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The temperature distribution in an ellipsoidal liquid inclusion in a soluble solid, with a
constant gradient far away from the liquid, and the movement of the liquid inclusion as a
whole, which results as a consequence, are investigated. Since the solid is soluble and its
concentration in solution is temperature dependent, any temperature variation in the liquid
induces a concentration variation, which will transfer mass by diffusion, eroding the wall
where the temperature is high and depositing solid material at the wall where the temperature
is lower. This erosion or deposition will cause the liquid inclusion to move, and will, through
absorption or release of latent heat, in turn affect the temperature distribution. From the result
obtained for the general ellipsoid, specific results for prolate and oblate ellipsoids of revolution,
the sphere, and circular and elliptic cylinders are obtained.

I. INTRODUCTION

Fluid inclusions in soluble solids are of interest not only
to geologists but also to manufacturers of artificial precious
stones such as emeralds. The manufacturers use a liquid
called flux to dissolve at high temperatures the substance of
the precious stone present in ores. When the substance cools,
it will form the stone. In manufactured stones as well as in
some natural precious stones, such as Columbian emerald,
there are usually some fluid inclusions.

Geologists have noted the movement of fluid inclusions
in soluble solids in the presence of a general temperature
gradient, but no mathematical analysis has been given for it.
This article provides such an analysis.

The temperature distribution in an-ellipsoidal fluid in-
clusion and in the solid surrounding it will be found. In the
analysis, latent heat absorbed when solid material is dis-
solved in the liquid, or released when it is deposited at the
wall, is taken into account. From the result of the tempera-
ture distribution in the liquid, the speed of movement of the
fluid inclusion can be deduced. By specialization, specific
results for ellipsoids of revolution (prolate or oblate), the
sphere, and circular and elliptic cylinders are obtained.

The velocity of the fluid inclusion is generally very
small. Therefore the convective terms in the heat equation
are negligible. Their effect is briefly discussed in the case of
the sphere.

il. SOLUTION FOR THE GENERAL ELLIPSOID

Let the surface of the ellipsoid occupied by the liquid be
given by

X*/a* + /b + 2/ =1, (1)
where (x,y,z) are Cartesian coordinates and g, b, and ¢ the
semiaxes of the ellipsoid in the coordinate directions.

For simplicity, we shall assume that the temperature in
the solid far away from the liquid is

(];)eo =ax+T0’ (2)

and assume, for the moment, that the fluid does not move in
any direction. Then the temperature 7, in the solid and the
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temperature T in the liquid satisfy

V3T, =0, V?T=0, 3)
where
a* 4% g*
Ve — .
Ix? + ay? + 92>

At infinity, T, must approach (7). Inside the liquid, T
must have no singularity. At the solid-liquid interface

aT aT;

T; = T" - =4, 4
on d an S
where n is the distance normal to the interface,
q=k.J/k, (5)

k, and k being the thermal conductivities of the solid and the
liquid, respectively. The differential system to be solved thus
consists of Egs. (2)-(4).

Ellipsoidal coordinates (4, i, v) are defined by the roots
of 8 in the equation

x? » z

a2+0+b2+6+ c+6
considered as a cubic in 6. Welet A lie between « and — ¢?,
1 between — c?and — b? and v between — b2and — @’
Thus the surfaces A = const are ellipsoids, 4 = const are hy-
perboloids of one sheet, and v = const are hyperboloids of
two sheets. For 8 =0, (6) becomes (1). Thus the surface
conditions are applied at § =0, or 4 = 0.

Let the functions (of A, therefore of x, y, and z) 4, B, and
C be defined by

1, (6)

___a_bcf“’ du B___ng“’ du
2 L (@+uwA’ 2 i (b2+wA’
N
C=@f"° du ’
2 L (2+wA
where
A=[(@+u)(b*+u)(+u)]V2 (8)

Then it can be shown that 4x, By, and Cz all satisfy the
Laplace equation. Furthermore, they tend to zero as A ap-
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proaches infinity, that is, as the distance from the origin in-

creases indefinitely.
One assumes, then, that the temperature in the solid is
T,=ax+adx+ T, &)
and the temperature of the liquid is
T=ax+T, (10)

The Laplace equations (3), the asymptotic condition for T,
and the requirement of regularity for 7 are all satisfied, and
we turn to the conditions (4), which for A = 0 are

a+Adpa=da, (11)
gla+ (4 — Da,] =2, (12)

where 4, is the value of 4 at A = 0. In obtaining (12), it has
been necessary to use

2 x y z

A«x,/l ,/12 =“"( ’ ’ ), 13

¢ y 4s) P\a*+1 b2+1 2+ (3
where

X2 y2 z2
P= 14
(@®+A4)? (b2+z1)2+(c2+/1)2 (®

and

i) _ x y z

3’;’(7‘,}’,2)=Po 1/2(;5,';2—,?)’ (15)
P, being the value of Pat A = 0.

The solution of (11) and (12) gives

a,={(g—1)/[g— (g — 1)4,]}e, (16)

a' ={g/(q — (¢ — DAol}e. (17)

These results are already known (see Ref. 1, p. 427).

But if the solid is soluble, there will be a concentration ¢’
(in units of mass per unit volume) in the liquid, and for the
problem at hand, one can assume ¢’ to be the saturation con-
centration, related to T by

¢ =€(T—T,) + ¢, (18)

where ¢, is the value of ¢’ at the origin where T = T, If the
mass diffusivity of the solute in solution is «_, its mass is
transported in the direction opposite to the temperature gra-
dient at a rate of x, dc/dx. The velocity with which the ellip-
soidal boundary moves in the x direction, as a result of ero-
sion and deposition, is then

=——= ) (19)
ps x  p

p, being the density of the solid. The same velocity is ou

tained if one calculates the speed of erosion or deposition by
considering the component of concentration gradient nor-
mal to the wall. The assumption of a stationary fluid is now
abandoned, and replaced by the assumption that it moves
with a (very small) uniform velocity.

Erosion and deposition involve latent heat, which in
turn will affect the temperature distribution. The values of @,
and o' given by (16) and (17) must therefore be recalculat-
ed. The normal gradient of T"is a’ dx/dn, so that the solute
dissolved (or deposited) per unit time per unit area is
k.a'e dx/dn. The strength of the heat sink per unit area of
the boundary is then ma’ dx/dn, where

m = Lk e, (20)
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L being the latent heat per unit mass. Then (4) is replaced by

aT, T ox
T.=T, k, =k — T 21
an an + an 2n
and (11) and (12) are replaced by
Ao, =o',

kla+ (4, - Da,} =ka' + ma,

the solution of which is

a,={lg— (1 +mk~")1/[g— (g — 1 — mk ") A4,]}a,
(23)

a' ={g/[g— (g—1~mk ")A4,]}a. (24)

If the temperature gradient at infinity is in the y or z
direction, the analysis is strictly similar, so that if

(T), =ax+By+yz+ T (25)
the solution is
T,=ax+pPy+yz+a,dx+ BBy +v,Cz+ T, (26)
T=adx+B'y+7vz+ T, 27N
where a, and o' are given by (23) and (24), and
(BB ={B/lg— (g—1—mk~")B,]}
X(g—1~mk~'q), (28)
(ro¥) ={y/lg— (g— 1 —mk )G}
X(g—1—mk~'g), (29)

B, and C,, being the values of B and C at A = 0, respectively.
The velocity of the fluid inclusion is

(u,0,w) = (. €/p,) ("B Y, (30)

where u, v, and w are the velocity components in the direc-
tions of increasing x, y, and z, respectively. The speed is, in
general, very small.

We now recall the assumption that the fluid moves with
uniform velocity, i.e., as a solid. For this assumption not to
be violated, the temperature in the fluid must be a function of
height only. The cases in which this is true are:

Case 1: x-axis vertical, 3=0=y. Inthiscasev =0 = w.
Case 2: y-axis vertical, @ = 0 = y. In this case u =0 = w.
Case 3: z-axis vertical, @ = 0 = f. In this case ¥ = 0 = v.

Case 4: (a’,B',y’) are the direction numbers of the gravita-
tional acceleration. The speed g of the fluid is, from (30),

(x.€/p,) (@ +B7 + 7).

In all four cases the temperature gradient and the velocity of
the fluid are uniform and vertical. Cases 1-3 may be consid-
ered special cases of Case 4, which is general.

We emphasize that these are all the possible cases if gra-
vitational convection will not necessarily occur. Otherwise
convection results, and the velocity of the fluid would not be
uniform, and would be of much greater amplitude than that
given by (30). While the problem of free convection and the
problem of stability (involving double diffusion) are inter-
esting in themselves, we exclude them from consideration in
this paper.
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lil. EVALUATION OF A, B, AND C FOR SPECIAL FORMS
OF THE ELLIPSOID

From solutions given for the general ellipsoid, solutions
for its special forms can be obtained. For these forms, the
functions 4, B, and C can be evaluated directly, since the
integrals defined by (7) are exactly integrable. From 4, B,
and C, one obtains 4, B, and C,, by putting A equal to zero.
The special cases are as follows:

Case (i). For a sphere of radius a,

A=B=C=(1/3a)(a* +A)*~ (31)
This result agrees with a direct calculation by the use of a

heat doublet in addition to (7} )  for T..
Case (ii). For a prolate ellipsoid, for whicha > b =,

1-¢2 !
_ 3eo (_l_lnl+e —e'), (32)
e 2 1-=¢
1__ 2 ’ ' ’
2¢3 1—-¢ 2 1-—¢
where ¢y is ¢’ for A =0, and
e=[(a?—-b2)/(@+A)]"2 (34)

Case (iii). For an oblate ellipsoid, for whicha = b > ¢,

(1—9(2))1/2( _ f
A=B—"—(cot™ ! f— ), 35
223 cot™ " f 7 (35)
(l—eé)"2(1
c=U=D (1 ey, s
a 7 cot™' f (36)
where
. __ pi2y1/2
f=c2+/l=(1 e?) ' 37)

2 2 ’

a’t—c e
Case (iv). For a circular cylinder, witha = «», b =g,
A=0,

(38)
B=C=[b%2(b%*+A)].
Case (v). For an elliptic cylinder, witha = «, b>¢,

A=0,

__ be [l_(c2+/1)‘/2]
b2 —¢? b2+ 4 ’
be (b 24 /{)V 2 ]
C= —1f.
, b2 -¢? [ A+ A
The results (32)-(36) are given in Carslaw and Jaeger (Ref.
1, p. 427), and can be obtained by direct integration.

(39)

(40)

IV. REMARKS

It can be shown that the slow movement of the fluid
introduces, apart from the complications of a moving
boundary, a small positive constant on the right-hand side of
the second part of Eq. (3). This is tantamount to a uniform
(very weak ) heat sink in the liquid. In the simple case of the
sphere, this results (in the next approximation) in a (secon-
dary) temperature increasing with radial distance from the
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origin. Two effects are produced. One is that the fluid is no
longer in equilibrium, because of the change of its density
with temperature, and a (very weak) convection will ensue.
The other is that the (secondary) radial temperature field
will erode the boundary through the dissolving action of the
fluid, and the spherical cavity will be continually but very
slowly enlarged. The liquid will continue to fill the cavity if
the combined thermal expansion and expansion caused by
pressure release are sufficient for it to do so without the pres-
sure reaching the vapor pressure. When the vapor pressure is
reached, evaporation will occur, and vapor will fill part of
the cavity. Examination of geological specimens of salts in-
deed show fluid inclusions consisting of liquid as well as
vapor. Migration of vapor-liquid inclusions in a solid in the
presence of a temperature gradient was discussed by
Anthony and Cline.”

Note that in this paper we have given a first approxima-
tion to the solution for the movement of liquid inclusions in a
soluble solid, on the implicit assumption that the linear laws
of thermal diffusion and mass diffusion hold. In all cases
treated here the liquid inclusion moves in solid-body transla-
tion. An infinite number of possible shapes of the liquid in-
clusion is allowed, and the question of whether there is a
unique shape of the inclusion does not arise.

Precise observations of the movement (or migration) of
liquid inclusions in natural minerals are not available be-
cause the movement is extremely slow. Cline and Anthony?
observed the shape of a liquid (water) inclusion in potas-
sium chloride in an isothermal field. To obtain the asympto-
tic shape (nonspherical) it was necessary to wait seven
years! The shape is influenced by the structure of the min-
eral, which has privileged crystalline surfaces. Thus these
surfaces do strongly affect this shape, and seem to impose a
unique shape to the inclusion after a very long time. Cline
and Anthony? also calculated the shapes (which depend,
among other things, on sizes) of liquid inclusions in the pres-
ence of a temperature gradient. But in their calculation the
temperature distribution was not considered, whereas, as the
calculation in this paper shows, it is very important. How-
ever, in the present calculation the effects of surface energy
have been ignored. Thus the question of the asymptotic
shape of a liquid inclusion, given its size, moving in a given
soluble solid, including whether that shape is unique, must
remain open. It seems that this rather new problem needs
more attention of physicists and engineers.
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