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As the curvature of shock waves increases, the shock structure becomes two dimensional, and
the usual Hugoniot jump conditions no longer hold. An equation has been derived for the structure
of such a two-dimensional non-Hugoniot shock in the case of weak shocks with Mach numbers close
to one. The development of this equation from the Navier-Stokes equations is based on the assump-
tions that the vertical velocity is of order (M * — 1)3/2 and that the flow within the shock is irrota-
tional. From the derivation it appears that the non-Hugoniot region behaves as an acoustic wave
driven by higher-order viscous effects. The properties of the above equation, which has been called
the viscous—transonic or V=T equation have been investigated. The V-T equation appears to be a
combination of Burgers’ equation for weak normal shock structure and the transonic equation. It is
shown that the structure of oblique shocks is a similarity solution of the V-T equation. Proper
formulation of boundary conditions is considered and a uniqueness proof is given for a particular

restricted boundary value problem.

I. INTRODUCTION

HE ratio of thickness to radius of curvature is

usually so small that, locally, curved shocks
may be treated as oblique shock waves along which
tangential variations of velocity, pressure, etc.,
are negligible. The structure of oblique waves is
one dimensional for they appear normal to an
observer moving along the shock with the tangential
component of the upstream velocity. In most
aerodynamic problems structure is unimportant
and shocks are treated as discontinuities separating
different portions of an inviscid flow across which
the Rankine-Hugoniot jump conditions hold. The
jump conditions across such shocks, which are
frequently called Rankine-Hugoniot shock waves,
are derived by applying the inviscid conservation
equations across the shock, subject to the assumption
of uniform upstream and downstream flow.

The situation changes when curved shock waves
are relatively thick as in transonic or low density
flows, for then cases arise in which tangential
variations are no longer negligible. The shock
structure then becomes two dimensional, and the
Rankine-Hugoniot jump conditions no longer are
are applicable. In the present paper, an equation
describing two-dimensional -structure is developed
for weak shock waves and the properties of this
equation are discussed.

Sternberg' first studied such two-dimensional
shocks, which he calls non Rankine-Hugoniot or
non R-H shock waves, in his investigation of Mach
reflection. In the case of weak incident waves
(see TFig. 1) the perfect fluid theory in which shock
waves are -R-H discontinuities is in serious dis-

1 J. Sternberg, Phys. Fluids 2, 179 (1959).

agreement with experiment. Careful study showed
that the inviscid theory leads to infinite shock
curvature at the triple point, which is inconsistent
with the existence of Rankine-Hugoniot discontin-
uities. Sternberg then suggested that viscous effects
alter the boundary conditions at the triple intersec-
tion, and postulated that there must be a finite
non Rankine-Hugoniot region though which, as
shown in Fig. 1, there is a transition from the
structure of the waves above and below the triple
point. Across this region the usual Rankine-
Hugoniot conditions do not hold so that the triple
point boundary conditions must be modified.
Though this non R-H region itself is relatively
small, it may influence a much larger portion of
the flow because of the changed triple point condi-
tions, and because of the interaction between the
non R-H region and the downstream inviseid flow.

There are indications that a region of non R-H
flow must be introduced to resolve some difficulties
encountered by Emmons®® in his perfect fluid
analysis of the transonic flow near the throat of a
de Laval nozzle, and over a transonic airfoil.
Emmons’ application of perfect fluid theory in which
shocks are R-H discontinuities leads to infinite
curvature where the shock terminating a supersonic
region touches the curved wall of either the airfoil
or nozzle. Upstream of the shock pressure increases
as one moves away from the wall because of wall
curvature. On the other hand, if the upstream
Mach number is close to unity and if R-H conditions
hold the downstream pressure actually will decrease
as one moves away from the wall. The streamline

2 H. W. Emmons, NACA TN 1003 (1946).
3 H. W, Emmons, NACA TN 1746 (1948).
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Fic. 1. Non-Hugoniot region at the triple intersection in the
Mach reflection of weak shock waves.

curvature thus is singular in that it changes dis-
continuously at the foot of the shock wave. Emmons’
analysis takes care of this difficulty by a rapid
expansion behind the shock wave; however, Emmons
suggests that a proper mathematical deseription of
this behavior requires the inclusion of viscous
effects in the conservation equations. Thus from
Emmons’ results it appears plausible that there
must be a region of non R-H flow at the base
of the terminating shock through which there must
be a nonsingular transition from supersonic to sub-
sonic flow.

Emmons’ analysis assumes an ideal fluid without
a boundary layer. In a real fluid the flow at the
base of the shock wave terminating a region of
supersonic flow is dominated by the shock wave
boundary layer interaction rather than by the wall
curvature. Even so, it is interesting to observe that
just outside the boundary layer and at the down-
stream edge of such a supersonic region Ackeret,
Feldman, and Rott* measured a sharp pressure
rise, as might be expected in the case of a R-H
shock wave, followed immediately by a rapid
expansion. The pressure gradient in the expansion
is of the same order as in the shock and the over-all
pressure ratio across the combined compression and
expansion is less than the R-H value. Thus it
appears that there may be a non R-H region
where the terminating shock touches the boundary
layer. The failure of the terminating shock to satisfy
the R-H conditions has also been noted by Sinnott,”
who found that this fact must be taken into account
to properly predict the position of the terminating
shock waves on transonic airfoils.

It is also necessary to introduce a region of non
R-H flow to explain the flow at the leading edge
of the boundary layer generated by a shock wave
moving past a stationary flat plate. For weak, and

4 J. Ackeret, F. Feldman, and N. Rott, NACA TM 1113
(1946).
5 K. S. Sinnott, J. Aerospace Sei. 27, 767 (1960).
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hence thick, shocks, Sichel® has shown that the
boundary layer approximation can be extended to
the foot of the shock. The leading edge region thus
can be divided into a boundary layer or shear
region near the wall and a free stream or shock
region. A schematic diagram of this leading edge
flow from the point of view of a coordinate system
fixed to the shock wave is shown in Fig. 2. The shear
layer and the shock region flows can be properly
matched only if there is a region of non R-H flow
at the outer edge of the boundary layer. In an
approximate analysis of this shock wave-boundary
layer interaction problem in which the shock region
was replaced by an oblique shock wave, the shock
is followed by a rapid compression with a velocity
gradient of the same order as within the shock
itself. If this compression is considered part of the
shock the usual R-H conditions are not satisfied.
The mathematical formulation of non R-H flows
such as discussed above is explored in the present
paper. In Sec. 1I, a series expansion of the Navier—
Stokes equation is used to develop a potential
equation for non R-H flow. Properties of this
equation are discussed in Sec. III, and the formula-
tion of boundary conditions is considered in Sec. IV.

II. DERIVATION OF EQUATION FOR
NON RANKINE-HUGONIOT FLOW

It is assumed that the fluid behaves as a continuum
described by the Navier-Stokes equations. In the
transonic regime where shock thicknesses are many
mean free paths, this assumption appears reason-
able. In subseript notation the continuity, momen-
tum, and energy equations for steady flow are

d
oF

(pa,) = 0, - : 1

-«—— Shear Layer

Plate (moves in coordinates
fixed to shock)

. Fra. 2. Theoretical model for the leading edge of a shock-
1r}1ldul(éed boundary layer, with coordinates fixed to free stream
shock.

¢ M. Sichel, Phys. Fluids 5, 1168 (1962).
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The bars here denote dimensional quantitles. i is
the conventional viscosity, and g/, the longitudinal
viscosity, is related to the bulk v1scosity # by’

B =+ )

The use of a bulk viscosity implies that relaxation
effects are small.

oTa, o= = o=

—_ a8 a(

The following thermodynamic equations,® valid
for any fluid, must also be included:

dp = & dp + @&Tpa’/C,) dS, (5)

C,dT — T dS = (aT/p) dp, (6)

al = (y — 1)C,/d*a, (N

where @ is the coefficient of thermal expansion.
For a perfect gas, a = (1/7).

A two-dimensional non R-H region is considered
with uniform upstream flow in the z direction with
a Mach number of M, and with 4 and 7 the velocity
components in the £ and § directions. To attack
the system of equations above an expansion in a
small parameter combined with appropriate stretch-
ing of the coordinates will be used. This procedure,
which is equivalent to an order of magnitude
analysis, has been discussed by Guderley.” The
flow variables are made dimensionless using critical
conditions as a reference except for dimensionless
pressure which is defined as

P = D/ps0y-
The reference values, which are indicated by an
asterisk, are those which could be reached if the
upstream flow expanded isentropically to a Mach
number of unity.

Since the flow under consideration is transonie,
a logical expansion parameter to use is

e = M* — 1. 8)
7 W. D. Hayes, Fundamenlals of Gas Dynamics (Princeton

University Press, Princeton, New Jersey, 1958), Sec. D.
8 F. W. Sears, Thermodynamics (Addison-Wesley Publish-

ing Company, Inc., Reading, Massachusetts, 1953), pp.
147-151.
9 K. G. Guderley, T'heorie schallnaher Stromungen (Springer-

Verlag, Berlin, 1957).
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The choice of this parameter, which also is used
in transonic flow theory,” was in part dictated by
the fact that dimensionless Hugoniot conditions
across a normal shock then take the simple form

14+ = M,
Il—et+eé—€+ --- M)

where 1 and 2 refer to upstream and downstream
conditions. Equation (9) and the fact that across
the transonic non R-H region flow variables remain
close to critical conditions suggest that w, T, u, u”,
C,, «, and k be expanded in series of the form

L=1+EL(1)+E2L(2)+“'+€nL(n)+"' ,

where L symbolizes the parameter in question.

Pressure p, and vertical velocity » are the only
exceptions to this expansion scheme. Because p,a’
rather than p, is used as a reference the expansion
for p takes the form

(1/7) + 6p(l) + 62 (2) _|__ ... (11)

v, the ratio of specific heats, is assumed constant.
Since in transonic flow’ and in transonic oblique
shock waves the veriteal velocity » is of order e
the expansion for » is taken as

v = e%(ev(” + E2v<2> + )

U = d]/a* =

Uy = 122/(1* =

(10)

(12)

T'rom the discussion of various non R-H flows
in Sec. I above, it is evident that the characteristic
length in the & direction will be of the order of a
shock thickness. For weak shock waves the thickness
will be of the order’

X~ 00!/a,e,

(13)
where »"/ is the kinematic viscosity based on u’/,
and where a, is the critical speed of sound. Using
(13) a dimensionless or stretched & coordinate

defined by

x = E/N = Tae/v)] (14)

is introduced.

There remains the problem of choosing a char-
acteristic length or streteh factor for the 7 coordinate.
With uniform upstream conditions the flow within
and downstream of weak Hugoniot shock waves is
irrotational since entropy changes are of higher
order. Thus it appears reasonable to assume that
at least to first order the flow in the transonic non
R-H region, though viscous, is also irrotational.

10 M. J. Lighthill, “Viscosity in Waves of Finite Ampli-
tude,” in Surveys in Mechanics, edited by G. K. Batchelor
and R. M. Davies (Cambridge University Press, New York,
1956).
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Then there must exist a potential ¢ which can be
expanded as

¢ =z + €¢(”(x: :12),

where initially the shock thickness, X, has also been
used to stretch the § coordinate so that

(1)

g =g/x = gae/v'). (16)
In terms of this potential the velocities u and v
now become

u=¢, =1+ e.",

_ )
v =¢; = ey,

7

where the subscript denotes partial differentiation.
To satisfy the requirement v ~ O(e) it is necessary
that ¢ ~ O(e!). The expansion for ¢ is thus
inconsistent for both ¢ and ¢;" should be O(1).
The difficulty is resolved by introducing a new
coordinate y defined by

Yy =€y
so that
el = g,

From this argument, which was originally used by
Cole and Messiter'' to derive the inviscid transonic
equation, it is concluded that the proper stretched
7 coordinate to use is

Yy = g]a*e%/v',;. (18)

The assumption of irrotational flow, which is a
key step in the present development, cannot be
rigorously justified a priori. As Rae' points out,
this assumption implies that only the compressive
viscous stress due to gradients in volume dilation
is important in the first-order flow; the wviscous
stress due to the shearing of the fluid being negligible.
In the structure of shock waves, it is the compressive
stress which plays the dominant role, and this
provides the physical basis for assuming that the
same is true in non R-H shock waves, i.e., that the
flow is irrotational. Obviously, the approximations
made here never will apply to flow in a boundary
layer where shear stresses are dominant. Finally,
it should be mentioned that in the case of the
linearized Navier-Stokes equations, which are ob-
tained by an expansion in a small parameter without
coordinate stretching, it can be rigorously dem-

11 J, D, Cole and A. F. Messiter, Guggenheim Aeronautical
Laboratory, California Institute of Technology Rept. TN
56-1 (1956).

12 W. J. Rae, Cornell University, Rept. TN 60-409 (1960).
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onstrated that the flow can be split into an irrota-
tional and a rotational component,'® corresponding
to longitudinal and transverse waves, and of course
the non R-H region is closely related to these
longitudinal waves.

Introducing the above series expansions and
stretched coordinates into the Navier—Stokes equa-
tions (1)-(3) and the thermodynamic relations (5)
and (6), eliminating the entropy, and equating
coefficients of the lowest power of ¢, the following
equations are obtained for the first-order coefficients:

(1) 1)
continuity: ag—x + ai;x— = 0; (19a)
(1) (6D
x momentum: 6—1;;— + é—gx— = 0; (19b)
1) 1)
y momentum: % + agy = 0; (19¢)
. (1) ap(l)
energy: T, Ry (v—1 Nl 0; (19d)
thermodynamic:
ap(l) _ ap(l) aT(l)
Yoz T ar T ulx g (19¢)

Viscous and conduective terms are absent from
Eq. (19) indicating that dissipative effects are of
higher order. The system (19) is redundant for with
(19a) and (19b) the thermodynamic equation (19e)
can be reduced to

which is identical with the energy equation. Con-
sequently (19) does not yield a solution for the first-
order coefficients; however, since the upstream flow
is uniform integration of (19a, b, and d) does yield
the relations

p(l) _|_ u(l) — O,
u(l) + p(l) — O, (20)
a*T*T(” — (y — Dp* =0.

It may be shown that the relations (20) are identical
to those which hold in a leftward propagating
acoustic wave. To first order the free stream flow is
thus like a sound wave, and the redundancy of
Eq. (19) is in accord with this for the form of an
undamped acoustic wave is arbitrary, and is de-
termined by its source.

13 P, A. Lagerstrom, J. D. Cole, and L. Trilling, “Problems
in the Theory of Viscous Compressible Fluids,” Guggenheim

Aeronautical Laboratory, California Institute of Technology
(1949).
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From Egs. (19¢) and (20) it follows that

61)(” au(l)
o T oy @D
so that the first-order flow is irrotational. Equation
(21) is consistent with the assumption used above
to determine the 7 coordinate stretch factor.

To obtain the additional relation needed to
determine the first-order coeflicients, it is necessary
to proceed to the second-order equations. Hence,
by equating the coefficients of the next higher
power of ¢ and using Eqgs. (20), second-order con-
tinuity, # momentum, y momentum, energy, and
thermodynamie equations are obtained as follows:

ap(2) au(2) P a_,u(l) av(l) _

oz + dz 2 dz + dy 0, (222)
au(2) ap(Z) a?u(l)

. oz + " (22b)
av(z) ap(Z) a?v(l)

ax oy  ox ' (220)
(l:_l_) aT(2) _ 6 (2) _ C([) au(l)

a T, Or ox P oox
| o _ Y- 1> (1):](9“(1) __1 o’u

|:a + (1 o T, b ar Pr’’ ax® (22d)

6 (2) au(l)
7( B~ S )= =D

-[20[(” + 220 — y—1 u® — C(l)i| ou'”

e, T, r ox
_ ap(z) Y 1 o't or®
T 9z @™ + 2077 sz T *Ts =52
3 (1)

— (¢ = D + 22”) T (22¢)

In Eq. (22d), Pr”’ is the longitudinal Prandtl number
C,en'}/k,, and is assumed to remain constant.
Equations (22) are redundant in the quantities
u®, p®, p®, and T*; therefore, when these equa-
tions are combined, second-order quantities drop

out and it is found that the following nonlinear

equation relating 4" and v’ must be satisfied:
W _ m ou'
2(u a’’) Y
_ y - 1> u® B PR B
<1 + P’/ 8zt dy 0. (23)

For the general gas Hayes’ has shown that to the
present order of approximation

@— a)/a, =u" —aV = T@ — a)/a, = Tu'”
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where I is the thermodynamic quantity,

I = (l/a) [8(pa)/3p]s;

which may be evaluated at reference conditions.
For a perfect gas I' = 1(y + 1). Equation (23)
thus reduces to

v — 1\ ou® w ou® 3

which in combination with the irrotationality equa-
tion (21) and suitable boundary conditions is
sufficient to determine «(z, y) and »(z, y).
Equation (24) has been derived without assuming
a perfect gas or constant specific heat, and is there-
fore quite general.

A key feature of the expansion scheme used to
develop equation (24) is that the coordinate stretch-
ing factors defined by (14) and (18) vary with the
expansion parameter e. Because of this the nonlinear
convection term is retained in the final equation
(24) in contrast to the more usual linearizations in
which all nonlinear terms are of higher order.

Upon introducing a potential defined by

Egs. (21) and (24) can be reduced to the single
potential equation

1+ & = D/Pr"}¢... — 2Td... + ¢, = 0. (26)

If the initial assumptions that » ~ O(e!) and that
the first-order flow is irrotational in the non R-H
shock region are valid, then Eq. (26) is a mathe-
matical description of the flow in such a non R-H
region. Equation (26) was first derived by Cole'* in
order to describe the flow about an airfoil in the
transonic range. Cole’s derivation was based on
the concept of a fluid which has only compression
viscosity so that it can still slip over the airfoil
surface as in inviscid flow.

The need to go to the second-order equations (22)
in order to derive Eq. (24) is an interesting feature
of the above derivation, and seems to indicate that
the non R-II flow behaves as an acoustic wave
driven by higher-order dissipative and convective
effects. Sternberg’s macroscopic analysis' of the
non R-H region in the Mach reflection problem
(Fig. 1) supports this interpretation. Sternberg
concluded that viscous stresses and conduction at
the surfaces of the non R-H region are negligible.
The jump conditions across the non R~H region
depend only on the structure of the bounding Mach

ay __ .
u - ¢z;

14 J. D. Cole, “Problems in Transonic Flow,”” Ph.D. thesis,
California Institute of Technology (1949).
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stem and incident and reflected waves. Thus in
Sternberg’s analysis the non R-H flow, though
inviscid, depends upon the balance of the higher-
order dissipative and convective effects that de-
termines the structure of the intersecting waves.
Application of an expansion similar to that above
to the structure of & normal shock wave yielded
results that were in good agreement with exact
analytical solutions.®

The potential equation (26) may be reduced to
the universal form

¢;XXX - $x4;XX + $YY =0 (27)

which is independent of the fluid properties, with
the transformation

X = Az; Y = AyT; ¢ = 249,

where
A=T/[1+ - 1Er)L

III. PROPERTIES OF THE EQUATION FOR
NON R-H SHOCK WAVES

Equation (24) or (26) represents a balance be-
tween the combined effects of viscous stress, heat
conduction, convection, and mass conservation.
The term 8°u‘’/9x” is due to heat conduction and
viscous stress. The quantity (y — 1)/Pr” in the
coefficient of 8°u""/3xz” represents heat conduction
while the term unity is from the viscous stress.
The proportionate effects of heat conduction and
viscosity are the same as in an attenuating acoustic
wave.” " (9u‘" /9z) is the convective term which,
in one-dimensional flow, is responsible for the
steepening of compression waves. (9v’/dy) is a
mass conservation term.

In those parts of the flow where v’ vanishes,
Eq. (24) reduces to

_— 2 (1) (1)
O*lﬁ#ywv—zmm@~=o,

ox ox (28)

which is the steady form of Burgers’ equation.”
The solution
u? = —~tanh Az (29)

of Eq. (28) satisfies the first-order Hugoniot condi-
tions

W(—w) = 41, uV(+w) = ~1

across a weak normal shock wave and is identical
with Taylor’s weak shock solution. Burgers’ equation
expresses the balance between the wave attenuating

15 M. Sichel, J. Aerospace Sci. 27, 635 (1960).
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effect of viscosity and conduction and the wave
steepening effect of convection, and it is this balance
which is responsible for the existence of a steady
state shock structure.'® From the above it appears
conceivable that Eq. (24) could describe the transi-
tion from a normal shock to a region of non R-H flow.

Without the dissipative term (8°u‘"’ /3z"), Eq. (24)
reduces to

(30)

which is a form of the inviscid transonic equation.’
Equation (24) thus represents a combination of the
processes which take place in a weak, one-dimen-
sional shock wave and in transonic flow suggesting
that an appropriate name for (24) or (26) might
be ‘“‘viscous-transonic’’ or V-T equation.

The entropy variation through the non R-H
region may be determined from Eq. (3), the entropy
form of the energy equation. If a dimensionless
entropy is defined by

’ S =8/C,,,
and if the series expansions and stretched coordinates

are substituted in Eq. (3), there results the equation

Pr’’ (6 §§ + T Q§> = ¢ _(?ij"(l)_
or 9y

oz’
Only the largest term has been retained on the
right side of (31). In order that &(9°T‘"/9z%) be
balanced by a term on the left side of (31), it is
necessary that S ~ O(¢) so that the expansion
for S takes the form

S =8P 4 E8Y 4o,

(31)

32)

Now substituting (32), the series expansions, and’
stretched coordinates in Eq. (3) and equating
coefficients of the lowest power of € the equation

aS(Z) 1 62T(1)

ox  Pr’ ox®

relating S and TV is obtained. Equation (33)

shows that S is an entropy transport term for

if low upstream of the non R-H region is uniform,
Eq. (33) may be integrated to yield

1 aT(])
B ar

If (87" /dx) = 0, as x — = o, the net change in
S across the non R-H region is zero.

If it is assumed that £ ~ 7 so that £V = T,
and the coefficients of the next higher power of e
are equated, the equation

(33)

S® = -+ const. (34)
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a8 1 (627’(2)

P\ o2’

62T(1)
or _ Pr’ >

e

T )

follows. The second-order terms on the right side
represent entropy transport in the x and y directions;
however, the last term of (35) is a dissipative term
which is always positive so that the net change
of S across the non R-H region must also be
positive. Assuming that the order of magnitude
analysis above is applicable, it would appear that
as in weak shock waves entropy changes across the
non R-H region are third order in ¢, while entropy
variations within the non R-H region will be of
second order due to entropy transport.

Within a transonic oblique shock, the flow is
irrotational and v ~ O(e'); therefore, it is to be
expected that the structure of an oblique shock
wave is a solution of the V-T equation. Since an
oblique shock may be derived from a normal shock
by superimposing a tangential velocity, it is readily
shown® that the expressions

(36)

5 f 1)(% + ay):l,

represent the first-order structure of weak oblique
shock waves. Since the angle ¢ between the shock
and the vertical is of O(e!) in transonic flow, an
obliquity parameter «, defined by ¢ = ae® has been
introduced in the equations above. By direct sub-
stitution it can be shown that »’ and »" given
above satisfy the V-T equation (24) and the
irrotationality condition (21). Equation (36) is
essentially a similarity solution of the V-T equation
with similarity variable (x + ay).

A characteristic feature of non R-H shocks, as
discussed in Sec. I, is that the usual Hugoniot
conditions do not hold. This can be demonstrated
qualitatively by a partial integration of the V-T
equation (24). Since u'V(— «, ) = +1 integration
of (24) from — = to a yields the result:

-I:l + tanh A(l -
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(12 1+ @& —- 1)(P1‘”)_1] ou'"’
@) = r ox
z (1)
+1+3 [ %y—dx. (37)

Assuming that the flow downstream of the non
R-H region above, where du‘’/dx = 0, is subsonie,
it follows from (37) that

Ditw ) 17w ]*

u(+w,y) = [1+F > de|.  (38)
In a normal shock »'’ = 0 and then (38) yields

the usual result that u’(4+ o) = —1. In an

oblique shock 90"’ /dy < 0 always, hence from (38)
it follows that u‘’(+®,y) > — 1, as is of course
actually the case. In the case of the normal shock
terminating a supersonic region it is to be expected
that v’ > 0 within the shock wave due to presence
of the boundary layer. Since this disturbance dies
out with increasing y 90"’ /dy < 0 and (38) then
indicates that u‘” (e, y) > —1. This result is in
accord with Emmons’®® results and with experi-
ment.*"® At the leading edge of the shock induced
boundary layer » < 0 and 0" /dy > 0. This
result suggests that ' (+», y) < —1 and agrees
with the approximate solution of the leading edge
problem® which also indicates that u'"(+ e, y)
overshoots the downstream Hugoniot value.

IV. BOUNDARY CONDITIONS

A uniqueness proof for the V-T equation which
is applicable to all possible boundary conditions,
is not available. Consequently, the two specific
examples of the non R—H region at the leading
edge of the shock induced boundary layer, and of the
boundary value problem for a finite rectangular
domain in the z—y plane are discussed below, and
should indicate the nature of the viscous—transonic
boundary value problem.

At first it is revealing to discuss the boundary
conditions needed for the, perhaps trivial, cases of
weak, normal and oblique shock waves. In both
cases the upstream boundary condition

W (—w,y) = +1 (39)

is singular in that it is applied at x = — «. Since
the normal shock is governed by the second-order
Burgers’ equation (28), an additional boundary
condition is needed. The condition u!"’(—®) = 0
is redundant since it is already implied by (39).
Bounded solutions of Burgers’ equation are such
that with the specification of condition (39) the
functional form of u’(x) is completely determined.
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The second boundary condition therefore merely
locates the Taylor shock with respect to the coor-
dinate system and might take the form

u™(0) = 0. (40)

A similar situation exists in the case of oblique
shocks, except that it is also necessary to specify
the downstream vertical velocity v’ (e, y), or
¢ (w, y). When the downstream inviscid flow is
subsonic, the oblique shock, and downstream flow
will interact. There is no freedom regarding the
variation of ' (z, y) within the shock; vV (z, y) is
set by the nature of the oblique shock similarity
solution of the V-T equation.

In the case of the shock induced leading edge
problem,® discussed in the Introduction and shown
in Fig. 2, the upstream flow is uniform so that as
for the normal and oblique shocks

¢z(_°°7 ?/) = +17

where now the potential equation (26) will be
considered. As ¥y — « any upstream disturbance
caused by the leading edge interaction must die out
so that '

(41)

¢y(_°°y oo) = 0. (42)
From Eqs. (24), (41), and (42), it then follows that
¢(—,y) = 0. (43)

The boundary condition at the base of the non
R-H region depends on the flow at the outer edge
of the shear layer as is evident in Figure 2. The
shear layer generates a vertical velocity® which at
its outer edge is of order ¢, ie., v (&, §) ~ O(e),
where §, the shear layer thickness is Oly,»"/a,¢!].
In the free stream, assuming dv™ /9y ~ O(1),

9 0(%@)

0y v,
therefore, the change in v’ over a distance of the
same order as the shear layer thickness §, will be

2 ~ Olely, /v'))']

which is of higher order. The mean surface approxi-
mation is therefore applicable and the shear layer
boundary condition can be applied at ¥y = 0. It has
been shown® that ¢,(z, 0), the velocity at the
outer edge of the shear layer, is given by

vV (x, 0) = ¢,(,0)
= (v*/v’;w)%[l + -1 Pr_%]

J @-vle 0w @y
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and this is the boundary condition at the base of
the non R-H region. From (44) it is evident that
the free stream and shear layer flows interact for
v (x, 0) depends upon u" or ¢,. in the free stream
and the boundary condition (44) expresses this
interaction mathematically.

In the case of the transonic and Laplace equations,
only one boundary condition ecan be specified at
y = 0 if the solution is to remain bounded as y — .
From the close relation between the V-T and
transonic equations, it appears reasonable that one
boundary condition at y = 0 will also be sufficient
in the present case, i.e., the V-T equation cannot
simultaneously satisfy a boundary condition for
»“(z, 0) and the no-slip condition «’(z, 0) = 0,
and of course a no-slip condition implies shear
stresses which are not permitted by the V-T equa-
tion. The no-slip condition at the plate in the present
problem is satisfied by interposing a shear layer
between the non R~H region and the plate.

There remains the boundary condition down-
stream of the interaction region. The order of
magnitude considerations upon which the derivation
of the V=T equation is based, are truly valid only
in the interaction region at the base of the shock
wave. Downstream of the non R-H region the flow
will be subsonice and inviscid, and the non R-H and
inviscid flows must be matched at some point ..
Thus, the downstream boundary condition of the
V-T equation will be

é(Tn, ¥) = f(¥), (45)

where f(y) is the variation of »*
downstream inviseid solution.

Changes in the coordinate z, should not have
major effects upon the solution of the interaction
problem. The matching point z, must be chosen
sufficiently downstream that " and u')’ are small
compared to values within the non R-H region so
that the location of z,, will not affect the solution.
As in the case of conventional shocks, z, should
be such that flow is uniform with respeet to a distance
of the order of a shock thickness. It is not possible
to let z, — o« for even though the shear layer
solution, v (z, 0), has been shown to be valid®
as x — o, it cannot be a priori shown that the same
is true for solutions of the V-T equation. The non
R-H and inviscid flows will interact for f(y) in (45)
will depend upon ¢.(z,., ¥) from the solution of the
V-T equation.

Finally, in analogy to the normal and oblique
shocks, the free stream shock wave and non R-H

as given by the
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regions must be located with respect to the coor-
dinate system with the condition

$.(0, ») = 0. (46)

With (46) the specification of boundary conditions
is complete. The mathematical difficulty of the
boundary value problem posed by the leading edge
makes it unlikely that an exact solution can be
found, rather iterative or approximate methods
would have to be employed to attack the complicated
boundary value problem above.

As a second example, the boundary value problem
for a finite rectangular domain B such as shown in
Fig. 3 has been chosen, since an exact uniqueness

F1e. 3. The finite rectangu-
lar domain B with boundaries B
So, S1, lo, a,nd ll. So S
X
'fO

theorem can be developed for this case. I'ollowing
a procedure described by Courant and Hilbert,"
it is shown in the Appendix that if ¢, is specified
on the boundary S, and ¢ is given on the boundaries
So, 1o, S1, and 1;, of the domain B then the solution of

¢z:cz - ¢Z¢za: + ¢yy =0 (47)

in B is unique provided that ¢, < 0 in B. The uni-
versal form of the V-T equation has been used above.

The boundary conditions above also imply 2
knowledge of u or ¢, on S,, I, and 7, and a know-
ledge of » or ¢, on S, and S,. The condition
¢. < 0, which restricts the validity of the proof
to subsonic flows, results from the nonlinearity
and does not mean that there are no unique solutions
for ¢, > 0. The above boundary value problem
does not have any particular physical significance
and of course is different from the shock induced
leading edge problem. It nevertheless is interesting
to note that as in the leading edge case, only one
boundary condition can be specified on the bound-
aries parallel to the free stream which in the present
case are [, and /,.

The viscous-transonic equation is parabolic for
it has the triple characteristic y = const. Hence,
it is interesting that ¢ must be specified over the
entire boundary of B in contrast to the parabolic
equation for unsteady heat conduction:

2,0 — 2, =0,

1 R. Courant and D. Hilbert, Methods of Mathematical
Physics (Interscience, Publishers, Inc., New York, 1962),
Vol. 11, pp. 440-445.
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for which z can only be specified on an open bound-
ary. The higher order of the V-T equation as
compared to the heat equation is responsible for
this result. The parabolic nature of the V-T equation
is reflected in the fact that ¢, in addition to ¢ must
be given on S,.

V. CONCLUSIONS

By assuming irrotationality and that v ~ O(é)
an equation describing the structure of non R-H
shock waves, and called the viscous-transonic or
V-T equation has been derived. From this deriva-
tion, it appears that the non R—H region behaves
as a sound wave driven by higher-order viscous
effects. A partial integration of the V-T equation
gives a qualitative indication of the manner in
which conditions across non R—H regions deviate
from the usual Hugoniot jump conditions.

The type of boundary eonditions required by this
equation have been discussed by considering two
specific examples. Even though the equation is
parabolie, the fact that it is of third order requires
that boundary conditions be specified on a closed
contour.

The V-T equation appears to be a combination
of Burgers’ equation and the transonic equation.
Unfortunately, the hodograph and the Hopf-Cole'”
transformations which greatly simplify the treat-
ment of the Burgers’ and transonic equations do
not work here. Thus, the solution of the V-T
equation, particularly for a boundary value problem
such as the shock induced leading edge, poses an
extremely difficult mathematical problem. It has,
however, been demonstrated that the structure of
an oblique shock wave represents an exact similarity
solution of the V-T equation, and other similarity
solutions have been investigated.'®

It would be of interest to find other solutions
of the V-T equation. A question of particular
interest in whether the V-T equation can provide
an explanation for the development of the shock
wave which terminates a region of supersonic flow.
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APPENDIX

The uniqueness theorem stated in See. IV is
proved below. Let f and g be two functions which
satisfy Eq. (27), and for which f, and g, are given
on S, and f and g are given on the entire boundary
of the domain B (see Fig. 3). Then if (g — f) = A,
it follows from (27) that

A,. + 4, — (gzgzz - fzfzz) = 0. (Al)

Multiplying (A.1) by A and integrating over the
domain B it is possible to obtain the result

I {[AAZ, S -]

+ (AAy)u} dx dy

[~ St n]ea=-o0 a2
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Applying the divergence theorem to (A.2) and
taking line integrals on the boundary of B in the
direction indicated in Fig. 3, there results

[ 18a, - 381 — s + gl dy

— AA, dx

lot+l.

+ ff[-AHg—:(g,H,)]dxdy 0. (A3

From the boundary conditions satisfied by f and
g it follows that A, = 0 on S, and A = 0 on S,,
8S,, I and [,. Consequently, (A.3) reduces to

2 Js,

+ff|:—-Af,+%:(g,+f;):]dxdy =0. A9

A dy

If . < 0,¢9. < 0, Eq. (A.4) can be satisfied only
if A, = A, = 0 in B from which it follows that
A = 0 in B. The theorem is now proved.



