Node 1 was the initial contact point but in the test slid
to the left of the post). Such a fracture would certainly reduce
the stiffness of the structure. Moreover it would lead to a greater
"hinging action" in the vicinity of the fracture. DBoth factors
are consistent with the differences observed. Thus the lack of

detailed agreement can probhably be atiributed to this cause.

Barrier Force

As discussed earlier the load cell signals were digitized
and filtered with a digital filter with a band pass of 1000 Hz.
The resulting individual signals were combined to give force components.

The result for the longitudinal force in the symmetric test is shown
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in Fig. 17. The result for the unsymmetric test in TI'ig. 18 is fof
the force component at 45° to the pole. The time origin is shown
at the point of initiating digitizing the signal. The time of
impact is indicated by the vertical line.

The simulation predictions are shown in the figures as
dotted lines. The initial peak force of the predictior is con-
siderably attenuated from the test result, but in both cases it
shows good agreement after about 3ms. In comparing the response
it should be noted that the actual pole barrier was mounted to the
impact sled by the load cell links. The elastic stiffness of
this system was designed to give a response time of less than 1 ms.
The exact frequency response of the pole-load cell system is not
known, but the observed early oscillations arc compatible with
the designed response time. This suggests that they are due to the
elasticity of the barrier rather than inherent in the structural

response.

Acceleration

Experimental and predicted accelerationé were compared for
two points on the rear mass located one inch from the top and bottom
of the plate. Due to angular rotation of the plate the acceleration
at the two points is quite different emphasizing the multi-dimensional
nature of the response.

Experimental and predicted results for the symmetric impact
are snown in Figs. 19 and 20. The corresponding results for the
unsymmetric test are given in Figs. 21 and 22. 1In each case the raw

accelerometer signals were filtered by electronic (Kronhite) filters

-55-
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at three different frequencies (359 Hz, 150 Hz, 60 Hz). The origin
of the time axis is the instant of impact. Prior to impact the
model is ideally in a state of uniform motion. In reality a dynam.
excitation is imposed on the mini-sled from vibrations of the

impact sled. Although small compared to the peak accelerations
after impact, this noise level is about 10 g (at 350 Hz) at the

time of impact.

The dashed curve in each figure is the predicted simulation
result. As discussed earlier the simulation employs a variable step
size choosen on the basis of error measures associated with the
plastic collapse. Typically small steps are required during the
active formation of plastic hinges. Once the dynamic collapse mode
is established, however, the plastic collapse can be accurately
followed with rather large steps. Since frequency resolution is
inversely proportional to step size, the simulation results will
exnibit a smoothing as time increases. It can be anticipated that
during the early stage the time step will be such to approximate
the elastic response (since the initial elastic state dictates the
hinge formation), but that later elastic oscillations will be
suppressed.

The simulation predictions shown in Figs. 19-22 demonstrate
these characteristic features. During the first 5 ms of the event,
the average step size was 0.05 ms (5 x lO"5 seconds). During the
next 20 ms of the event the step size increased incrementally to
1 ms at waich size it remained for the last 15 ms of the event. The
total number of steps for the 40 ms simulated was 165. Thus the
average step size was about 0.24 ms, but the actual step size varied

from 0.05 to 1 ms.
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Figs. 19-20 for the symmetric test show good agreement
between the predicted and experimental results in the sense
described above. During the initial stage of the motion, the peak
amplitudes of the experimental results filtered at 350 Hz are
predicted within the noise level of the signal. As time increases
the predicted result is smoothed by the increased time step. That
it is accurately predicting the experimental results with the
elastic oscillations suppressed is evidenced by the comparison
with the test data filtered at lower frequencies.

The results for the unsymmetric test in Figures 21 and 22
show generally similar behavior. Agreement for the top plate
acceleration is quite good except that the predicted duration of the
event is too short. This is consistent with the collapse prediction
and can probably be attributed to the occurrence of fracture in the
actual test. The predicted result for the bottom plate acceleration
shown in Figure 22 is somewhat less satisfactory. Both the peak and
average amplitudes are matched quite well, but the frequency content

during the early stage indicates some discrepancy.

4.4 Discussion

In our opinion the comparative results above show reasonable
agreement between the simulation predictions and the experimental
results. The unsymmetric results are generally less satisfactory,
but their interpretation is complicated by the fracture that occurred.
It should be noted that there is a second source of error in the
unsymmetric simulation. In the test the contact point is not fixed

but moves off the initial contacting node along the beam as the
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cetormation increases.  he Simulation coastri:ing the motion of
this node in the direction normal to the pole thus permitting
relative motion only in the tangent plane. Moreover the simulation
essentially assumes that the barrier force continues to act on

the node. These approximations are probably valid if the relative
motion is sufficiently small. Unfortunately their quantitative
effect can nop be assessed from the reported test because of the
occurrence of fracture.

The acceleration comparisons also requires some additional
comment. In dynamic validation tests there is always the question
as to what frequency content should be included in the comparison
between simulation and experiment. In one sense the variable step
procedure provides the answer in that it retains whatever frequency
content is necessary to follow the plastic collapse. If it is
accepted that this is the prime factor for structural crashworthi-
ness applications, then the experimental results should be predicted
up to this frequency content.

To verify that the smoothed predicted results is a property
of the variable step procedure, TFig. 23 shows simulation results
for the symmetric bottom plate acceleration. The variable step
prediction is compared to results limiting the maximum step size
to 0.1 ms and using a constant step size of 0.05 ms. The increased
frequency resclution with smaller steo size is agparent. loreover
the result using 0.05 ms is in good agreement with the experimental
result filtered at 350 Hz shown in Fig. 20 over the entire 15 ms
simulated. Ve conclude that for this step size the simulation

has adequate frequency resolution up to 350 Hz.
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Simulation computations were carried out on The University
of Michigan IBM 370/74 computer. For the symmetric test the
crash duration of 40 ms required 165 steps. Total CPU time was

94 seconds.
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5. Modeling Study of Dynamic Frame Test

5.1 Introduction
A modeling study was undertaken to explore the application
of TMVCS-1 to an actual vehicle crash event. The event modeled
was a barrier test conducted by Dynamic Science*. The test
was a frontal impact of a 1968 Plymouth Fury with the forward
sheet metal, radiator, grille, and engine all removed. A
sketch of the test configuration and a schematic of the stub
frame is shown in Fig. 24. Impact velocity was 30 MPH.
Although the structural configuration is relatively un-
complicated, the severe nature of the dynamic response made
the simulation difficult. Due to the small inertia of the
frame relative to the total vehicle mass, the frame rotated
upwards with vertical velocities comparable to the longitudinal
speed. Another modeling problem was the bumper supports. Due
to rapid plastic buckling, they essentially lost all load carrying

capacity within the first 5 ms of the 120 ms crash duration.

5.2 Simulation Model
The actual simulation model employed is shown in Fig. 25.

The entire vehicle was treated as a single module consisting of a

* Dynamic Science Final Report, Contract Xo. DOT-H3-0462486,
May, 1974.
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frame component representing the stub frame and bumper supports
and a rigid body component representing the remainder of the
vehicle. Due to symmetry only half the vehicle was considered.
The frame component is defined by ten node points with the nodal
masses shown in the figure. Except for the bumper support,
plastic hinge beam elements were employed between the nodes.

Beam properties were computed from cross section dimensions. A
Young's modulus of 30x106 psi, shear modulus of 12x~106 psi and

a yield stress of 36,000 psi were used for all members. Values of
the initial yield and ultimate moments were calculated from beam
theory for the cross sections. The other required plastic hinge
parameters were obtained from extrapolation of the results reported
in Appendix D**., Beam and hinge properties are summarized in
Table 3.

The physical behavior of the vehicle in the contact region
was modeled by an extensional spring mechanism and imposed con-
straints on nodes 8 and 10. A variety of kinematic constraints
are available in UMVCS-1. 1In the present case the initial contact
period is handled by bringing the contact node (node 10) to rest
with a smooth (parabolic) deacceleration puise. After eight inches
of relative crush between nodes 8 and 10 it is assumed that node 3
will begin to interact with the barrier through the crushed

bumper supports. This interaction is handled by bringing node 8

**  The subsequent tests of box and channel sections reported in
Vol. 2 indicate that the assumed values are qualitatively correct.

-66-—



V =30 MPH

BARRIER
P
STUB
FRAME
BUMPER
. d - - - - —_
3 5
 HORSE COLLAR | CROSSOVER BEAM 5
4°x3"x0.060 3-172"% 3-172"x 0080 1
o BUMPER | Z-SECTION BOX SECTION :
LONGITUDINAL FRAME F
:3‘& 3"x0.085 BOX #
v SECTION F

£ LONGITUDINAL FRAME
2"x6"x0.085 CHANNEL

BUMPER SUPPORTS
I-1/2"x 4"x 0.060 CHANNEL

8”

DA RN RN R B S B R W

14" 4.‘« 10"

FIG. 24 SCHEMATIC OF DYNAMIC FRAME

TEST

-67-

sl



25“ ﬂ
-
R B Chien e e T
7 %3 |82m g “
7 S, . 4 RIGID PASSENGER 16
BARRIER (2:67) | COMPARTMENT '7
\\‘E|O o0—o—0— l
“ Z 8 7 4 3 2 |
1 LguMPER
MECHANISM
RIGID MASS (2400%)
15* 125* TOTAL
CQQ——L
)
2.9% 7% 4"

FIG. 25 SIMULATION MODEL

-68-




teixy | "ovpIIT) €£°1) "1l o - |-oogT | 9070X¥XG'T
woTSJIOL | "IST ST B o - | 001 i
ut Sutpuoeg | "ve8LT|TLT Tl fST" | 26°9|8L €T A
ur Sutpueg | ‘0oLz |8ss Tle |or- | gz el 8¢ €1F |- OIXPO'G | TG6’ V980"
Terxy | "o009T] £€°T]O T} - | oot 90" 0Oxexy
uotsaol | 1008 G 1l0°I} o - | o-o1
ut Sutpuedg | "¥OTH | 89 T|e" |ST' | ¥€°9| 8'TT
ut Surpuog | rogesr| worles |oTc | BT S|S0 BBES” lp-0TXp0'S | T60° | 98
terxy | "8cgzgegl e 110 1| = - | _-oose o
uo1sIoL | 0Eg¥ G 10" T| = - 1 601
ut Sutpuog | ‘ogcze|v8T T|e" |ST° [ 8E'E€| O°SE .
ut Sutpueg | “¥g89 | v Tle- |ST° | 68°9|9G°£TEGES" |g-0TXG0°8 | 8LE D |SG3E’
Tetxy | 8¥s6%| £€°T]0 T} - 01
uotsiog, | sgose| 0-Tle” ‘0ol _0°s -
ut Sutpuag | "gI16€F| ST T|P" | ST} S€°2 as 3
ut Sutpueg | "cT6e¥| ST I|¥ | ST |Sc c| "€ G601 Z'€ 16| L&
Turxy | "2629g) g |0 1| = - ‘0T
worsaol | "ooung| 0°T|E” ‘o] _o'e| -
ut Surtpuog | -pr2ee]| T T|¥ | STl g 1€
U Butpuoy | "vIZee] Sl t|¥° | ST {¥¥ 3| I 16GT 112 ol L|G0b T
UOT1DVAL( W pa Yo Cw_ Uy v s °1 by sodeus
sotlaodoxd 23utH So1340d0d UOT}O98 UOT3IO0g SSOID

BEAM AND HINGE PROPERTILS

3.

TABLE

-69-



to rest in an additional crush distance of two inches.

During the eight inches of relative crush between nodes
8 and 10 the extensional mechanism was used to model the bumper
supports. The force-deformation curve required to specify the
mechanism was obtained by using thé program to simulate a static
crush test of the bumper support system. The coméuted result
is shown by the dashed curve in Fig. 26. The solid curve is the

piecewise linear approximation used in the dynamic simulation.

5.3 Comparison of Simulation and Test Results

Comparison between computed and test results for barrier
force and acceleration of the passenger compartment c.g. are
given in Fig. 27. The c.g. velocity is shown in Fig. 28. The
barrier force and passenger compartment velocity show relatively
good agreement between vrediction and test over the first half
of the crash duration. Although unsubstantiated, we believe that
the marked increase in barrier force occurring around 70 ms
reflects interaction of the front tire and suspension system
with the barrier. This interpretation is consistent with the
predicted longitudinal displacement of node 4. Thus here we will
restrict our discussion to the first 40 ms of the event. Com-
parison of the velocity and acceleration on this time scale are
shown in Figs. 29 and 30 respectively.

It appears that the simulation gives a good prediction of
average values, but is less satisfactory in predicting frequency

content and peak values. A possible explanation is the validity
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of treating the passenger compartment as a rigid body. Given
the large mass ratio of the compartment to the frame, it is
somewhat anomalous to observe positive test acceleration. Taus
the 59 Hz oscillation observed in the test acceleration may
arise from elastic vibrations of the passenger compartment.

To test.this hypothesis a second rigid body component was
added to the model at the c.g. of the passenger compartment and
connected by an elastic spring to the original rigid body. The
mass and spring constant were chosen to give a natural frequency
of 50 Hz. This insures, of course, a response at the observed
frequency, but the response amplitude will depend upon the other
components in the model. The predicted acceleration history is
shown inf Fig. 31. The agreement is sufficiently good to
tentatively conclude that the simulation is predicting the dynamic
force deformation characteristics of the vehicle structure.

Computations were carried out on The University of Michigan
IBM 370/74 computer. The simulation required 270 time steps for

the first 100 ms of the event. Total CPU time was 115 seconds.
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Appendix A

A Structural Theory for the Larce Plastic Deformations of Beams

A.1 Introduction

Here we present a structural theory for the static analysis
of large plastic deformations of space frames. The frame may consist
of an arbitrary number of beam elements that are connected at
node points. External loads are assumed concentrated at the
nodes. TFor the frame structures contemplated plastic deforma-
tion is generally localized even at large deflections. Thus the
present theory assumes that plastic deformation is confined to
idealized hinges which may form at any node. The governing
equations for a beam element are derived as a relation between
generalized force rates and rates of kinematic variables associated
with the nodes. It should be noted that the concept of a plastic
hinge necessarily introduces discontinuities in the rotation and
disvlacement rates, the discontinuities representing the
plastic deformation rates. Thus some care must be taken in
introducing appropriate nodal variables.

For the range of deformation contemplated here both open and
closed thin wall beams typically exhibit local collapse of the cross
section at the hinge. This local deformation significantly
affects the overall structural behavior. This local deformation
cannot, of course, be computed within the context of a structural
theory. In Appendix D, however, it is shown that the reduced load
carrying capacity can be accounted for by appropriate modification
of the yield function. Constitutive equations for such "generalized

plastic hinges'" are developed in a later section.
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A.2 TNotation

We consider an elastic beam element which may form
ideal plastic hinges at its end node points. The motion
of the beam may consist of elastic deformation, rigid body
motion of the node points, and rigid body motion of the beam
relative to the node points due to plastic deformation at
the hinges. The necessary reference frames for describing
this motion are shown in Figure 2. The nodes are represented
by point masses to which are fixed reference frames Mi and Mj'
Two additional reference frames, denoted Fi and Fj’ are fixed
to the beam end points. The origin of these frames is at the
shear center of the beam cross section; the Xq axis is tangent
to the beam axis and Xy and X, are along the principal axes
of the cross section. A subscript '"o" denotes the initial
position and orientation of the respective frames.

The positions of Fi and Fj with respect to the fixed
global system are denoted by §é and §q respectively. Likewise
the positions of Mi and Mj are denoted by Xi and Xq. The
orientations of the four frames with respect to the global

system arespecified bv the direction cosine matrices LMi,

LMJ, LFi, LFi respectively. The components of LT are
o

Q.. = Fe..e.
1] —1'=]

(1)

F
where “e.and &y are the base vectors of the frame F and the
global frame respectively.
In general we will use the notation v?' for column matrices

whose elements denote vector components. The superscript "i"
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denotes the node associated with the vector and the super-
script "F'" denotes the frame in which the vector components
are expressed. If "F'" is the global frame, the superscript
will be suppressed.

Associated wi:h each node we introduce the generalized
displacement rate

‘s i
1
2 =

ie -

2

. (2)
8

where u is the nodal displacement and {i the rotation rate of

the node frame. We also introduce a generalized force rate

associated with the beam element at the point 1 as
1= | X (3)
M

where gi is the resultant force and Mi the resultant couple
acting on the beam at point 1. The usual beam theory sign
convention is employed.

With this we introduce the generalized displacement rate
and force rate vectors for the beam element as

D = [9;] , _1%_45; (4)
by B

Our immzdiate gnal 1s to relate é to é.
A.3 Kinematics of Deformation

Referring to TFig. A.1 we can visualize the deformation
from the initial state to the current configuration as a
rigid body motion of the beam frames Fi and Fj plus an
elastic deformation. The rigid body motion may be due to
both overall rigid body motion of the system and to plastic

rotation and extension of the hinges at node i and/or node j.
-80-
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In the deformed configuration the node frames are at Xi, Xj
and the beam frames at zi, §j relative to the global frame.
The origins of beam and mass frames may differ by
plastic displacements occurring at the hinges. Thus

xt =yt gfP

— —

. . . (5)
¥ = yd _ P

— — —

i}

where le and ng denote the plastic displacements referred

to the global frame. Also

=gt )t oo (6)
in which the superscript "T" denotes the transpose, He
is the elastic displacement of the end j with respect to

the end i, and r is the vector

N
r=12i=14 lo (7)
1]
where 4 is the beam length
In the initial configuration
A _ ol By |
-}EO_-&O’-}-&-O-—Y—O (8)
Iy B T
.}_(:g B -}-C-O T (LFlO) r
Equations {(5) through (8) can be combined to give
- : r . et : :
Woout = )T - or ) e o+ v+ utP 4 pdP (9)
- - ! i io” = = - -
where
S | 1 J _ ] j
i I T G ¢ (10)

A rate equation for the node frame displacements is now ob-
tained by differentiating (9). 1In carrying out the calculations

we recall that
~-89-



LF = W(LF) (11)

where W is the skew-symmetric rotation matrix

F —
—8 (JJ3 -(1)2
W= wB ) 8 Wy (12)
2 1 0

in which Fw represent the components of the rotation rate
k
of the F frame with respect to the F frame. With this it

can be shown that

(LF )" r = (HR) o | (13)
where the 3x3 matrix HR is defined in Sec. A.9 and gl

denctes the rotation rate of the Fi frame.

We also note that the plastic displacements are due
to plastic extension of the beam. Thus the extension rate
is always directed along the current Xq axis of the beam
frame, i.e.

T

. F.. . .

“ip ~jp . . .
where U and U are the scalar axial plastic extension
rates.

With this differentiating (9) yields

O -t = ot e @ U e Ety B e (9
A second kinematic equation is obtained by recognizing
that the Fj and Fjbeam frames differ cnly due to elastic de-

formation. Thus the beam frame rotation rates are related by
Y= Wt +ow (16)
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in which ge denotes the elastic rotation rate of the Fj frame
relative to the Fi frame.

Finally we wish to express (15) and (16) in termns of the
node frame rotation tvuates. The difference in orientation of the
node and beam frames is due to plastic rotation at the hinges.

Introducing the plastic rotation rates gives
wh= gt 4P

, . . (17)
ol _ v

]

w

where the superscript 'p" denotes the hinge rotation rate.
Using (17) to eliminate the beam frame rates in (15) and (16)

yields
w oot - gt = am) o' e e 1 0P e T 09 g

RS SRR TR S (18)

— —

The left hand sides of (18) involve components of the
generalized displacement rate é, whercas the right hand sides
involve the elastic deformation of the beam and the plastic
deformation occurring at the nodes. It remains to relate these
deformation quantities to the generalized forces acting on
the beam at the node points.

A.4 Eauilibrium
Introducing the generalized force defined in (3), the

equations of equilibrium can be expressed as

Fo 1
'RU=(a+U ) tm (1)
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where A is the 6x6 constant matrix

B d]
Y (20

in which I is the 3x3 identity matrix and E is the 3x3 matrix

01 d}
E =g

-1 0 0 ‘ (21)
! 0 0 0]

The 6x6 matrix U is a function of the elastic displacements.

It is —_ —
i 0 o{
U lueio] (22)
in which
Fi- e
[0 -u, U,
UE = l i
U3 0 —Uli (23)

We now obtain a rate equation by differentiating (19).
In carrying out this computation we must account for the
change in orientation of the Fi frame. This is most

conveniently done by expressing (19) in the global system.

We obtain
R = (TFi)T(A+U)(TFi)§? (24)
where TF denotes the 6x6 transformation matrix
CLF | 0 ]
L |
It can be shown that
(T7,)" U(TE,) = UG (26)
where - | 1
: 0, Oi
uG =§UEG; 0, (27)



in which — -

! -
i 0 -U, U,

VEG =/ U, 0 -U
| (28)
f'Uz Uy 0

Also it follows from (25) and (11) that
TF =(TW)(TF) : (29)
(TF)L = —(TF) (W)
where TW is the 6x6 rotation matrix

LK)

W= oW (30)

Introducing (26) into (24), differentiating, and using (29)
gives after some algebraic manipulation

1

‘e
18 U (31)

Bl = (re)T A (o) W e w0t e ey B4 g,

The 6x3 matrices J1 and J2 involve the stress resultants at

point J and are given in Sec. A.9. We now eliminate the

beam frame rotation rate through (17). With this (31) becomes
1

Jy &

- - mT;! T 1 1 E ‘} 'j .i
) [(lLi) ACTF) + U! RY + R

SN
A.5 Constitutive Equations for Generalizec Plastic Hinges
We must relate tne plastic deformation rates in (18)
and (32) to the generalized forces actinz on the beam. As
discussed in the Introduction local collapse of the beam
cross section significantly affects the load carrying capa-
city of the hinge. This detailed behavior cannct, of course,

be computed within the context of a structural theory.
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Nevertheless it is shown in Appendix D that its effect on the load

carrying capacity of the hinge has characteristic features
that may be accounted for by the introduction of additional
parameters in the generalized yield function. These "hinge
parameters' are functions of the accumulated plastic defor-
mation, and in the structural sense may be viewed as consti-
tutive properties of the hinge. Their determination from
standardized tests is discussed in Appendix D.

Here we develop appropriate constitutive equations for

th

the 1 node. We assume the behavior of the hinge is deter-

mined by a scalar generalized yield function

tgh =1 (33)
where gi are appropriate normalized stress resultants in the
local beam coordinates. We assume that the yield function is
independent of the transverse shear forces, and let Y§ (j =1,2,3,4,
denote the last four elements of FiRi. Thus

53% = Y§/aj j=1,2,3,4 (34)
The scaling parameters are considered as a four element vector
of "hinge parameters'.

We define

e f <3 at 3= 12,3, (35)
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i , . . . .
wnere Kj are the elements of the plastic deformation rate vector

u'?

[ (36)

Thus Oj represents the accumulated plastic deformation in exten-
sion, biaxial bending, or torsion relative to the local bean
boordinates. We now assume

aj = aj(ej) (37)
As shown in Appendix D the four functions (37) are characteristic of
a given cross section and may be determined from standardized
tests.

In effect o changes the shape of the yield function in the

physiczal stress resultant space. Alternatively the components
of a may be considered as '"damage measures' which control the
load carrying capacity of the hinge. TFrom this viewpoint the
assumption embodied in (37) is that the maximum principal moment,
for example, is a function only of the accumulated plastic rotation
about the corresponding principal axis. This is obviously a
simplifying hypothesis, but appears reasonable during collapse
of the cross section. Its validity for reverse plastic deformation
is considerably more speculative. For the applications of interest,
however, this is seldom an issue, i.e. once the cross section
has collapsed we are usually not interested in reverse deformation.
Finally it should be noted that the uncoupling of the damage
measures inhevent in (37) does not imply uncoupling of the stress

resultants. In general their current value depends upon the

entire deformation history.
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To complete the analysis the plastic deformation rate
is related to the yield function through a normality conditionf
i.e. we postulate
i

i i
kK o=a A

(38)
where A1 is the scalar magnitude and gi is the normalized
gradient

al = Zfi/‘lfi} (39)
in which V is the gradient operator in the normalized stress
resultant space. The scalar magnitude is determined from
the condition
2o (40)

It can be shown that (40) leads to

b= lorty R + () @f (41)

x
It should be emphasized that this is a stronyg assumption
sirce the usual stability arguments for normality are
not necessarily applicable here.
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where

i -1
GR' = -D™* (MR) (TF,),
. ) . (42)
et = -p™* (um) B (LF,)
in which D is the scalar
D =[(uR) (0/BY) + MB| ' (43)

In (42) the subscript R denotes the last four rows of the
transformation matrix (25). The 4x3 matrix B! depends upon
the current generalized forces and is listed in the Appendix

for reference. The 1x4 matrices MR and MB are

1
MR =[3fi }
3y
| s
3tt 303 i o
MB =[8aj 39, sgn (aj)l j=1,2,3,4 (44)

where a§ is the jth element of gi.

Substituting (41) into (38) gives the final result for the
plastic deformation rates. It is convenient to partition

(38) and express separately the extension rate and the plastic

rotation rate in the global frame. Recalling (14) we obtain

0P = wr)'1 0P = (mrhR' + (EmB)t
. - - . - (45)
w'P = (apHR' + (EPBY)Q*
winere
A w T i i
BEiL (L*i) iag (GR™)
EEBl = (LFi)Ti ay (GBY) (46)
ol o T i i i o (T i
' = (LF )" ap (GRY), EPB' = (Lr)Tal  (aBh)

in which the subscript R denotes the last three elements of 31.
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Analagous relations may be derived for the node j.
They may be obtained by replacing i with j in equations
(33) through (46) and changing the signs of GRi, GBi,
and MB in (42) and (43). The sign change occurs because

of the kinematic definition of wJ in (17).

A.8 Elast;c Deformation Rate Equations

We also need elastic constitutive relations expressed
in rate form. From elastic beam theory we have relative

to the current configuration beam frame Fi

IiEe - (ke71) FiBj (47)
F.
where 19e is the generalized elastic displacement of
the j end relative to the i end and KE ! is the inverse of
the elastic stiffness matrix (given for reference in
Sec. A.9). A rate equation is obtained by differentiation.
As in the equilibrium equations we must account for the
rotation of the Fi frame. This introduces the rotation rate
gi which is eliminated through (17). Equation (45) is then
1p

used to eliminate After considerable algebraic manipu-

lation, the final result expressed in the global frame is

p° = (xm) & + (xkeT) B + (kRTB) o (48)
where
KT = (TFi)T (xe~ 1y (TF,)
KRT = (TFi)T (KR) (LF,) pl (49)
KRTB = (TF,)7 (KR) (LF,) |1 + npBl]
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in which KR is a 6x3 matrix depending upon the generalized
forces and elements of the elastic stiffness matrix. It is

given for reference in Sec. A.9.

A.7 Element Stiffness Matrix

Equations (18) and (32) represent twelve equations
involving the twelve components of the generalized nodal
displacement rate D and the generalized forcé rate R.

We eliminate the elastic and plastic deformation rates in
these equations through (48) and (45) respectively.

We obtain

~ut + w) - [(rR)(1+HPBY) + EHB + (KRTB)] @

-(EHBj) Qj = [(HR)(HPi) + EHi + (KRT)G} éi

. Lo
+ |8 + (KT), R’

{‘. i.x_ TR “l 1 ': j-‘ j
- [I+HPB® + (KRTR) | 0" + |I-#PBY] @ (50)

-

B

- . gpt i, gpd » pJ
HPY + (KRT);f R' + HPY + (KT) R

\
'
B

1
|
4

; i i
J, (I+HPBY) + J, (KRTB?UJ 0

. i . -1
= LI—Jl(HP ) - J2(KRT)UJ R

—

o T . TRd
(TF;)" A (TF;) + UG + J, (KT)y R

The subscripts U and L denote the upper three rows and the lower
three rows respectively of the corresponding matrix.

Equations (50) have the matrix form

IR2=BD (51)
Thus . .

R =K D (52)
where the "element stiffness matrix" is

R |

K=H B (53)
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A.8 Global ELquations

A computer program for computing the large plastic
deformation of general frames has been developed bascd on
the above theory. The global frame equations are assembled
in the usual way from consideration of equilibrium of the
node points (expressed in rate form). External loads are
assumed to be applied at the nodes. Displacement boundary
conditions including imposed displacements are handled by
contraction of the global matrix. The final system of

equations has the form
(K6) U = F (54)

where ﬁ is the unknown generalized nodal displacement rate
and E is a known vector of loading and imposed displacement
rates.

The analysis has been formulated as rate equations.

For numerical solution (54) is expressed in incremental

form. Ve let

e 70 () = U0 ()

(55)

Mgy T F (fgyy) = F (1)
svaluating (54) at time tk, replacing the derivatives by
forward differences, and using (55) then gives

'KG (t.) ap... = AF

X6 (] M =k+1 (56)



After each forward step the matrix KG must be updated.
In particular we must update the direction cosine matrices
defining the beam reference frames. For this purpose we

approximate LF by

r

LF (t,) = [LF (t,,,) - LF (t,)] /bt (57)

. Also we introduce the incremental rotation vector
Fro = Tuat (58)
Introducing (57) into (11), multiplying through by

At, and using (58) then yields

LF (tk+1) = (WB) LF (tk) (59)
where
Fi‘A ST
f 1 A63 Aezi
| |
| |
-AB 1 AD. !
WB = 3 L (60)
| .
,Aez -AOl li

The use of the approximation (58) implies that ||a8]|2
is small compared to unity. Basically this requirement is
used to determine the step size of the incremental process.
Although the analysis leading to (52) is the fundamental
basis of the comnuter program, there are additional consider-
ations which must be implemented in the program development.
The stiffness matrix was derived on the basis that the plastic
hinges at the beam nodes are operating. If the hinge is not
operating, the plastic contribution can be eliminated by
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setting the GR and GB matrices associated with the node to
Zero.

It is necessary, however, to monitor in the program the
operation of the hinges. Initially the GR and GB matrices
are set to zero. At the end of each forward integration step,
the yield function f is computed at each node. It it is less
than unity, the computation proceeds to the next step. If
it exceeds unity at some node, the step size is reduced until
the yield function is satisfied. At the next step the GR
and GB matrices for the appropriate node are included in the
computation.

Elastic unloading is included by monitoring the rate of
energy dissipation at the hinge. The dissipation rate is

¢ =" & (61)

At each time step d is computed from (61). If d>0, the

computation proceeds to the next step. If d<0, the GR and

GB matrices for that node are set to zero before proceeding.
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A.9 Summary of Eguations

In the following we list for completness the various
matrices arising in the derivation. The 3x3 orientation

matrix HR is

HR = (LFi)T E (LF,) (A1)
where
1 0 1 o}i
|
E=9 -1 0 0| (A2)
|
"0 0 0

The 6x3 matrices J1 and J2 in the equilibrium equations

(31) are
0 "0 }
S T e B R e A9

where the 3x3 matrices are

= T t
Jul (LFi) JB (LEi) (A4)
in which
Fl e ) J

)
3 0 0
! :

| = ' 0 -R3 0; (A5)
! |
| Rl R2 0 i
— -



andc

JR, = i-R,

The 4x3 matrix Bt appearing in (42) is

e
=

The elastic complicance matrix in (47) is

kl 0
-1 |

KE = ? 0 k2

; 0 0
.0 k8

{ k7 0

i 0 0

in which

_ .3 _
kl = g /SEI2 , k2 =
= /T c =

k4 x/uIl , Ke
kK, = QZ/ZEI k=

7 27 78

e

B 0
-R, By
0 -R,
R, O

0 0 K
0 kg O
kg 0 O
0k, O
0 0 K
0O 0 0
3

19/3ET, , kg
R/EI2 , k6

= 22/98T

1l

0
!
0'
|
0|
0|
0
k6;

%/EA

%/GJ

(AB)

(A7)

(A8)

(A9)

where £ is the elastic modulus, G is the shear modulus, I1

and I, are the principal moments of inertia, A is the cross

2

section area, J is the polar moment of inertia, and 2 is the
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K

R

beam length.

kRg

(kz-ks)R3
(kz-kB)R2+k
kSRS

(ks—k6)R6

-k JR_+k
(k5 KG’RS !

The

gfy

7

6x3 matrix KR in (49) is

—J
-(kl-ks)R3 (kl—kz)Rz—(k7+k8)R4
—k8R6 (kl—kz)Rl+.(k7+k8)R5
—(kl—kB)Rl~k7R5 0
—(k4—k6)R6 —-(k8+k7)Rl+(k4_-k5)R5
—k7R3 (k4—k5)R4+(k7+k8)R2
—(k4—k6)R4-k8R2 0
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Appendix B

Incremental Lquations for Rigid Body Component

B.1 Introduction

In this Appendix the governing equations for the rigid body
mass module are derived. They are, of course, based on‘the
well known equations of rigid body dynamics. For application
here, however, there are a number of points that require careful
consideration. First of all the equations must be expressed
in incremental form to be compatible with the frame components.
This is a nontrivial exercise, particularly for the angular
momentum equation. Next the equations must hold for external
forces and moments applied at arbitrary nodes on the rigid
body .

We consider the rigid body with mass m. The center of gravity
is at point F with coordinates §F relative to the global coordinate
system. Torces gi and couples ¥i are applied at points i = 1,2,.
on the mass. The local axes at I are taken to be principal

inertial axes.

B.2 Linear Momentum
In vector form the incremental linear momentum equation at
time k is

mAXT = I AF (1)
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where

:.F . j«, F
Ax = X - X
k+1 k+1 ¥
(2)
éEl _ E1 _ gl
k+1 k+1 k
We introduce the displacements of the center of mass as
1'1 ‘F‘
XJ. = 25. _ XFO (3)

where §FO is the initial value of the position vector. With (3)

the momentum equation (1) may be written as

mIdy' = IAF (4)
k+1 k+1
where I is the 3 x 3 matrix

N

I = 1[I I N
in which I is the 3 x 3 identity matrix. The vector AF has 3p
elements consisting of the force components applied to the rigid

body, i.e.

(6)

We next replace the acceleration increment by a variable
step baclkward difference approximation.
From Chapter 2 we have
-‘p w Al

* i
av =gt omy A+ hg Ay (7)
“ “ k k-1
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where

hy o= At
k+1
= (A + At A 2y-1 8
hy = (At + At ) (At At)) (8)
a1
hy = Aty st h

Substituting (7) into (4) gives the linear momentum equation in
the form.

mh, 1 avi - mh, T AvD 4 mh, I AV = I AF (9)

L = 27 T 3 k-1 k4l

B.3 Angular !Momentum
With respect to the global inertial reference frame, the
angular momentum equation is

Ho= (10)

where I is the angular momentum of the mass and Hr is the resultant
mement about the center of mass. We also have
H=1L" ("H) (11)
T . .

where "H is the angular momentum expressed in the local body frame

T . . y . . . .
and L™ is the trauspose of the direction cosine matrix relating
the local and global frames.

Differentiating (11) gives

1= " Fm ot (12)

®

have

J
W) (13)

=
]
!

)
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where - -
F F
- 0 Wa — W,
W = (14)
—Fw 0 F
3 1
F ~F
wz ml 0
- -

in which Fwi are the components of the angular velocity vector

expressed in the local frame. Using (12) and (13), equation (10)

becomes _, n
g- T o= o= (15)
where Fﬂr is the resultant moment expressed in the local frame. It is
p . P .
where i = 3 Dt e r (r x Trh (16)
i=1 i=1 i/F
where "X'" denotes the vector cross product and Fr is the

Ti/F
position vector of the point i with respect to the center of mass

in the local frame.

We note that

F_ i
froxTrl e ¢ ¥
i/F i/F T
F_ood 17
v (17)
¥
Z
L -
where Ci/F is the constant matrix
c _ 0 “tiw Yiel
/i/F 0 ~xi/P (18)

i/F |
|
| 0
!

Yir Xiyp

In (18) the elements are the coordinates of the ith node with

respect to the rigid body frame F.
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Thus with (16) and (17), equation (15) becones

P |
- P

TR A0 WS T L T R (19)

1=1 i=1 i/F

The frame T is oriented along the principal axes and is

tixed to the body. Thus

= 117u=11Lu (20)

where II is the inertia tensor

i —

I N 0
XX
II = (21)
0 I 0
vy
0 0 I
I Vs
Differentiating (20) gives B
Fﬁ = II (Lw + Lw) = IT Lw (22)
since 1t may be shown that
Lo =0 (23)

Substituting (22) into (19) and expressing the result in the

global frame gives the angular momentum equation

o p . D
Lo+  1Lw=1 1 +31 LF

i=1 i=1

T Lt

b Ci/ph (1)

We obtain the necessary incremental eguation by differentiating
(24). Vriting the result at time k and introducing the global

rotation incremeont
T

ADT = w At (25)
K+l k k+1

~

L
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gives the incremental equation

Lttty a2t o+ nTrroo+ oot o1rony aef
kK k+l kK k+1
D . (26)
. ! g
siotrrn- 1 PRl e )y ad
i=1 i/T k  k+l
p - . D ,
=3 (L'c 1] AaFt +3 At
i=1 i/F k  k+l i=1  k+l
. Foi
In (26) the matrices "F~ are
o Tpt F i
I F
. } z Yi
Fri = ol (27)
| FFi 0 - in
i ‘ l
i
o .
i__l F_l FFl 0 2
LY X
- —

The derivatives in (26) must now be expressed hy backward
dif ference approximations. For this purpose we introduce the

notation
~ T T

ak = [L° II L]k = Lk II Lk
~ T ’ o T (28)
8, = [L7 IT L+ 2L° IT 7]
= a3t 1T L - IrL L - 921f L II L
"k k K k-1 -1 k
A T') r'—‘ A
«;I‘I" - L T I D :A (FT‘L ~ v oI
» i=1 i/F k
. i T B rJ\ -
= h, LI L - 13 L I 1. + hF L 11 L
ok K k-1 K Y k=Y k
1% T TN
- " C1
R L FoCop) Lyl
i=1 i T
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in which

-2
h4 = Atk

_ o0 -1
he = (At,_y +4t.) (At Aty J) (29)

l=n
|

-1
g = (Aty Bty )

Introducing (28) into (26) and using the acceleration

approximation (7) gives the incremental angular momentum equations

as
[hy o+ 880, By + vl A0y q = [hy o + At ™ 8,140,
. _— . (30)
- i ~ i
+ h, o 4D = I AN + L o,, AF
3 Tk —k-l ) Ty gm1 HE TR
in which
6., =1l cC.. L (31)
i/k - Pr Cigr By

B.4 Incremental Iguations of Motion
The governing equations for a rigid body mass are obtained
by combining (9, and (397). To express the result in matrix form

we introduce the following notation:

r =
F AV
AD ==
k+#l LT (6x1)
L el
- -
; 7
L
— i (32)
An oty
Tkl o=l
ool
| AFT (Apx1)
[
i AWPE
.\_— -
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I\
4
i

Yith this

]
= mh]I ! ]
R T _“1‘ ~
R L Bk} (6x6)
) » {
0 | Y ;
{ |
L s
~ ] 1
- t
mh2I ‘ 0
1
e - - = = = = (6x6)
|
0 h, o + AtTL g
%2 "k k "k
L ' i
r ! 7
- b, 1 l 0
I
-— - = = = = = = (6x6)
) A
0 ¢ Dy ooy
L ! _
= i' I o o1 1 o]
{
1 L S S
- - ; - | : (6x6p)
QL . I '
U | ok Ok b
| ; | . |
— i i ! —
the equations of motion are
T 13 F T
A — \ — \ \ n / 5}
=TS By £Dy = Cp LDy 5+ B ARy (33)
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Appendix C

Mechanism Stiffness Matrices

C.1 Introduction
The generalized force at a mechanism end attached to the

jth node is

. J
)= H W, (1)
BN '
where FJ is the transmitted force vector and MJ the transmitted

counle. The generalized displacement rate is

- iy
P | U]

o (2)
Lot ]

where UY is the nodal displacements and 0J is the angular
velocity of the node. Here we briefly outline the derivation
of the incremental mechanism stiffness matrix KE defined by

{ R' | = XE ( ]
SN SE (3
L - d

[

)

=

1)

C.2 Extensional Spring

At each instant the force transmitted is

133 = f(s) €4 (4)

where 63 is a unit vector directed along the connector axis from

the ith to the Jjth node and s is the current distance between
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nddes. The function f is an acrbitrary function of s. The

unit vector eq is

e, = (x0 - x)/s (5)

where x denotes the nodal coordinates. The sought relation is

obtained by differentiating (4) with respect to time. We note

that _

ey ‘3

ey = (X7 - x7)/s - eg(s/s) (6)
where

s = gq (§J - 51) (7
Also we have

xP= U, x = (8)

Thus differentiating (4) gives

P s @ - uh (9)
where S is the 3x3 matrix ‘
S = (f/s) I + (f' - t/s) 9393T (10)

Fal

wiere ' denotes df/ds and I is the 3x3 identity matrix.

It follows that

(S 0 =S oj
KE= {00 0 og (11)
S0 8o
| |
100 00}

C.3 Torsional Spring
A torsional spring transmits a couple directed along the

current connector axis. The rate of rotation of unode j relative
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to node i about the connector axis is

o = er (2-aty (12)
where €q is given by (35).
we define the "angle of twist'" at time t as
t
a = X adt (13)
0
We assume that
M o= T(a)eq (14)
Differentiating (14) and using (8) - (8) gives
v o= xmwee?-0h) + xkX(UI-Uh) (15)
where
Ty = ! VI = -
KTV T €q€q ,  KTX (T/s) 1 €484 ) (16)
in which 7' denotes d7T/dao.
It follows that
0 0 0 0
(I = KTX KTV -KT¥X -KTW (17)
0 0 N 0
-KTX =-KTW KTX KTW

C.4 Bending Connector
As above €nq denotes a unit vector along the connector axis.
For the beading connector we introduce two orthogonal unit
vectors in the plane normal to this axis. Their initial orientation
is snecified. The unit vector €, changes 1ts orientation due

to the relative motion of the nodes at the end point+ of the
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connector. It is assumed that e, and e, change orientation

due to ancular velocity about their current position. Thus

in vector notation

=aqgxe, , 1=1,2,3 (18)

e.
~1 i
where o is the angular velocity vector

¢ = oy € + a5e, (19)

It follows that

@ -
i

81 T G9%s €9 T %183 (20)
€g 7 "848y T 09

From (6), (7) and (29) we have

S RS T

1 =8 ) e (21)
ST AN

@y T =S (XT-xT)rey

It is convenient to express these results in a nmatrix format.

Las. (21) may be rewritten as

AR B |
s (x7-x) (22)

Q
1
|

0

O]

The bending connector is characterized by bending resistance
arising from relative rotation of the nodes about the connector

axis. The relative rates of rotation about €4 and e, are

o, =e (27 -ah , k=12 (23)

k ~X ~

The quantities Ok can be thought of as the rate of "winding up” a
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coil spring about tae €y axis. The total "angle of wind" is

0, = &0 0, dt (24)

The couple transmitted by the bending connector is
J o ‘
@ = Ml(Ol) e + M2(62) e, (25)

Differentiating (25) and using (20), (22), (23) gives

o= kBw(R! - b (26)

+ kBx (U - uh

~

where
2
IBY = ¢ M ey ekT
k=1 k 7
-1 2 T (20
KBX = -s 93 ) Mk Sk

in which the prime indicates differentiation with respect to
the argument 0,_.
N

It follows that

T 0 0 o o0 |
KBX  KBY -KBX -KBY
(28)
KE = 0 0 00
l-XBX -KBY KBY KDY |
L J

C.3 Shear Connector
TFor the shear connector unit vectors are introduced in
the same manner as the bending connector. The shear connector

is characterized by shear resistance arising from the relative
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change of orientation of the nodes relative to the connector
coordinate frame. Such changes in orientation may arise from both
relative di§p1acements of the nodes and the angular velocity
of the nodes. In general part of each angular velocity vector
is associated with the bending spring response and part with the
shear response. The appropriate decomposition is

1

D S
Wy =5 (& DI

(29)

1}
1]
Py
10
.
+
[3-e)

W

where YB and WS denote the angular velocity associated with bending

and shear respectively. Thus we introduce shear '"strain rates"

as

W S P R
Yy T ey TG &y (87 4+ 07)
(30)
o 1 T j i
Yo T oyt g e (47 + 07
The acoymulated shear strain is
t .
Y = Yy dt (31)
0

The force vector transmitted by the shear connector is

7 = \
Fo=Fy(v)) ey + Folyy) ey (32)

In this case equilibrium requires couples at the nodes in addi-
. . . i j .
tion to the force requirement F~ = - FJ. The moment equation

in vector notation 1is
Mi

e v s e, x T =0 (33)

3X
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If s becomes very umall, Che shcar connector (combinced with
the extensional spring) should reduce to a pin, i.e. M
From (33), however, only their sum approaches zero as s»0. The
difficulty is removed by recognizing that general couples gi

~and yj can be viewed as pure bending and shear; an appropriate

decomposition shows that the couples associated with shear

satisfy

i =) (34)
Thus (33) becomes

R A (35)

Differentiating (32) and (35) and using (20), (22), (30)

gives
BY = KX (x) - xD)
+ Ks7 (27 + ah) (36)
o= KX (1) - xY)
v o(e) + e
where
U N P T ' T
KSX = s [Pl €181 * Ty €98
T T }
23(F18 * T )
1 ] T 1 m
‘ = il Al - - " -
KSW = 3 [Pz €1 T €18y } (37)
o 1T -7 T
RMZ =5 1(Fiey "98)ey

7]

1 L T !
t(F egtFpeqde,” - (Fy etF eq)e, ]
w1 ' T ' T
A = =
KT = 7 s (F] ege,” + Fy ee7)
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It follows that
KSX  -K8%  -KSX  -KSY |

-KMX KMW KX Ry
KL

il

-L5% KSW HES M KSY

-KMX KM KMX ﬁ(hi?l_J

C.6 Connection to Rigid Body Nodes

If the connector is attached to a rigid body node, Eq. (3)
must be modified. Rigid body nodes do not have independent
degrees of freedom. Thus the kinematic variables on the rignt
hand side of (3) must be expressed in terms of the rigid body
variables by an appropriate transformation. 1In rate form we
have
R R

9 (39)

' 5 .
U =10 -0, Q
~ j/k =

where the superscript R denots quantities associated with the
rigid body ceanter of gravity and

= 1T Cip L (40)

“i/x /&

in which L is the direction cosine matrix of the rigid body

coordinates with respect to the global coordinates and

"o 7 v, |
ik J/k
C.,. =1 Z., 0 -X, 41
Jrx J/k J/k (41)
-Y. X. 0
| J/k /K 3

In (41) the elements are the coordinates of the jth rigid body

node with respect to the rigid body coordinate franme.
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It follows that

pJ = 7 p* (42)
where T is the 6 x 6 transformation matrix
P& _aj/k_
T = (43)
0 I

C.7 Superposition of Mechanisms

Above we have derived incremental stiffness matrices for
four types of mechanisms. It should be noted that in incremental
form the generalized force rate is linearly related to the
generalized displacement rate. Thus a mechanism which transmits
a general force and couple may be obtained by superposition of
the above four mechanisms. It follows that the force-deformation
characteristics of this general mechanism are specified by the
six arbitrary functions

f

f(s)

I

Fo= P () ko= 1,2

T

(44)

i

T (o)

Moo= M (¢ ]
M = M (9 ko= 1,2

where s is the current distance between nodes, v, is defined by
FeS

(31), o is defined by (13), and Oy is defined by (24).
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Appendix D

Plastic Illinge Tests

D.1 Experimental Hinge Tests

An experimental program was designed to study the be-
havior of plastic hinges subjected to large rotations. 1In
addition to developing a test methodology, the program obtained
the necessary hinge data for the static and dynamic validation
tests discussed earlier. The necessary data is defined by
the constitutive theory proposed in Appendix A. We briefly
summarize the pertinent equations. Detailed discussion is
given in Appendix A.

We assume the behavior of the hinge is determined by a
scaler generalized yield function

f(§) =1 (1)
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where

Ej = Yj / aj j=1,2,3,4 (2)
in which the four elements of Y denote the current values
of the axial force, bending moments about the principal
axes, and torque respectively. (For convenience the depen-
dence of f on transverse shear is neglected). Thus, the
components of § are normalized stress resultants in local
beam coordinates. The scaling parameters aj are considered
as constitutive properties of the hinge whose value depends
upon the history of plastic deformation. In particular we
assune

a. = a, (6.) J=1,2,3,4 (3)
where the scalers ej denote the accumulated plastic deforma-
tion in extension, biaxial bending, and torsion respectively.
Precise definitions of ej are given in Appendix A.

The experimental task is thus to determine the para-

meters aj. With the assumption embodied in (3), it is

sufficient to conduct tests in extension, pure bending, and

torsion. A number of factors must be considered in the design

of the experiments. These include:
1. The beam cross section must be supported at points
o* loadirg aud reaction to prevant local crushing
aue to extraneous stress concentrations.
2. The test must be displacement controlled oo that
the specimen does not collepse in the "softoning”

region of the load-displacement curve.
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3. The loading fixture must apply a constant direction
load over the entire large deformation range.

4. Specimens must be designed to insure a gage length
which is characteristic of hinge formation. Pre-
liminary tests in unconstrained specimens suggest
that twice the beam thickness is an appropriate
characteristic length.

A1l tests were done using displacement controlled, static
test machines. The torsion and tensile specimens required
no special treatment or unusual fixtures. The experimental
problem of meintaining a pure bending moment on a specimen
throughout a large deformation test is more difficult. The
specimen is mounted between two rigid end blocks which are attached
to a four point support fixture creating a pure couple about an axis
in the specimen.* Care must be taken to insure the hinge forms
in the center of the specimen to maintain the necessary symmetry.
A1l specimens were 1 inch square tubing with 0.075 inch walls.
The material was low carbon, automotive grade steel, 1040. Overall
specimen lengths varied in each test, but in every case internal
"plugs" were used to support the cross section at points of loadirg.
These plugs extended to the hinge site, leaving only a 2 inch gage
length free to deform. TFor the bending test the plugs were con-
toured a2t the hinge location to provide a gradual transition from

full to no wall support. Without this precaution the hinge is likely

* A more detailed discussion of the pure bending test is given
in Vol. 2.
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form near the plug end. The torsion and tension specimens
employed a rounded end insert more appropriate to a hinge with

an axis of symmetry along the longitudinal axis.

D.2 Test Results

The tensile test of the tube is shown in Fig. D.1 in
tne form of a stress-strain diagram. Strain is measured over
a two inch gage length in the unsupported wall region of the
test specimen. Although the test is essentially a uniaxial

stress-strain test, the choice of gage length permits the results
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to be interpreted as a hinge test for the axial stress
resultant. The results can be modeled rather well as
elastic-nerfectly plastic with a yleld stress of 61,500
psi. Although for small strains (below 5 x 10-4), the
slope of the elastic curve is nearly 30 x 106 psi, a better
fit of the data over the assumed linear range is a Young's
Modulus of 20 x 10° psi. The elastic-perfectly plastic
approximation is shown by dashed 1ines in the Figure. At
large strains (above 0.04) a waviness in the wall surface
occurred. The tube failed by a shear fracture through the
welded seam.

Results for the pure bending test are given in Fig.D.2.
The welded seam was located on the compressive side. Elastic
action of the support and specimen has been numerically
removed from the data. Thus the abscissa denotes plastic
hinge rotation over the gage length. A stress relaxation
phenomenon was observed at constant displacement. Separate
curves are given for "instantaneous' bending moment at time
of incremental loading and bending moment after 3 minutes
relaxation. The latter curve can be taken as a close approxi-
mation to static values.

Irn contrast to the axial test, the reductioa in the
moment carrving capacity of the hinge with increasing rotation
is dramatic. The associated development of the locel deforma-
tion during hinge formation is shown in Fig. D.3. This curve
may be of some value for future detailed analysis of the hinge
site.
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Results for a pure torsion hinge are shown in Fig. D.4.
Again, the elastic rotation has been removed from the data so
that only plastic rotation over the 2 inch gage length is given.
The hinge in this case is a spiral pattern with pronounced
folding of the walls into the star pattern shown. As in the
bending test a load relaxation is observed.

The torsion test could be run to very large rotations. In
tests of unconfined specimens, yielding occurs over the entire
unsupported length. Once the hinge forms, however, it is confined
to a relatively short length on the order of the dimensions of
the cross section. To eliminate the effect of overall yielding
from the hinge data, inserts were used to confine the gage length

to the characteristic length observed in unsupported specimens.

~-123-



d40d - NOILVWNUOJIAd HIDNIH

DNIQNHA

€' "DId

(S334¥930) NOILVLOY 3ONIH J1LSV1d

ol ozl 00l 08 09 ot oz o)
T T T T T T ) 0
—20
St 8
y
O
(@)
o —90
: (®)
3AILD3443NI o
¥313INONIINW o -18°0
S o)
(0]
0 2 O Bmyon
v
v
<7 -2
v
v
¥l
v
v -9
v

(S3HONI) MY SNOISNIWIO ¥31N0

-124-



-Gg1-

TORQUE (IN-LBS)

6000

5000

4000}E

3000

2000

1000

FRANENRY

|
|
i —>> 1I>
!
|

ZZ" GAGE LENGTH PLASTIC ROTATION

RELAXED LOA

(3MIN)) X

1 | ] | 1 |

o) SO 100 150 200 a25¢ 300

PLASTIC HINGE ROTATION (DEGREES)

FIG. D.4 PLASTIC HINGE ROTATION-
TORSION_




D.3 Hinge Constitutive Parameters
To use the above data to determine the constitutive
parameters aj, it is necessary to specity the yield function

f. In the present study we choose f as the hyper-ellipse

4
f= I E. =1 (4)

With (4) and (3) it follows that the dependence of aj on the
plastic deformation measures are given directly by the above
test results.

It remains to fit the data in a form convenient for
computational purposes. The characteristic shape observed in
the bending and torsion tests can be approximated by an exponential
function of the form 1

z

a = M 2 + bi [1 + ki(O—Om) } exp —ki(G—G )-! (3)

where 0 is the accumulated plastic rotation and @n is the value

L.

of 0 corresponding to the maximum value of a. For O<@m, 1i=1

and

0
Il

= (-1y) / (1-v)
(6)

/
p = -1 / (1=3)

o
|



y = (1 - klem) exp (klom) (7)

For 0O > @m, i 2 and

a, =8 , b, = f-B (8)

Equation (5) is a function of six parameters which may
be used to fit the test results. Four of the parameters have
simple physical interpretations and may essentially be deter-
mined by inspection; they are

M = maximum elastic moment

f = ratio of maximum value of a to M

ratio of the asymptotic value of a
for large 0 to M
@m= value of 6 at maximum value of o.
The remaining two parameters may be considered as hardening
and softening rates for the cross section. They may be
obtained by minimizing the error between (6) and the test

results in the two ranges O<Om, 0>0

m’
As shown in Fig. D.1 the plastic behavior in axial

extension may be modeled as perfectly plastic with a yield

stress cy of 61,500 psi. Thus the parameter ey is a constant

which is obtained from (5) by setting

Moo= = = =
M=Ao, 0,=0, f=8-=1 (9)

where A is the area of the cross section.
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beam specimen tested here are summarized in Table D.1.

HINGE EXTENSION BENDING TORSION

PARAMETERS a Ay, Cq ¢y

M 17,000 1bs. 4,500 in-1bs. 3,500 in-lbs.

f ! 1 1.34 1.27

8 1 0.40 0.54

Om 0 0.073 0.244

k1 - 31.9 43.1

k2 - 6.20 7.13
TABLE D.1 HINGE PARAMETERS FOR SQUARE TUBING

The specific numerical values obtained for the tubular

The

data shown is for a fit to the static (relaxed) curves in Figures

D.2 and D.4. Comparison hetween the test results and computed
\

values using equation (5) is shown in Fig. D.5 for bending and

Fig.

D.6 for torsion.
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