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Silicon–germanium alloys offer a system where the ratio of the electron impact ionization
coefficient~a! and hole impact ionization coefficient~b! varies from a value larger than unity~in
high silicon content alloys!, to a value smaller than unity~in high germanium content alloys!. We
report results fora andb for this alloy system. The electron results are based on a multivalley
nonparabolic band structure. The hole results are based on a six-bandk•p model for low energies
coupled to an eight-band model for high energies. We find that for the alloy Si0.4Ge0.6, a;b. Alloy
scattering is found to play an important role in determining the impact ionization coefficient. For
compositions around Si0.5Ge0.5, the strong alloy scattering is found to suppress the impact ionization
coefficient. © 1996 American Institute of Physics.@S0021-8979~96!03524-4#
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I. INTRODUCTION

Over the last decade, remarkable progress has b
made in the technology of SiGe epitaxy on a Si substra
Many important challenges of dislocation control,n- and
p-type doping, Ohmic contacts, etc., have been resolved. T
technology has matured to a stage where a number of gro
have reported superb heterojunction bipolar transistor perf
mances with cutoff frequencies approaching, or in som
cases exceeding, 100 GHz.1 In addition to electronic devices,
there is also considerable interest in avalanche photodio
~APDs!. High Ge content SiGe alloys can be used for dete
tors of long-haul communication optical signals~1.3 and
1.55 mm wavelengths!. Since these devices are compatib
with Si technology, this could open doors for very low cos
APDs.

In both electronic and optoelectronic devices, the impa
ionization induced breakdown is of great importanc
Electron-initiated impact ionization,a, and hole-initiated im-
pact ionization,b, limit the high power performance of elec-
tronic devices. Additionally, the ratioa/b is of great impor-
tance in the noise performance of APDs.

Although numerous device results have been reported
SiGe systems, there have been relatively few reports on
measurement and calculation ofa andb.2 In this paper, we
report calculations ofb anda for SiGe alloys. In this study,
we examine unstrained SiGe alloys. Such materials would
produced if the alloys were grown, for example, on a silico
substrate and the overlayer thickness was greater than
critical thickness. Our investigations focus on understandi
the threshold energies for electron and hole impact ionizat
and on the calculation ofa andb values.

In the next section, we discuss the formalism used f
our studies. In Sec. III, we present our results. Conclusio
are given in Sec. IV.

II. FORMALISM

A general formalism for the calculation of impact ion
ization consists of the following components:

a!Electronic mail: ncko@caen.engin.umich.edu
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~1! An appropriate description for the band structure o
the material. This is needed not only to describe the tran
port, but also to obtain the threshold energy for impact io
ization.

~2! A description of the scattering processes, including
proper model for impact ionization.

~3! A description of carrier transport so that macroscop
quantities such asa andb can be obtained.

In this section, we will describe the approach used f
each of these.

A. Band structure

The band structure of a material is the most importa
component in a transport calculation. For the problem
hand, we use several different band-structure models,
pending upon whether we are describing the conducti
band or the valence band.

1. Bandstructure for electron transport

Silicon, germanium, and their alloys are all indirec
band-gap materials. The bottom of the conduction band in
occurs at~0.85, 0, 0!2p/a ~wherea is the lattice constant!
and the five other equivalent points along theG–X direction.
The six valleys produced are highly anisotropic. In Ge, th
bottom of the conduction band occurs at theL point and
there are four equivalent conduction band valleys. For lo
electric field ~<50 kV/cm! in Si, the inclusion of only the
lowest valleys for electron transport is adequate. Howev
for the general alloy, and for high field transport~especially
for breakdown studies!, it is essential that bothL and X
valleys be included. Single analytical expressions for th
E–k relationship can be used for each of these valleys, sin
the band edges occur at differentk points and the valleys are
not degenerate ink space.

Near the bandedges, indirect gap semiconductors ha
the form,

E~k!5E~k0!1
\2

2 F ~kl2kl0!
2

ml*
1

~kt2kt0!
2

mt*
G , ~1!
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TABLE I. Si and Ge conduction band parameters.

Parameter Symbol Units Si value@Ref.# Ge value @Ref.#

Nonparabolicity aX eV21 0.5 3 0.5 •••
aL eV21 0.3 4 0.33 4

Effective mass mlX* m0 0.916 5 1.791 4
mtX* m0 0.190 5 0.204 4
mlL* m0 1.590 3 1.387 4
mtL* m0 0.126 4 0.101 4

Band edge eX eV 0 ••• 0.173 4
eL eV 1.05 4 0 •••
-
e

s
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1.

the
whereml* andmt* are the longitudinal and transverse effec
tive masses and (kl0,kt0) represents the band edgek point.
Away from the band edges the bands are nonparabolic
nature. Therefore, it is convenient to use nonparabolic ba
structure to express the conduction band. The poin
(kl0,kt0) are ignored in Monte Carlo simulation, becaus
each conduction band valley is treated as an independ
energy surface. Explicit tracking of the point (kl0,kt0) is not
needed in a Monte Carlo simulation since each conduct
band valley is treated as an independent energy surface. O
insofar as thef and g scatterings are concerned does on
need to keep track of the different valleys. An approxima
description is given by

g~E!5E~11aE!,
~2!

5
\2

2 S kl2ml*
1

kt
2

mt*
D .

This expression is known to be valid forL andX conduction
bands valleys. The values of the band parameters such
nonparabolicity~a!, effective masses~ml* andmt* for longi-
tudinal and transverse effective mass, respectively!, and val-
ley separations betweenX andL valleys are given in Table
I.3–5
FIG. 1. Conduction band edge of the unstrained SiGe alloy, as a function
the germanium content.
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TABLE II. Si and Ge valence band parameters.

Parameter symbol units Si value@Ref.# Ge value @Ref.#

Spin–orbit splitting D0 eV 0.044 10 0.282 11
k•p parameters L 25.78 12 230.35 12

M 23.44 12 24.85 12
N 28.64 12 234.14 12

Deformation potential a eV 2.1 13 2.0 13
b eV 21.5 13 22.2 13
d eV 23.4 13 24.4 13
d0 eV 29.3 14 40.0 14
-
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In the SiGe alloy we use the virtual crystal approxima
tion to describe the band structure. According to this, th
high symmetry points in the Brillouin zone are obtained from
the Si and Ge values by the relation

Eall~ki !5~12x!ESi~ki !1xEGe~ki !. ~3!

Although the conduction band structure is ellipsoid, it i
mapped onto a sphere in the Monte Carlo simulatio
through the Herring–Vogt transformation.3

The band parameters, such as the nonparabolicity a
the effective mass, in SiGe are found by interpolation
those in Si and Ge. To determine the energy values at
band edge, we use a quadratic relation with a bowing para
eter. The bowing parameter is chosen to be 0.24 from expe
mental values.6 The energy separation from the valence ban
is given by

eX51.1220.523x10.24x2, ~4!

eL52.1721.746x10.24x2, ~5!

where x is the Ge mole fraction. The band gap is chose
from the smaller of the two expressions given above. TheX
andL point band edges in the SiGe alloy are shown in Fig.
As can be seen, the alloy maintainsX-like conduction band
edge between 0 and 85% Ge. Beyond this, the bottom of
conduction band becomesL like as in Ge.
of

TABLE III. Si and Ge TBM parameters.

Parameter Symbol Units Si value Ge value

TBM parameters Vs0 eV 24.19 25.8267
from Ref. 21 Vp0 eV 0.2 0.6133

Vs1 eV 24.19 25.8267
Vp1 eV 0.2 0.6133
Vs0s1s eV 22.08 21.69
Vs0p1s eV 2.12 2.03
Vs1p0s eV 2.12 2.03
Vp0p1s eV 2.324 2.55
Vp0p1p eV 20.517 20.67
Vs0s0s eV 0 0
Vs0p0s eV 0 0
Vp0p0s eV 0.58 0.41
Vp0p0p eV 20.1 20.08
Vs1s1s eV 0 0
Vs1p1s eV 0 0
Vp1p1s eV 0.58 0.41
Vp1p1p eV 20.1 20.08
Yeom, Hinckley, and Singh
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2. Bandstructure for hole transport: The k –p method

To describe the hole transport it is not possible to use
simple analytical expression. This is due to thek-space de-
generacy of the heavy-hole~HH! and light-hole~LH! states
and their strong interaction. We use two approaches to
scribe the hole transport. Fork values close to the Brillouin
zone center~up to 10% of the zone edge values! we use the
k•p method. Beyond this, we use the tight-binding metho
~TBM!. It is important to use the more accurate~i.e., with a
better fit to the band-edge hole masses! k•p method at low
fields. This ensures a good agreement with low fie
J. Appl. Phys., Vol. 80, No. 12, 15 December 1996
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velocity–field results. Furthermore, even at high fields,
large portion of the carriers remain in the comparative
low–energy region of the band structure. By using this h
brid approach, the transport of the large body of carriers ne
the top of the band is treated accurately, while the impa
ionization involving very high-energy carriers uses a ban
structure with reasonably accurate high-energy values.

In modeling the valence band structure for smallk val-
ues, we use a six-bandk•p Hamiltonian with spin–orbit cou-
pling. The band structure is obtained by calculating the e
genvalues ofHkp1Hso . Thek•p Hamiltonian matrix is:7
Hkp5F H8
0333

0333

H8 G↑↓,
~6!

H852
\2

2m0
F Lkx21M ~ky

21kz
2!

Nkxky
Nkzkx

Nkxky
Lky

21M ~kz
21kx

2!

Nkykz

Nkzkx
Nkykz

Lkz
21M ~kx

21ky
2!
G xy
z
,

n
lk

e-
m-
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wherem0 is the free electron mass. The dimensionless ter
L, M , andN are related to the Luttingerg parameters:8

L5g114g2 ,

M5g122g2 , ~7!

N56g3 .

The spin–orbit interaction is included by addingHso to Hkp .
In the above basis,Hso is

9

Hso5
D0

3 F 0i00
0
1

2 i
0
0
0
0
i

0
0
0

21
2 i
0

0
0

21
0

2 i
0

0
0
i
i
0
0

1
2 i
0
0
0
0

G x↑y↑z↑x↓
y↓
z↓

, ~8!

whereD0 is the zone center~k50! spin–orbit splitting.
The effect of alloying is included through the virtua

crystal approximation by a simple weighted average of t
Kohn–Luttinger parameters. This band structure adequat
describes the HH, LH, and split-off hole~SH! bands. In
Table II, we give the important parameters to describe t
valence band of Si and Ge.10–14

3. Band structure for hole transport: Tight binding
method

The k•p method and its representation through th
Kohn–Luttinger model discussed above gives a good d
scription of the band structure fork values up to 10% of the
Brillouin zone edge values, which translates to energies
up to;0.5 eV. This implies that we can use thek•p method
for transport up to fields of;50 kV/cm, but not for fields
approaching breakdown values. To study very high fie
transport, we have used the empirical tight-binding meth
for the band structure.
ms
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e
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The empirical tight-binding method15 has proved useful
in studying the electronic properties of solids. It has bee
applied to study the real and complex band structure of bu
materials,16,17 energy levels in superlattices,18,19 and elec-
tronic states and transport properties at interfaces.20 These
properties are derived implicitly through matrix elements d
pendent on the tight-binding parameters of materials co
prising the heterostructure. Choosing the latter to yield t
correct band gaps and band curvatures at points of high sy
metry in the bulk band structures of these materials ensu
an accurate description of the electronic state in the hete
structure. This implicit treatment is particularly well suited t
study electronic properties in the SiGe system, since t
tight-binding parameters of SiGe for varying Ge content ma
be obtained from those of Si and Ge using the virtual crys
approximation.

In most semiconductors thesp3 basis set is used for the
expansion of the Wannier functions. An example is a tigh
binding fit for Si and Ge using eight orbitals, four each fo
the two unit cell atoms, yielding 838 matrix representation
for the bulk tight-binding Hamiltonian~without spin–orbit
coupling!. We employ this eight-band basis retaining up t
second nearest-neighbor interactions. The tight-binding p
rameters used are given in Table III.21

In our transport formalism, we have used a combinatio
of the k•p method for low-energy transport~to save com-
puter time and maintain accuracy for low field transport! and
the tight-binding method when the carrier energy is hig
This hybrid model also includes a transition region in whic
the energy value in a band is a linear interpolation of thek•p
and TBM values. An example band structure, for silicon,
shown in Fig. 2. In Fig. 2~a!, the three regions are clearly
evident. Figure 2~b! shows the differences, at higher ener
gies, between thek•p and the tight-binding band structures
6775Yeom, Hinckley, and Singh
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FIG. 2. ~a! Schematic valence band, showing regions wherek•p and tight-
binding methods are used and the transition region between them.~b! Dif-
ferences between thek•p ~dashed lines! and tight-binding~solid lines! band
structures.
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B. Scattering mechanisms

The transport of carriers in semiconductor is dominat
by a scattering mechanism. In fact, without scattering, t
particle will simply undergo Bloch oscillations in the Bril-
louin zone. One can conceptually think of the particle tran
port as a series of free flights in the applied field followed b
scatterings. The free flight trajectory of the electron is know
through the equation

\
dk

dt
5eF, ~9!

whereF is the electric field. The energy of the particle i
simply obtained from theE versusk relation.

In Table IV, we show the various scattering process
that are of importance in Si, Ge, and SiGe alloy. Also me
tioned are some of the important properties of the scatter
mechanisms. In this section, we will briefly describe the sc
tering mechanism and present the expression for the sca
ing rate and its angular dependence. All of the scatteri
rates are based on the use of Fermi’s Golden Rule for sc
tering. The scattering processes are similar for electrons a
holes. For electrons, the overlap function of the basis sta
is unity and, therefore, need not be explicitly present in fo
mulae for the scattering matrix elements. However, for hole
with coupling between six basis states, describing the wa
functions of the three-coupled hole bands~heavy, light, and
split-off!, the overlap function is not unity and does depen
on the initial and final wave vectors. The additional com
plexity arising from this coupling will be noted, where rel
evant, in the following discussion.
6776 J. Appl. Phys., Vol. 80, No. 12, 15 December 1996
TABLE IV. Characteristics of primary electron and hole scattering pro
cesses in Si12xGex .

Scattering mechanism Comments

Alloy scattering Arises from random potential fluctuation
in alloys. Is absent in Si and Ge. Alloy
potential is obtained from experiments.
Scattering is elastic.

Acoustic phonon scattering Arises from in-phase vibrations of the
two-unit cell atoms. For most cases, the
scattering is elastic.

Optical phonon scattering Arises from out-of-phase vibrations of the
unit cell atoms. Scattering is inelastic.
This is the most important source of energy
loss.

Ionized impurity scattering Coulombic scattering due to dopant atoms
Scattering is elastic.

Impact ionization Coulombic interaction mediated scattering.
Causes mobile carrier
multiplication.
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Two mechanisms of lattice scattering are used in th
work: deformation potential acoustic phonon scattering a
deformation potential~nonpolar! optical phonon scattering.
Alloy scattering is included as an additional scatterin
mechanism in the alloy compositions studied. For hole
each scattering mechanism may drive both inter- and int
band transitions between and within the three valence ban
This results in three intraband and six interband modes
scattering for each mechanism.

Scattering rates for transitions from bandn ~i.e., HH,
LH, or SH! to bandn8 ~i.e., HH, LH, or SH! by mechanism
m ~i.e., acoustic phonon, optical phonon, or alloy scattering!,
are calculated using Fermi’s second Golden Rule

Wm;n,n8~k!5
Vc

~2p!3
2p

\ E d3k8uMm;n,n8~k,k8!u2

3d~En1DEm2En8
8 !, ~10!

whereM is the scattering matrix element,Vc is the crystal
volume, and the density of final states is given by the de
function. Conservation of energy reduces this integral fro
three to two dimensions, with the integration being carrie
out over the constant energy surfaceE 5 En8

8 . Because of the
complex warped nature of the valence band constant ene
surfaces, the integration is done numerically. We have fou
a ten-point Newton–Cotes algorithm to work satisfactori
for the integration of each dimension separately.

As indicated by the form of the valence band Hami
tonian @Eqs. ~7! and ~8!#, the valence band wave functions
are composed of six basis states:

u j &P$ux↑&,uy↑&,uz↑&,ux↓&,uy↓&,uz↓&%. ~11!

A specific hole wave function, in bandn, at wave vectork,
can be expressed as

un,k&5(
j51

6

u j &^ j un,k&. ~12!

The matrix elements of the scattering Hamiltonians are in
tially calculated in terms of the basis functionsu j &. Then, to
Yeom, Hinckley, and Singh
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obtain the scattering matrix elements for a specific transiti
from un,k& to un8,k8&, the projection operators are used:

Mm;n,n8~k,k8!5 (
j , j 851

6

^n8,k8u j 8&^ j 8uHmu j &^ j un,k&,

~13!

whereHm is the scattering Hamiltonian for mechanismm.
In previous publications, lattice scattering has been d

cussed in detail. Therefore, we will further elaborate only o
alloy scattering and impact ionization scattering in this p
per.

1. Alloy scattering

Alloy scattering is modeled after the work of Harriso
and Hauser,22 treating the Si12xGex system as a random al-
J. Appl. Phys., Vol. 80, No. 12, 15 December 1996
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loy. The scattering potential,DU~r !, is taken to be a spheri-
cally symmetric square well of depthUall and radiusr 0, such
that its spherical volume is (4p/3)r 0

35a0
3/4. This represents

the effect of band-structure fluctuations in the mixed alloy
The alloy scattering rate for electrons in the conductio

band can be represented in a simple form. The scatter
matrix element is

M ~k,k8!5
ANx~12x!

Vc
E ei ~k2k8!•rDU~r !dr , ~14!

whereN is the number of primitive cells in the crystal andx
is the germanium mole fraction. Ifkd5k82k and u is an
angle betweenk andk8, then
M ~k,k8!5
ANx~12x!

Vc
E eikdr cosuDU~r !dr

5Uall

ANx~12x!

Vc
E
0

r0E
0

pE
0

2p

r 2eikd cosu sin udfdudr52pUall

ANx~12x!

Vc
E
0

r0E
0

p

r 2eikd cosu sin ududr

5
4pUall

kd
2

ANx~12x!

Vc
E
0

r0
kdr sin~kdr !dr5

4pr 0
3

3
Uall

ANx~12x!

Vc

3 sin~kdr 0!23~kdr 0!cos~kdr 0!

~kdr 0!
3 . ~15!
:

w

n-
r,

n-

ix
For holes, the diagonal scattering matrix element betwe
basis statesu j & and uj 8& ~j5 j 8! is the same as the above
expression for electrons. The off-diagonal terms are zero

^ j 8uHu j &5d j j 8

ANx~12x!

Vc

3Uall

3 sin~kdr 0!23~kdr 0!cos~kdr 0!

~kdr 0!
3 . ~16!

Whenkdr 0!1, the matrix element is simplified to

M ~k,k8!'
4pr 0

3

3
Uall

ANx~12x!

Vc
. ~17!

Therefore, the matrix element is constant and independen
the magnitude of the difference wave vector,kd , when the
energy of carrier is low. The constant matrix element mak
alloy scattering random, because it is not a function ofu. On
the other hand, at high energy or in alloy cluster,kdr 0 cannot
be ignored, since the complete form of the matrix eleme
depends on the magnitude ofkd . Even if the carrier energy is
high, the smallu leads to a smallkd that means alloy scat-
tering at high energy is a forward scattering. As the carri
energy decreases, the alloy scattering becomes random.

The alloy scattering rate is given by Fermi’s Golde
Rule

Wkk85
Vc

8p3

2p

\ E uM ~k,k8!u2d~ek2ek8!dk8, ~18!

whereVc is the crystal volume. Ift5kr0, then
en

t of

es

nt

er

n

Wkk85
16p3U0

2r 0
6

\t2
N~ek!P~t!, ~19!

whereN(ek) is a density of states andP~t! is a function of
wave vector~or energy! of initial state and converges to
unity whenkr0 is small.

P~t!5
9

~2t!2
E
0

2t ~sin t2t cos t !2

t5
dt

5
9

8t2 S 12
1

~2t!2
1
sin 4t

~2t!3
2
sin2 2t

~2t!4 D'1,

if t!1. ~20!

Therefore, the value ofP~t! stands for how much the alloy
scattering deviates from the constant matrix element at lo
energy.

As a summary for carrier of low energy,~i! the alloy
matrix element is constant,~ii ! the matrix element is inde-
pendent of the scattering angle, and the final state is ra
domly chosen. For carrier of high energy or in alloy cluste
~i! the alloy matrix element iskdr 0 dependent,~ii ! the matrix
element is also a function of the scattering angle so thatthe
alloy scattering becomes more forward scattering as the e
ergy is increased, and~iii ! the alloy scattering rate is smaller
when it is compared with the value from the constant matr
element expression.
6777Yeom, Hinckley, and Singh



TABLE V. Threshold energy for electron and hole impact ionization in pu
silicon and pure germanium. Units are eV for all the values.

Silicon Germanium

Band-gap energy 1.120~1.1! 0.664~0.7!
Electron threshold energy

X valley 1.122 ~1.1! 0.839~0.9!
L valley ••• 0.823~0.8!

Hole threshold energy
HH 1.700 ~1.8! 0.900~0.9!
LH 1.703 ~2.1! 0.994~1.0!
SH 2.082 ~2! 1.486~1.4!
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2. Impact ionization scattering

Impact ionization starts to become an important scatt
ing process once the carrier energies are high enough
cause interband transitions. This occurs at fields greater t
100 kV/cm. The impact ionization is a carrier–carrier sca
tering process mediated by Coulombic scattering. While,
principle, this scattering is simple, in practice, there is n
simpleab initio derivation of the scattering rate that result
in an analytical model. What can be derived is the thresho
energy for the scattering process. The threshold energy ar
from the energy and momentum conservation of the p
ticles.

Focusing on the electron initiated breakdown,
Ec~k1!,Ec~k2!,Ev~k3! are the energies~momentum! of the fi-
nal electrons and hole andEf~K f! is the energy~momentum!
of the initiating electron, we have

Ef5Ec~k1!1Ec~k2!2Ev~k3!, ~21!

and

K f5k11k22k3 , ~22!

whereEc~k! and Ev~k! are energy of carriers atk in the
conduction band and valence band, respectively, when e
tron impact ionization is considered. To minimize the tot
energy Ef for a given momentumK f , the final carriers
should have the same group velocity.23 With this condition
and the given band structure, the threshold energy can
found.

Having established band structure, the threshold ene
for impact ionization can be calculated. Table V represen
the results for pure silicon and pure germanium with ban
gap energy used in the calculation. The data in the parent
sis are the values from Ref. 24. For electron threshold e
ergy, the threshold energy in silicon is almost the same as
band-gap energy. In addition, there is no threshold conditi
for electrons of theL valley in silicon. On the other hand,
germanium has a threshold condition in bothX andL valleys
and the threshold energy is slightly larger~0.1–0.2 eV! than
the band gap in theL valley. For hole threshold energy, ther
are nine combinations of the band. The smallest thresh
energy value in each band is listed in Table 5. In both Si a
Ge, the smallest threshold condition occurs in HH.

Figure 3 shows the electron threshold energy results
the unstrained Si12xGex alloys. The solid lines are band-gap
energies from the valence band edge to theX andL conduc-
tion band edges and the marks are the threshold energie
6778 J. Appl. Phys., Vol. 80, No. 12, 15 December 1996
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FIG. 3. Threshold energy for electron impact ionization in unstraine
Si12xGex on a $100% silicon substrate, shown as discrete points. Solid line
are the correspondingX-valley andL-valley band gaps.
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each direction. For theX valley in the unstrained case, the
threshold energy exactly follows the band gap for the ent
germanium mole fraction range considered. Therefore, t
threshold energy in theX valley can be simply expressed by
Eq. ~4!. For electrons in theL valley, the threshold energy is
slightly larger than the band gap and there is no thresho
condition from 0% to 50% germanium. The threshold energ
in theL valley is expressed by

Eth L50.484 81x221.8159x12.1543, if x>0.5. ~23!

In the strained case, it is very important to note that th
decrease of the heavy hole mass has no effect on the thre
old energy because of the fact that final carriers lie appro
mately at the band edge where the group velocity is almo
zero.

Figure 4 shows the hole threshold energy results for S
Ge, and unstrained SiGe alloys. Alloys with a Ge mole fra
tion up to 50% and above 80%, have the lowest thresho
energy for heavy-hole-initiated impact ionization. In low G
mole fraction alloys, an electron in the valence band intera
with a carrier in theX valley of the conduction band, since it
is the lowest type of conduction band valley and has t
smallest energy separation with the valence band. As
mole fraction increases, theL-valley energy separation starts
to decrease very sharply and becomes the dominant cond
tion valley for interaction of impact ionization. Because th
threshold energy in SH is 0.4–0.5 eV higher than that of t
other bands, the heavy-hole and light-hole bands are
main sources of hole-initiated impact ionization.

As noted earlier, the total scattering rate cannot be d
terminedab initio as a simple analytical model. However
several models, including the Keldysh model, the Thom
model, and the Cartier model, have been proposed to giv
good description of the scattering rate.

The Keldysh model describes the impact ionization ra
as
Yeom, Hinckley, and Singh



FIG. 4. Threshold energy for hole impact ionization in unstrained Si12xGex .
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whereP is the dimensionless parameter,Eth is the threshold
energy for impact ionization, and 1/t~Eth! is the phonon scat-
tering rate averaged over all carrier wave vectors correspo
ing to the threshold energyEth . P is a fitting parameter that
is found by comparison of the calculated value with the e
perimental data.

The Keldysh model has a~E2Eth!
2 energy dependence

that arises from the integration over the final density of sta
in the scattering process. This is appropriate for electrons
direct band-gap materials. We use the Keldysh model
hole transport, but for electron transport, it is known that th
initial breakdown is very ‘‘soft.’’25 To represent the initial
soft region, we use the Thoma model.26

The Thoma model introduces a combination of a set
expressions that represent the soft threshold near the thr
old energy and harder threshold at high energy. It is e
pressed by

Wimp~E!5H 0 if E,Eth 1

W2~E! if W2~E!>W3~E!

W3~E! if W2~E!,W3~E!
, ~25!

where
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TABLE VII. Si and GeX–X electron intervalley scattering parameters.

Parameter Symbol Units Si value Ge value

Intervalley (X–X)
deformation potential
from Ref. 3

Dg1 108 eV/cm 11.0

Dg2 108 eV/cm 0.8 0.7
Dg3 108 eV/cm 0.5 9.5
Df1 108 eV/cm 2.0
Df2 108 eV/cm 2.0
Df3 108 eV/cm 0.3

Phonon energy
from Ref. 3

\vg1 meV 62.05

\vg2 meV 18.53 8.62
\vg3 meV 12.06 37.06
\vf1 meV 59.03
\vf2 meV 47.40
\vf3 meV 18.96
nd-

x-

tes
in
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e
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esh-
x-

Wn~E!5
Pn

t~Eth n!
SE2Eth n

Eth n
D n5AnSE2Eth n

eV D n. ~26!

Here, we have grouped all of the factors that do not depe
on the carrier’s energyE, into the termAn . The cubic rela-
tion around the threshold energy describes the ‘‘super’’ so
region near the threshold. The parameterP, or equivalently
An , was rescaled for the band structure and scattering ra
used in this work because of the overestimated value in
Thoma model. This was done by adjusting the values ofAn

to achieve a good agreement between the simulation res
for silicon and the measured results from the literature. Sp
cifically, the values used forAn were: A258.7831012 s21

andA355.5831012 s21.

C. Transport formalism

The formalism used to study the carrier transport
based on the Monte Carlo method. The electron Monte Ca
program is relatively simple and is based on the metho
outlined in Refs. 3 and 27. The final state wave vector aft
impact ionization is chosen from a random distribution o
states with average energy equal to 3kBT/2. The final states
after scattering by all of the other processes~phonon and
alloy scattering!, are determined in the customary manne
using the differential scattering rate of the scattering mech
nism involved. In Tables VI, VII, VIII, we give all of the
important parameters used in the electron Monte Carlo sim
lation.
TABLE VI. Si and Ge electron phonon scattering parameters.

Parameter Symbol Units Si value @Ref.# Ge value @Ref.#

Acoustic phonon
deformation potential

DX eV 9.9 ••• 9.9 •••

DL eV 8.5 ••• 8.5 •••
Phonon speed s 105 cm/s 9.04 5 5.0 •••

Nonpolar optical phonon
deformation potential

D0X 108 eV/cm 4.51 ••• 4.51 •••

D0L 108 eV/cm 6.80 ••• 6.80 •••
Phonon energy \v0 meV 63.34 3 37.06 3
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TABLE VIII. Si and GeX–L, L–L electron intervalley scattering parameters.

Parameter Symbol Units Si value @Ref.# Ge value @Ref.#

Intervalley (X–L)
deformation potential

DXL1 108 eV/cm 2.0 5 4.1 3

DXL2 108 eV/cm 2.0 5
DXL3 108 eV/cm 2.0 5
DXL4 108 eV/cm 2.0 5

Phonon energy \vXL1 meV 57.91 5 27.58 3
\vXL2 meV 54.64 5
\vXL3 meV 41.36 5
\vXL4 meV 16.98 5

Intervalley (L–L)
deformation potential

DLL1 108 eV/cm 3.0 ••• 3.0 3

DLL2 108 eV/cm 0.2 ••• 0.2 3
Phonon energy \vLL1 meV 27.58 ••• 27.58 3

\vLL2 meV 10.34 ••• 10.34 3
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The hole Monte Carlo is somewhat more complex, du
to the highly anisotropic nature of the valence band structu
The approach used is based on the techniques develope
Hinckley and Singh.28–31 These references also contain th
values of the material parameters used. The approach
been extended to include the eight-band tight-binding mod
for the band structure when the hole energies are abo
0.5 eV.

III. RESULTS

In this section we will discuss the results fora andb. As
noted in the introduction, our focus will be on high Ge con
tent SiGe alloys.

A. Impact ionization coefficients in Si and Ge

Before beginning the calculation of the impact ionizatio
coefficient in the Si12xGex alloy, Monte Carlo simulations
were performed for pure silicon to confirm the scatterin
parameters. Because the electron impact ionization rate n
the threshold in indirect material is very soft and has a thir
order dependence upon~E2Eth! ~Ref. 25! rather than a
second-order dependence like the Keldysh model,32 the
Thoma model26 is used in the calculation to describe th
‘‘super’’ soft region near the threshold. In Fig. 5, the Mont
Carlo results for electrons in pure Si are shown. Also show
are experimental results.24,33,34The calculated values show a
good agreement with the experimental data from~Ref. 35!,
which is known to be one of the most refined sets of me
surements. For high Si content SiGe alloys we will on
focus ona sinceb is almost an order of magnitude smaller

Figure 6 shows the calculated impact ionization coef
cient of electrons and holes in Ge. We show two sets
experimental data.36,37 There is some disparity between th
published experimental results, although both results show
similar ratio betweenb anda with b always larger thana.
As can be seen from Fig. 6, our results fall within the e
perimental results.

B. Impact ionization coefficients in SiGe alloys

Having validated our Monte Carlo model, we now con
sider the Si12xGex alloy. As noted earlier, we will consider
Phys., Vol. 80, No. 12, 15 December 1996
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the case where the alloy is unstrained. This situation wou
arise if a thick ~several microns! layer of Si12xGex was
grown on a silicon substrate. We assume that effects of a
dislocations that may be present in the alloy are negligibl

Monte Carlo parameters with the calculated thresho
energy are used to study the impact ionization in Si12xGex
alloy. In the Si12xGex alloy, an important additional scatter-
ing is the alloy scattering. Recently, the alloy scattering h
been described by a set of parametersUall and r 0, where
assuming a perfectly random alloy, it has been found th
Uall50.7 eV andr 05)a/4 ~2.36 Å!.27 To show the impor-
tance of alloy scattering, in Fig. 7, we give results for impa
ionization in Si0.9Ge0.1 with and without alloy scattering. We
see that when alloy scattering is included, the impact ioniz
tion is suppressed by about 20%. Also, the effect of allo
scattering is more important at lower fields.

Before discussing the results fora andb, it is useful to
examine, on a physical basis, what is to be expected. As
Ge content is increased, the band gap decreases. On
e
e
n

a-
ly
.
fi-
of
e
a

x-

- FIG. 5. Electron impact ionization coefficient from Monte Carlo simula
tions, compared with experimental data in pure silicon.
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ct
FIG. 6. Electron and hole impact ionization coefficient from Monte Car
simulations, compared with experimental data in pure germanium.
e-
, as

h
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wn

ri-

at
e-
or
basis, we expect that the impact ionization should increa
for a given field. However, as the Ge composition is in
creased, the alloy scattering increases up to a Ge conten
50%. The increasing alloy scattering randomizes the carr
distribution and suppresses the energy that the carriers
gain from the field. This, in turn, tends to suppress the im
pact ionization. Thus, there is a competition between t
effect of decreasing band gap and increasing alloy scatteri
However, once the Ge content exceeds 50%, the effect
alloy scattering weakens.

In Fig. 8, we show the impact ionization for electrons i
SiGe as a function of alloy composition at electric field va
ues of 333 and 500 kV/cm. We note that as the Ge conten
increased from zero, initially the values ofa remain almost
unchanged, even though the band gap is shrinking. At
ct
FIG. 7. Electron impact ionization coefficients for Si0.9Ge0.1 with and with-
out alloy scattering. The results are compared with results for silicon.
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FIG. 8. The effect of Ge mole fraction on the electron and hole impa
ionization coefficient.
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compositions between 0.4 and 0.6, the impact ionization d
creases somewhat before again increasing. The reasons
discussed above, have to do with the alloy scattering.

In Fig. 9, we show the hole impact ionization for Ge-ric
alloys. There is a steady increase inb values as the Ge con-
tent is increased. This is primarily the result of the sharp
decreasing threshold energy for impact ionization as sho
in Fig. 4.

Finally, in Fig. 10, we show theb/a ratio for the alloys
as a function of composition. Also shown are some expe
mental results~along with error bars! from published data.2

Theb/a ratio approximately equals 3 in Ge and we see th
it steadily decreases as the Ge content in the alloy is d
creased. It reaches a value of approximately 0.8 f
Si0.4Ge0.6.
FIG. 9. The effect of Ge mole fraction on the electron and hole impa
ionization coefficient.
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FIG. 10. Theb/a ratio with Ge mole fraction at 330 kV/cm. The Monte
Carlo simulation results are compared with the experimental data fr
Ref. 2.
-

es
IV. CONCLUSIONS

In this paper, we have calculated the electron and ho
impact ionization coefficients in SiGe alloys. The importanc
of alloy scattering in suppressing impact ionization has be
identified. Due to the alloy scattering,a does not increase
from its value in Si, as the Ge mole fraction is increase
Hole impact ionization has been calculated for Si12xGex
with x>0.6. We find that for Si0.4Ge0.6, theb/a ratio is ap-
proximately equal to 0.8 and it reaches a value of appro
mately 3 for Ge. Our results show good agreement with pu
lished measured results on theb/a ratios in Si and in Ge.
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