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Silicon—germanium alloys offer a system where the ratio of the electron impact ionization
coefficient(a) and hole impact ionization coefficiefiB) varies from a value larger than uniin

high silicon content alloys to a value smaller than unityin high germanium content alloysWe
report results fore and B for this alloy system. The electron results are based on a multivalley
nonparabolic band structure. The hole results are based on a six<bpndodel for low energies
coupled to an eight-band model for high energies. We find that for the alloB8j ¢ a~B. Alloy
scattering is found to play an important role in determining the impact ionization coefficient. For
compositions around §iGe, 5 the strong alloy scattering is found to suppress the impact ionization
coefficient. © 1996 American Institute of Physids§0021-897@6)03524-4

I. INTRODUCTION (1) An appropriate description for the band structure of

Over the last decade, remarkable progress has bedhe material. This is needed not only to describe the trans-
made in the technology of SiGe epitaxy on a Si substratePOrt, but also to obtain the threshold energy for impact ion-
Many important challenges of dislocation contrak, and ization.
p-type doping, Ohmic contacts, etc., have been resolved. The (2) A description of the scattering processes, including a
technology has matured to a stage where a number of groufsoper model for impact ionization.
have reported superb heterojunction bipolar transistor perfor-  (3) A description of carrier transport so that macroscopic
mances with cutoff frequencies approaching, or in somdluantities such aa and 3 can be obtained.
cases exceeding, 100 GHin addition to electronic devices, In this section, we will describe the approach used for
there is also considerable interest in avalanche photodiodé&ch of these.

(APDs). High Ge content SiGe alloys can be used for detec-

tors of long-haul communication optical signal$.3 and
1.55 um wavelengths Since these devices are compatible
with Si technology, this could open doors for very low cost ~ The band structure of a material is the most important
APDs. component in a transport calculation. For the problem at

In both electronic and optoelectronic devices, the impachand, we use several different band-structure models, de-
ionization induced breakdown is of great importance.pending upon whether we are describing the conduction
Electron-initiated impact ionizatiory, and hole-initiated im- band or the valence band.
pact ionization 8, limit the high power performance of elec-
tronic devices. Additionally, the ratia/g is of great impor-
tance in the noise performance of APDs. Silicon, germanium, and their alloys are all indirect

Although numerous device results have been reported oband-gap materials. The bottom of the conduction band in Si
SiGe systems, there have been relatively few reports on theccurs at(0.85, 0, 02x/a (wherea is the lattice constapnt
measurement and calculation @fand 8.2 In this paper, we and the five other equivalent points along theX direction.
report calculations o and « for SiGe alloys. In this study, The six valleys produced are highly anisotropic. In Ge, the
we examine unstrained SiGe alloys. Such materials would bbottom of the conduction band occurs at thepoint and
produced if the alloys were grown, for example, on a siliconthere are four equivalent conduction band valleys. For low
substrate and the overlayer thickness was greater than tledectric field (<50 kV/cm) in Si, the inclusion of only the
critical thickness. Our investigations focus on understandingowest valleys for electron transport is adequate. However,
the threshold energies for electron and hole impact ionizatioffor the general alloy, and for high field transpéespecially
and on the calculation of and 8 values. for breakdown studigs it is essential that botih. and X

In the next section, we discuss the formalism used fowalleys be included. Single analytical expressions for the
our studies. In Sec. Ill, we present our results. Conclusiong—k relationship can be used for each of these valleys, since
are given in Sec. IV. the band edges occur at differdnpoints and the valleys are
Il FORMALISM not degenerate ik space.

. ) . . Near the bandedges, indirect gap semiconductors have
A general formalism for the calculation of impact ion-

o . . the form,
ization consists of the following components:

A. Band structure

1. Bandstructure for electron transport

2 _ 2 _ 2
E(k)=E(k0)+% (ki—kio)?  (ki—kio)

. . . . * * 1 (1)
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TABLE I. Si and Ge conduction band parameters. TABLE Il. Si and Ge valence band parameters.

Parameter Symbol Units Si value[Ref] Ge value [Ref] Parameter symbol units Si valu¢Ref] Ge value [Ref]
Nonparabolicity ax eVl 05 3 0.5 Spin—orbit splitting Ay eV 0.044 10 0.282 11
L evt 03 4 0.33 4 k-p parameters L —5.78 12 -30.35 12
Effective mass mj mg 0.916 5 1791 4 M —3.44 12 485 12
m my 0.190 5 0.204 4 N —8.64 12 —-34.14 12
mjy my 1.590 3 1.387 4 Deformation potential a eV 2.1 13 2.0 13
my my 0.126 4 0.101 4 b eV -15 13 —-2.2 13
Band edge €x eV 0 0.173 4 d eV —-34 13 —-4.4 13
€ ev 1.05 4 0 . dg eV 293 14 40.0 14
wherem* andm{ are the longitudinal and transverse effec- In the SiGe alloy we use the virtual crystal approxima-

tive masses andk(,,k,q) represents the band edgepoint.  tion to describe the band structure. According to this, the

Away from the band edges the bands are nonparabolic ihigh symmetry points in the Brillouin zone are obtained from

nature. Therefore, it is convenient to use nonparabolic banthe Si and Ge values by the relation

structure to express the conduction band. The points _

(Ki0.ko) are ignored in Monte Carlo simulation, because Ean(ki) = (1=x)Esgi(ki) + XEge(ki). ()

each conduction band valley is treated as an independeAdthough the conduction band structure is ellipsoid, it is

energy surface. Explicit tracking of the poirk§ ko) isnot mapped onto a sphere in the Monte Carlo simulation,

needed in a Monte Carlo simulation since each conductiothrough the Herring—Vogt transformatidn.

band valley is treated as an independent energy surface. Only The band parameters, such as the nonparabolicity and

insofar as thef and g scatterings are concerned does onethe effective mass, in SiGe are found by interpolation of

need to keep track of the different valleys. An approximatethose in Si and Ge. To determine the energy values at the

description is given by band edge, we use a quadratic relation with a bowing param-

eter. The bowing parameter is chosen to be 0.24 from experi-

VE)=E(1+aB), mental value$.The energy separation from the valence bz?md

h2 (k2 K? @ s given by
=5 (—* + —*) - _ 2
mF - m ex=1.12—0.52%+ 0.24x~, (4)
This expression is known to be valid forand X conduction €, =2.17—1.746¢+0.24¢2, (5)
bands valleys. The values of the band parameters such as ) ) )
nonparabolicity(a), effective massegn® andm? for longi- wherex is the Ge mole fraction. The band gap is chosen

tudinal and transverse effective mass, respectiyelyd val- from the smaller of the two expressions given above. Xhe

ley separations betweef andL valleys are given in Table andL point band edges in the SiGe alloy are shown in Fig. 1.
| 3-5 As can be seen, the alloy maintaiKslike conduction band

edge between 0 and 85% Ge. Beyond this, the bottom of the
conduction band becoméslike as in Ge.

2.5 T T T T
TABLE lll. Si and Ge TBM parameters.
L - Valley Parameter Symbol Units Si value Ge value
- TBM parameters Vg eV —4.19 —5.8267
b from Ref. 21 Voo eV 0.2 0.6133
o Vg eV —4.19 —5.8267
2 Vo1 eV 0.2 0.6133
g Veosio ev —2.08 —-1.69
8 Veopio eV 2.12 2.03
Vsipoo eV 212 2.03
Voopio eV 2.324 2.55
0.0 Voopin eV -0.517 —0.67
. \Y; eV 0 0
Val B d s0s0o
alence Ban Vaonor oV 0 0
-0.5 1 1 { 1 VpOpOu eV 0.58 0.41
0.0 0.2 0.4 0.6 0.8 1.0 Vpopor ev -0l —0.08
Si Ge Vslsla eV 0 0
Ge Mole Fraction Veipio eV 0 0
Voipto eV 0.58 0.41
FIG. 1. Conduction band edge of the unstrained SiGe alloy, as a function of Vpipin eV -0.1 —0.08

the germanium content.
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2. Bandstructure for hole transport: The k - p method velocity—field results. Furthermore, even at high fields, a

To describe the hole transport it is not possible to use 4rge portion of the carriers remain in the comparatively
simple analytical expression. This is due to thepace de- ow—energy region of the band structure. By using this hy-
generacy of the heavy-holéiH) and light-hole(LH) states brid approach, the transport of the large body of carriers near
and their strong interaction. We use two approaches to déhe top of the band is treated accurately, while the impact
scribe the hole transport. Farvalues close to the Brillouin ionization involving very high-energy carriers uses a band
zone centefup to 10% of the zone edge valyese use the structure with reasonably accurate high-energy values.

k-p method. Beyond this, we use the tight-binding method  In modeling the valence band structure for snallal-
(TBM). It is important to use the more accurdt®., with a  ues, we use a six-bard p Hamiltonian with spin—orbit cou-
better fit to the band-edge hole magskesp method at low pling. The band structure is obtained by calculating the ei-
fields. This ensures a good agreement with low fieldgenvalues oH,,+Hg,. Thek-p Hamiltonian matrix ist

Ho o~ H"  Ogxs|T
kP 03x3 H' [
L2 [LE+M(Z+K2) Nkyk, Nkk,  x ®)
H'=—>— NkyK, LkZ+M (k5 +kZ) , Nkykg , Y,
0 Nkok, Nkjk, LK+ M(K2+K2) | 2

wherem, is the free electron mass. The dimensionless terms  The empirical tight-binding methdgihas proved useful
L, M, andN are related to the Luttingey parameters: in studying the electronic properties of solids. It has been
applied to study the real and complex band structure of bulk

L=y1t4y,,

materialsi®!’ energy levels in superlatticé$!® and elec-
M=1vy,—2v,, (7) " tronic states and transport properties at interfa€éEhese
N=67y,. properties are derived implicitly through matrix elements de-

pendent on the tight-binding parameters of materials com-
prising the heterostructure. Choosing the latter to yield the
correct band gaps and band curvatures at points of high sym-

The spin—orbit interaction is included by addiHg,to H,,,.
In the above basid{, is®

ro -i 0 0 0 17x7 metry in the bulk band structures of these materials ensures
i 0 0 0 0 —ify? an accurate description of the electronic state in the hetero-
H _ﬁ 0 O 0O -1 i 0|z ® structure. This implicit treatment is particularly well suited to
s3]0 0 -1 0 i 0O [x] study electronic properties in the SiGe system, since the
0O 0 —-i —=i 0 0|yl tight-binding parameters of SiGe for varying Ge content may
L1 i 0 0 0 0]z be obtained from those of Si and Ge using the virtual crystal

whereA, is the zone centelk=0) spin—orbit splitting. approximation. . _
The effect of alloying is included through the virtual In most semiconductors thep® basis set is used for the

crystal approximation by a simple weighted average of the&xpansion of the Wannier functions. An example is a tight-
Kohn-Luttinger parameters. This band structure adequatel§inding fit for Si and Ge using eight orbitals, four each for
describes the HH, LH, and split-off holéSH) bands. In the two unit cell atoms, yielding 88 matrix representation
Table Il, we give the important parameters to describe thdor the bulk tight-binding Hamiltoniar{without spin—orbit
valence band of Si and G& coupling. We employ this eight-band basis retaining up to
second nearest-neighbor interactions. The tight-binding pa-
rameters used are given in Table 3.

In our transport formalism, we have used a combination
of the k-p method for low-energy transpofto save com-

The k-p method and its representation through the . d maintai for low field d
Kohn-Luttinger model discussed above gives a good de[_)uter time and maintain accuracy for low field transpart

scription of the band structure férvalues up to 10% of the thg tlght-_bmdmg methqd when the carr_ler engrgy_ 1S h'_gh'
Brillouin zone edge values, which translates to energies of NS hybrid model also includes a transition region in which
up to~0.5 eV. This implies that we can use tkep method the energy value in a band is a linear interpolation ofkhe

for transport up to fields of-50 kV/cm, but not for fields and TBM values. An example band structure, for silicon, is
approaching breakdown values. To study very high fieldshown in Fig. 2. In Fig. @), the three regions are clearly

transport, we have used the empirical tight-binding methocevident. Figure @) shows the differences, at higher ener-
for the band structure. gies, between thk- p and the tight-binding band structures.

3. Band structure for hole transport: Tight binding
method
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TABLE IV. Characteristics of primary electron and hole scattering pro-

&l
K hod Transmo'ga) cesses in $i Ge,.
0.0 Tight- T Region _ _
Binding Scattering mechanism Comments
Method
% \ Alloy scattering Arises from random potential fluctuation
I 05 L ] in alloys. Is absent in Si and Ge. Alloy
' potential is obtained from experiments.
Scattering is elastic.
Acoustic phonon scattering Arises from in-phase vibrations of the
two-unit cell atoms. For most cases, the
-1.0 scattering is elastic.
05 (100) 00 (N0 05 Optical phonon scattering  Arises from out-of-phase vibrations of the
k (&™) unit cell atoms. Scattering is inelastic.
This is the most important source of energy
b) loss.
lonized impurity scattering  Coulombic scattering due to dopant atoms.
Scattering is elastic.
Impact ionization Coulombic interaction mediated scattering.
S Causes mobile carrier
iﬁ multiplication.

Two mechanisms of lattice scattering are used in this
work: deformation potential acoustic phonon scattering and
deformation potentia(nonpolaj optical phonon scattering.
FIG. 2. (a) Schematic valence band, showing regions whereand tight-  Alloy scattering is included as an additional scattering
binding methods are used and the transition region between tigrDif- mechanism in the alloy compositions studied. For holes,
ferences between the p (dashed linesand tight-bindingsolid lineg band each scattering mechanism may drive both inter- and intra-
structures. band transitions between and within the three valence bands.

This results in three intraband and six interband modes of
scattering for each mechanism.
B. Scattering mechanisms Scattering rates for transitions from band(i.e., HH,

The transport of carriers in semiconductor is dominated-H, or SH) to bandn’ (i.e., HH, LH, or SH by mechanism
by a scattering mechanism. In fact, without scattering, theén (i.., acoustic phonon, optical phonon, or alloy scattgring
particle will simply undergo Bloch oscillations in the Bril- are calculated using Fermi's second Golden Rule
louin zone. One can conceptually think of the particle trans- V. 27
port as a series of free flights in the applied field followed by =~ Wp. o/ (K)= W e f d3k’|M m;n,n,(k,k’)|2
scatterings. The free flight trajectory of the electron is known

through the equation X 8(Ep+AE,— Er’ﬂ), (10)
7 %:eF o) whereM is the scattering matrix elemen¥,, is the crystal
dt ’ volume, and the density of final states is given by the delta

function. Conservation of energy reduces this integral from
simply obtained from th& versusk relation. three to two dimensions, with the integration being carried

In Table IV, we show the various scattering processeQUt Over the constant energy surface- E, . Because of the
that are of importance in Si, Ge, and SiGe alloy. Also men-omplex warped natgre Qf the valence .band constant energy
tioned are some of the important properties of the scatteringUfaces, the integration is done numerically. We have found
mechanisms. In this section, we will briefly describe the scat® €n-point Newton—Cotes algorithm to work satisfactorily
tering mechanism and present the expression for the scattdR" the integration of each dimension separately. _
ing rate and its angular dependence. All of the scattering AS indicated by the form of the valence band Hamil-
rates are based on the use of Fermi's Golden Rule for sca%gn'an [Egs. (7) and (8)], the valence band wave functions
tering. The scattering processes are similar for electrons arfy® cOmposed of six basis states:
holes_. For electrons, the overlap functiqn .of the basis_ states  |j) e {|xT).lyT).|z1).Ix0). ]yl ). |z])} (11)
is unity and, therefore, need not be explicitly present in for-
mulae for the scattering matrix elements. However, for hoIes’,A‘
with coupling between six basis states, describing the wav&an be expressed as
functions of the three-coupled hole bantigavy, light, and 6
split-off), the overlap function is not unity and does depend  [n,k)= 2>, [j){j|n.k). (12
on the initial and final wave vectors. The additional com- =1
plexity arising from this coupling will be noted, where rel- The matrix elements of the scattering Hamiltonians are ini-
evant, in the following discussion. tially calculated in terms of the basis functiofj$. Then, to

where F is the electric field. The energy of the particle is

specific hole wave function, in band at wave vectok,
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obtain the scattering matrix elements for a specific transitioioy. The scattering potentiaU(r), is taken to be a spheri-

from |n k) to |n’ k), the projection operators are used: cally symmetric square well of depth,, and radiug , such
6 that its spherical volume is @3)r3=a3/4. This represents
M (K, K') = E ('K G Hml DG KD, the effect of band—str_ucture fluctuations in .the mixed alloy.
ijl=1 The alloy scattering rate for electrons in the conduction
(13 band can be represented in a simple form. The scattering

whereH,, is the scattering Hamiltonian for mechanism matrix element is

In previous publications, lattice scattering has been dis-
cussed in detail. Therefore, we will further elaborate only on

. . T o : VNX(1—X . ,

alloy scattering and impact ionization scattering in this pa- M (k,k’)= % J' el k=K ) TAU(r)dr, (14)
per. c
1. Alloy scattering whereN is the number of primitive cells in the crystal ard

Alloy scattering is modeled after the work of Harrison is the germanium mole fraction. K;=k’'—k and 6 is an
and Hausef? treating the Si_,Ge, system as a random al- angle betweetk andk’, then

VNX(1—X :
M(k,k’)z—\(/ )fe'kdf cosPAU(r)dr
[
VNX(1—X) (ro (= (27 , . VNX(1—=X) (ro (= . .
= a”\(/—)fof f r2e'ka €0s? gjn 0d¢d0dr=2wua"#fof r2e'ka ©0s? gin gdodr
c 0 0JoO c 0 0
47U 4 YNX(1—X) (To _ wry YNX(1—x) 3 sin(kgro) — 3(Kgr o) cog Kyl o)
- [P sineanar="22 0, . .y
kd Vc 0 3 Vc (kdro)
|
For holes, the diagonal scattering matrix element between 1673U2r§
basis stategj) and|j’) (j=]') is the same as the above =~ Wiw=—"7—75— N(&)P(7), (19
expression for electrons. The off-diagonal terms are zero:
(G HIY= 81 VNX(1—X) whereN(e,) is a density of states arfél(7) is a function of
Ve wave vector(or energy of initial state and converges to
3 sin(Kyr o) — 3(Kqf o) COL Ky o) unity whenkrg is small.
all 3 (16)
(Kqro) .
i o 9 27 (sint—t cost)?
Whenkgyr o<1, the matrix element is simplified to P(7)= 212 j 5 dt
T 0
47r3 INX(1—x
M(kk)~— SO \(/ ). (17) _ 9, b sna Sir? 27 .
¢ - 872 2n2 " 2% (@20

Therefore, the matrix element is constant and independent of )
the magnitude of the difference wave vectky, when the if r<1. (20)
energy of carrier is low. The constant matrix element makes

alloy scattering random, because it is not a functiod.ddn Therefore, the value dP(7) stands for how much the alloy

the other hand, at high energy or in alloy cluster,, cannot  gcattering deviates from the constant matrix element at low
be ignored, since the complete form of the matrix elemengnergy.

d_epends on the magnitudelqf. Even if the carrier energy is As a summary for carrier of low energyi) the alloy
high, the small¢ leads to a smalk, that means alloy scat- matrix element is constantii) the matrix element is inde-
tering at high energy is a forward scattering. As the carrieandent of the scattering angle, and the final state is ran-
energy decreases, the alloy scattering becomes random.  qomiy chosen. For carrier of high energy or in alloy cluster,
The alloy scattering rate is given by Fermi's Golden (j the alloy matrix element i&4r , dependent(ii) the matrix
Rule element is also a function of the scattering angle so ttiat

V, 2m alloy scattering becomes more forward scattering as the en-
Wi =573 5 J IM(k,k")|?58(e— € )dK’, (18)  ergy is increasedand(iii ) the alloy scattering rate is smaller
87 h . . .
when it is compared with the value from the constant matrix
whereV. is the crystal volume. If=Kkr, then element expression.
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TABLE V. Threshold energy for electron and hole impact ionization in pure

silicon and pure germanium. Units are eV for all the values. 2.5
O Threshold Energy for <100> Direction
Silicon Germanium ® Threshold Energy for <111> Direction
Band-gap energy 1.120QL.1) 0.664(0.7)
Electron threshold energy
X valley 1.122(1.1) 0.839(0.9 —~
L valley 0.823(0.9 -
Hole threshold energy -
HH 1.700 (1.8 0.900(0.9 o
LH 1.703 (2.1) 0.994(1.0 2
SH 2.082(-) 1.486(1.4) w

2. Impact ionization scattering

Impact ionization starts to become an important scatter-
ing process once the carrier energies are high enough to
cause interband transitions. This occurs at fields greater than
100 kV/cm. The impact ionization is a carrier—carrier scat- Mole Fraction of Ge
te.””g proce_ss medla.ted .by (.:OUIom.bIC scat_terlng. Wh!le’ ! IG. 3. Threshold energy for electron impact ionization in unstrained
principle, this scattering is simple, in practice, there is noSil,XGe( on a{100 silicon substrate, shown as discrete points. Solid lines
simple ab initio derivation of the scattering rate that results are the corresponding-valley andL-valley band gaps.
in an analytical model. What can be derived is the threshold
energy for the scattering process. The threshold energy arises
from the energy and momentum conservation of the pareach direction. For th& valley in the unstrained case, the
ticles. threshold energy exactly follows the band gap for the entire

Focusing on the electron initiated breakdown, if germanium mole fraction range considered. Therefore, the
E.(ky),Ec(ky),E, (k3 are the energieénomentun of the fi-  threshold energy in thX valley can be simply expressed by
nal electrons and hole aril(K;) is the energymomentum  EQq. (4). For electrons in thé valley, the threshold energy is
of the initiating electron, we have slightly larger than the band gap and there is no threshold

condition from 0% to 50% germanium. The threshold ener

Er=Eo(ky) +Eo(ka) ~Ey(ka), @D intheL valley is expresseg by ¥
and

Eq=0.484 8%%—1.815%+2.1543, if x=0.5. (23
Kf:k1+k2_k3, (22)

In the strained case, it is very important to note that the
where E.(k) and E, (k) are energy of carriers d in the decrease of the heavy hole mass has no effect on the thresh-
conduction band and valence band, respectively, when eleold energy because of the fact that final carriers lie approxi-
tron impact ionization is considered. To minimize the totalmately at the band edge where the group velocity is almost
energy E; for a given momentunK;, the final carriers zero.

T T | T
0.2 0.4 0.6 0.8 1

should have the same group velodtywith this condition Figure 4 shows the hole threshold energy results for Si,
and the given band structure, the threshold energy can b®&e, and unstrained SiGe alloys. Alloys with a Ge mole frac-
found. tion up to 50% and above 80%, have the lowest threshold

Having established band structure, the threshold energgnergy for heavy-hole-initiated impact ionization. In low Ge
for impact ionization can be calculated. Table V representsnole fraction alloys, an electron in the valence band interacts
the results for pure silicon and pure germanium with bandwith a carrier in theX valley of the conduction band, since it
gap energy used in the calculation. The data in the parenthés the lowest type of conduction band valley and has the
sis are the values from Ref. 24. For electron threshold ensmallest energy separation with the valence band. As Ge
ergy, the threshold energy in silicon is almost the same as th@ole fraction increases, thevalley energy separation starts
band-gap energy. In addition, there is no threshold conditiotio decrease very sharply and becomes the dominant conduc-
for electrons of the. valley in silicon. On the other hand, tion valley for interaction of impact ionization. Because the
germanium has a threshold condition in batlandL valleys threshold energy in SH is 0.4—0.5 eV higher than that of the
and the threshold energy is slightly largér1-0.2 eV than  other bands, the heavy-hole and light-hole bands are the
the band gap in the valley. For hole threshold energy, there main sources of hole-initiated impact ionization.
are nine combinations of the band. The smallest threshold As noted earlier, the total scattering rate cannot be de-
energy value in each band is listed in Table 5. In both Si anderminedab initio as a simple analytical model. However,
Ge, the smallest threshold condition occurs in HH. several models, including the Keldysh model, the Thoma

Figure 3 shows the electron threshold energy results fomodel, and the Cartier model, have been proposed to give a
the unstrained $i ,Geg, alloys. The solid lines are band-gap good description of the scattering rate.
energies from the valence band edge toxhandL conduc- The Keldysh model describes the impact ionization rate
tion band edges and the marks are the threshold energies &%
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2.5 T T T 1

O Threshold with X

5 . ® Threshold with L

Energy (eV)

0.5 | | { |

0.0 0.2 0.4 0.6 0.8

Si Ge Mole Fraction

1.0
Ge

FIG. 4. Threshold energy for hole impact ionization in unstrained &e, .

P (E—Eth)z

Wil B)=ZE) | TE

(29)

whereP is the dimensionless parametgy, is the threshold
energy for impact ionization, and4E,,) is the phonon scat-

tering rate averaged over all carrier wave vectors correspon

ing to the threshold enerdyy,. P is a fitting parameter that
is found by comparison of the calculated value with the ®XYor silicon and the measured results from the literature. Spe-

perimental data.

The Keldysh model has @& — E,,)? energy dependence

that arises from the integration over the final density of states

TABLE VII. Si and GeX—X electron intervalley scattering parameters.

Parameter Symbol Units Sivalue Ge value

Intervalley (X—X) Dg1 10% eV/icm 11.0

deformation potential

from Ref. 3
Dg2 108 eVicm 0.8 0.7
Dygs 10% evicm 0.5 9.5
Dsy 10% eVicm 2.0
D¢, 10° eVicm 2.0
Dis 10% eVicm 0.3

Phonon energy fiwgy meV 62.05

from Ref. 3
Tiwg, meV 18.53 8.62
hwgs meV 12.06 37.06
hwgy meV 59.03
frwsy meV 47.40
hwis meV 18.96

Wn(E):

Pn [E—Epn|"  [E—Egpn|"
n ( th n) :An( th n) . (26)
T(Ethn) Eihn ev

Here, we have grouped all of the factors that do not depend

on the carrier's energf, into the termA,,. The cubic rela-

tion around the threshold energy describes the “super” soft

region near the threshold. The paramed®eror equivalently

A, , was rescaled for the band structure and scattering rates
sed in this work because of the overestimated value in the
"homa model. This was done by adjusting the values pf

to achieve a good agreement between the simulation results

cifically, the values used foA, were: A,=8.78x10'? s™1
andA;=5.58<10% s L,

in the scattering process. This is appropriate for electrons in _

direct band-gap materials. We use the Keldysh model fofc- Transport formalism

hole transport, but for electron transport, it is known that the ~ The formalism used to study the carrier transport is
initial breakdown is very “soft.”?® To represent the initial

soft region, we use the Thoma modgl.

based on the Monte Carlo method. The electron Monte Carlo
program is relatively simple and is based on the methods

The Thoma model introduces a combination of a set ofutlined in Refs. 3 and 27. The final state wave vector after
expressions that represent the soft threshold near the thresimpact ionization is chosen from a random distribution of
old energy and harder threshold at high energy. It is exstates with average energy equal t;B/2. The final states

pressed by

0 if E<Ey,
Wins(E) =1 Wo(E)  if W,(E)=Ws(E),
Wa(E) if Wo(E)<Wa(E)

where

(29

after scattering by all of the other procesgptonon and
alloy scattering, are determined in the customary manner,
using the differential scattering rate of the scattering mecha-
nism involved. In Tables VI, VII, VIII, we give all of the
important parameters used in the electron Monte Carlo simu-
lation.

TABLE VI. Si and Ge electron phonon scattering parameters.

Parameter Symbol Units Sivalue [Ref] Ge value [Ref]
Acoustic phonon Dy eV 9.9 9.9
deformation potential
D. eV 8.5 8.5
Phonon speed s 10° cmis 9.04 5 5.0
Nonpolar optical phonon Dox 10° eVicm 451 451
deformation potential
DoL 10% eVicm 6.80 6.80
Phonon energy fiog meV 63.34 3 37.06 3
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TABLE VIII. Si and GeX-L, L—L electron intervalley scattering parameters.

Parameter Symbol Units Sivalue [Ref] Ge value [Ref]
Intervalley (X—L) Dys 10% eVicm 2.0 5 4.1 3
deformation potential

Dyo 10% eVicm 2.0 5
Dy3 108 eVicm 2.0 5
Dy 10° eVicm 2.0 5
Phonon energy fiwy 1 meV 57.91 5 27.58 3
hwy o meV 54.64 5
hoy 3 meV 41.36 5
fiwxia meV 16.98 5
Intervalley (L—L) Dy 10% eV/icm 3.0 3.0 3
deformation potential
D, 10° eVicm 0.2 0.2 3
Phonon energy fio 1 meV 27.58 27.58 3
foLe meV 10.34 10.34 3

The hole Monte Carlo is somewhat more complex, duehe case where the alloy is unstrained. This situation would
to the highly anisotropic nature of the valence band structurearise if a thick (several microns layer of Si_,Ge, was
The approach used is based on the techniques developed gsown on a silicon substrate. We assume that effects of any
Hinckley and Singif®—3! These references also contain thedislocations that may be present in the alloy are negligible.
values of the material parameters used. The approach has Monte Carlo parameters with the calculated threshold
been extended to include the eight-band tight-binding modetnergy are used to study the impact ionization in Jbe,
for the band structure when the hole energies are abovalloy. In the S|_,Ge, alloy, an important additional scatter-

0.5eV. ing is the alloy scattering. Recently, the alloy scattering has
been described by a set of parametérg andry, where
Ill. RESULTS assuming a perfectly random alloy, it has been found that

U,=0.7 eV andr,=v3a/4 (2.36 A).?’ To show the impor-
_tance of alloy scattering, in Fig. 7, we give results for impact

ionization in Sj (Ge, ; with and without alloy scattering. We

see that when alloy scattering is included, the impact ioniza-
A. Impact ionization coefficients in Si and Ge tion is suppressed by about 20%. Also, the effect of alloy
scattering is more important at lower fields.

In this section we will discuss the results feand 8. As
noted in the introduction, our focus will be on high Ge con
tent SiGe alloys.

Before beginning the calculation of the impact ionization . X "
coefficient in the Si_,Ge, alloy, Monte Carlo simulations Before d|scurs13|r)g tlhe rgsulti ferand 3, it is useful to o
were performed for pure silicon to confirm the scattering€x@mine, on a physical basis, what is to be expected. As the

parameters. Because the electron impact ionization rate neSte content is increased, the band gap decreases. On this

the threshold in indirect material is very soft and has a third-
order dependence upofE—E,,) (Ref. 295 rather than a
second-order dependence like the Keldysh mdtehe 10
Thoma modéf is used in the calculation to describe the
“super” soft region near the threshold. In Fig. 5, the Monte
Carlo results for electrons in pure Si are shown. Also shown
are experimental result§>3**The calculated values show a
good agreement with the experimental data frdref. 35,
which is known to be one of the most refined sets of mea-
surements. For high Si content SiGe alloys we will only
focus ona sinceB is almost an order of magnitude smaller.
Figure 6 shows the calculated impact ionization coeffi-
cient of electrons and holes in Ge. We show two sets of
experimental dat®®>’ There is some disparity between the
published experimental results, although both results show a
similar ratio betweerB and « with 8 always larger tharnv.
As can be seen from Fig. 6, our results fall within the ex-
perimental results.
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. Having.validated our Monte Carlo_ model, We nOW_Con' FIG. 5. Electron impact ionization coefficient from Monte Carlo simula-
sider the Si_,Ge, alloy. As noted earlier, we will consider tions, compared with experimental data in pure silicon.
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FIG. 6. Electron and hole impact ionization coefficient from Monte Carlo ionization coefficient.

simulations, compared with experimental data in pure germanium.

gompositions between 0.4 and 0.6, the impact ionization de-

basis, we expect that the impact ionization should increas o _
creases somewhat before again increasing. The reasons, as

for a given field. However, as the Ge composition is in-"~: ) )
creased, the alloy scattering increases up to a Ge content gfscussed above, have to do with the alloy scattering.
50%. The increasing alloy scattering randomizes the carrier N Fig- 9, we show the hole impact ionization for Ge-rich
distribution and suppresses the energy that the carriers ca0YS: There is a steady increasedrvalues as the Ge con-
gain from the field. This, in turn, tends to suppress the imtent is |r_10reased. This is prlmarlly the re_su]t of the sharply
pact ionization. Thus, there is a competition between théjecreasmg threshold energy for impact ionization as shown
effect of decreasing band gap and increasing alloy scatterinﬁ? Fig. 4.

However, once the Ge content exceeds 50%, the effect of T nally, in Fig. 10, we show th@/a ratio for the alloys
alloy scattering weakens. as a function of composition. Also shown are some experi-

In Fig. 8, we show the impact ionization for electrons in Mental resultsalong with error barsfrom published daté.
SiGe as a function of alloy composition at electric field val- 1 "€ A/ ratio approximately equals 3 in Ge and we see that
ues of 333 and 500 kV/cm. We note that as the Ge content i Steadily decreases as the Ge content in the alloy is de-
increased from zero, initially the values afremain almost creased. It reaches a value of approximately 0.8 for
unchanged, even though the band gap is shrinking. At G804 .6
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FIG. 7. Electron impact ionization coefficients for, b, ; with and with- FIG. 9. The effect of Ge mole fraction on the electron and hole impact
out alloy scattering. The results are compared with results for silicon. ionization coefficient.
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