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The stability of the interface in the presence of a periodic electric field is considered. It is shown
that the stability is governed by a Mathieu equation, that the interface can be unstable even if the
electric field is at all times weaker than that needed for instability in the case of a steady field, and
that, when instability occurs, the waves may either be synchronous with the electric field, or have

twice its frequency.

I. INTRODUCTION

The stability of a horizontal fluid interface be-
tween a conducting and a nonconducting fluid in
a steady vertical electric field was treated by Taylor
and McEwan.! In their paper the forces arising from
the electric field, from gravity, and from surface
tension are balanced at the interface, and a stability
criterion is found from this balance. Although the
hydrodynamics of the conducting fluid was not
considered in the paper by Taylor and McEwan,
identical results are obtained if it is taken into
consideration.

In this paper the instability of the interface in a
vertical electric field varying periodically with time
is considered. Because of the time dependence of the
electric field, the simple equation of force balance
can no longer be utilized to obtain the stability
criterion, and the hydrodynamics of the fluid or
fluids must be taken into account. When this is
done, and the viscous effects are negligible, the
stability of the interface can be shown to be governed
by a Mathieu equation whose coefficients depends
on the gravitational acceleration, the surface tension,
the magnitude and frequency of the periodic electric
field, the depth (or depths), and the geometry of
the container.

II. THE EQUILIBRIUM STATE

Suppose that the upper fluid which can be a gas
or a liquid, is nonconductive and the lower fluid,
which is invariably a liquid, is conductive of elec-
tricity. The depth of the upper fluid is denoted by &,
and that of the lower fluid by h,. (See Fig. 1) The
upper fluid, which is bounded above by an electrode
with potential V, and below by the interface, has
depth h,, and the lower fluid, bounded below by an
electrode with potential

V2 = Vo [60)3] OJt, (1)

1 G, I. Taylor and A. D. McEwan, J. Fluid Mech. 22, 1
(1965).
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Fia. 1. Definition sketch.

has depth he. In Eq. (1) ¢is the time and w the circular
frequency of V,. (Note that the usage of V, in this
paper is different from that in the paper by Taylor
and McEwan.) We will assume that the Reynolds
number based on either the depth or the wavelength
of the disturbance to be large for either fluid, so
that viscous effects are negligible.

If the densities of the upper and lower fluids are
denoted by p, and p,, respectively, and the gravita-
tional acceleration by ¢, the hydrostatic pressure
distributions in the two fluids are given by

Pr = Do — gpiz,

_. _K (Kl_-_‘é
P2 = Po & h

if 2z is measured vertically from the interface, and
K is the dielectric constant of the nonconducting
fluid. The pressure in the upper fluid at the inter-
face is denoted by p,. It can be assigned any arbi-
trary value without affecting anything, sinece both
fluids can be considered incompressible. Note that
the pressure p, at the interface (or just below it)
is not po but p, reduced by the electric part of the
Maxwell stress normal to the interface.

The electric potential V is simply V, in the
conducting fluid, so that the electric field in that
fluid is zero. In the nonconducting fluid

V] - Vz
7 2, 3)

)2 — gp:2, 2

V= V. +
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so that the field in that fluid is

_ V=T
E, = 7 4
We assume that the horizontal dimensions of the
container are much larger than h, + h,, so that
surface tension effects are negligible over the main
part of the interface.

IIl. FORMULATION OF THE STABILITY PROBLEM

Suppose that the interface of the two fluids is
slightly displaced, so that at any time it is described
by the equation

z=¢=a®)fx y), (®)

in which f satisfies the equation

@ & 2> _
(Ze+ L+ w)r=0,
k* being an eigenvalue which makes df/on = 0

(n is the normal distance) at the wall of the cy-
lindrical container and is thus dependent on ge-
ometry alone. The electric field and potential in
the lower fluid are still given by

E,=0 and V, = V, cos wt. (6)

But the electric potential of the upper fluid, which
must satisfy the Laplace equation and the boundary

conditions (if we now specify V, = —V,)
V=V =—-V, at 2=
and )
V = V2 at z = g’,
is given by
_ % _ 2sioh k(e — hy) ]
V= V2[1 W hemhin D@D ®

The normal component of the electric stress (tensile)
at the interface is, with K indicating the dielectric
constant,

(I L R PO ST

since z = f is a surface of constant potential V,
(although it varies with time). This stress com-
ponent is

o = K V21 1ok coth (kh)a()],
21l' h1

(10)
if terms quadratic in a(f) are neglected. The sub-
script e indicates that ¢, is an electric stress, and
the subscript n indicates the normal component.
Now turning to the hydrodynamics of the fluids,
we note that since the lower fluid has no electric

CHIA-SHUN YIH

field or magnetic field, its motion is governed by
the ordinary hydrodynamic equations. If we assume
that the Reynolds number (based on any rep-
resentative length) is large, the fluid may be treated
as inviseid, and if the motion is assumed to have
begun from rest it is irrotational. Hence the po-
tential ¢, for the motion of the lower fluid is

¢2 = Ax(t) cosh k(z + ho)f(z, y) + Ga(D),

which satisfies the boundary conditions

¢ _ 9, _ -
an = 0 at the wall, 3 =0 at z = —h,.

(1)

Similarly, the upper fluid, which is free of electric
charges, has a constant K, and therefore possesses
a velocity potential

¢ = A,(t) cosh k(z — h)f(z, v) + G.(®), (12)
which satisfied
9 _ 0 at the wall and 9 _ 0 at z = h,.
on 0z

We are left to deal with the interfacial conditions.
There are two such conditions, one kinematic, and
the other dynamic. The kinematic condition is

I, da(?)

" e = g [@w at z=0, (13)

and the dynamic condition is

K .o
p2—p1+8ﬂ_|El

= —Ta(t)(%a + f??)f = K¥'Ta(0)f, (19

T being the surface tension and p the pressure.
Equations (13) give

da(t) _

T A, (O)k sinh kh,.

— A\(B)k sinh kh, = (15)
In order to utilize (14), it is necessary to use the

Bernoulli equations

(% 4 46) 0~ ng = P, 19)
pz(%%? + %qi) 0 = gz = Fa(), (A7)

in which g is the speed. Since an arbitrary function
of time has been added to ¢, and to ¢., we can take
F.(t) and F.(f) to be zero. Neglecting ¢°, we have

36 0n

P: — P = g2(p — p) + ;o ':97 — P2 —615 (18)

Putting Eqgs. (18), (11), and (12) into Eq. (14), and
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setting 2z equal to { in (18) and evaluating ¢, and
¢, in Eq. (18) by Egs. (11) and (12), putting the
result into Eq. (14), and using the o,, in (10) for
the electric term in (14), we have, besides

K VvV ,
%ﬁ?— = pGi(t) — pGi(Y), (19)
2
[-Irg%;—z k coth kh, — kT — g(p; — pl)]a(i) -k
1 -
2
-(p» coth kh, + p, coth kh,) (igz(;)- = 0, (20)
or
da s
T + (we — B — B cos 2wi)a = 0, (21)
in which
T — gk(p: — p1)
2 2 1
@0 = s coth kh, + p, coth kh, ' (22)
____ KVik® coth kh, )
B = 5t (o coth khy + g coth Fhy 2D

Equation (21) can be put in the canonical form of
the Mathieu equation

d’a

72 + (p — 2q cos 21)a = 0, (24)

in which p and ¢ are not the pressure and the speed,
if we put

wo — B _ _ﬂ ,

) T2

The stability diagram for (24) is standard, and for
completeness is shown in Fig. 2. It is seen that even
if 8 is very small there may be regions of instability.
Since V3 has a basic frequency of 2w, not w, the
various regions correspond to double frequency and
synchronism of the hydrodynamic oscillations in
relation to V., instead of synchronism and half-

T = wl,
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Fia. 2. The stability diagram for Mathieu’s equation.

y;

o!—- F N

20

frequency, respectively. In conclusion we note that
if V, is zero instead of —V,, the V, in (23) should
be replaced by V,/2. The instability found here
is akin to the one found by Benjamin and Ursell® for
the free surface of a liquid in vertical periodic motion.
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