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with the low temperature spectra shows that there are two 
lines remaining constant at different water contents, at 1534 
and 1633 cm- I

• In between one finds a broadband increas
ing in intensity and splitting into two lines at 1575 and 1591 
cm -I at higher water content. 

(vi) At room temperature two broad lines arise at 3300 
(assigned to v NH, r NH, and 'T' CNll

) and 3103 cm- I 

(assigned to v NH, 'T' CNII
). 

The question concerning the nature of these lines is not 
easy to answer. For such low concentrations of water (in 
NMA) one could first consider the vibrational lines of the 
isolated molecule, but not all possible lines (1595,3151, and 
3652 cm -I) 16 fit to our observed ones. The problem seems to 
be more complicated as the water molecule will be bound in 
some way to the hydrogen bonds of the NMA crystal. One 
might even speculate that there are at least two different sites 
that are accessible to different numbers of water molecules. 
This could cause the different sensitivities of the two lines in 
the amide 1111 region at room temperature. Further investi
gations on deuteration effects may lead to the necessary new 
assignments although the two factors of deuterating the 
amide group in NMA and water can only be switched at the 
same time because of the fast HID exchange between NMA 
and the added water. 

We would like to thank A. Breitschwert for the oper
ation of the spectrometer. 
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Correlation in diffusional motion has been shown in the 
past to be a necessary idea for the explanation of experimen
tal data ranging from the diffusion of hydrogen in metals I 
and models of diffusion in concentrated lattice gases,2 to the 
relaxation mechanism of low-lying excited states of organic 
molecules at low temperatures3 as studied by the use of ran
dom walk hopping models.4 Recently a new model was in
troduced6

•
7 that incorporates the effects of correlation in the 

usuals random walk models, first on perfect lattices,6 and 
then on mixed binary lattices.7 Also of interestS has been the 
application of the simple stochastic random walk on the 
fractal structures of percolating clusters around the critical 
threshold point. In the present paper we study the behavior 
of correlated random walks on such fractal structures, we 
test the possible universality of these phenomena, and also 
their crossover to the classical limit of a perfect crystal. 

Percolating clusters are generated by a Monte-Carlo 
simulation method, using the cluster growth technique.9 

The only prescribed parameter is the concentration (relative 
fraction) of the open (allowed) lattice sites C, ranging from 
the critical value Cc = 0.593, to the limit of perfect lattice 
C = 1.00. Correlation is the retention of the directional 
memory over a certain number of lattice spacings. This is 
quantitatively described by the fraction PI' which is the 
probability of a forward jump, and it is in the range: 
a-I <PI < 1.00, where a is the lattice coordination number. 

The well-known relations connecting S N' the number of 
distinct sites visited in an N -step walk, with N ( time) is 

SN_Nd
•
12 

which has been shown9 to hold true for a variety of lattices 
for stochastic random walks with a d. value: d: = 1.30, for 
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a random walk restricted to the largest cluster only, while 
d; = 1.23, for the random walk originating on any cluster, 
small or large,1O all for the square two-dimensional lattice. 
This is exhibited by the curve marked PI = 0.25 in Fig. I. In 
this case of the square lattice all four directions carry the 
same 0.25 probability of scattering, so that this is the limit of 
a totally uncorrelated walk. All calculations shown in Fig. I 
are performed using random walks that may start on any size 
clusters, so that exactly at the critical point (Cc = 0.593 ) 
the (modified1o,ll) spectral dimension d; = 1.23. However, 
for C = 0.60, we observe that d; = 1.33, showing that we 
are already in the region of "crossover" to Euclidean behav
ior. As has been recently shown,9 this crossover is very sud
den close to the critical point, so that the observed difference 
( 1.23 to 1.33) is not surprising, but rather in agreement with 
these recent results. We observe that the standard deviations 
for all the above values are about ± 0.02. We further ob
serve that the crossover to Euclidean behavior eventually 
(C = 1.00) results in the value of d: = 1.8. (Here d: is an 
effective spectral dimension; as is well known, the difference 
from the d. = 2 classical value is due to the logarithmic cor
rection terms that the two-dimensional random walk exhib
its.s ) 
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CONCENTRATION 

FIG. 1. The spectral dimension d; vs the concentration C, as a function of 
the forward correlation parameter Pf' These are results of random walks on 
lattices of 2000 X 2000, averaged over 500 realizations, and the spectral di
mensions are calculated in the long time limit, N = 2 X Id' steps, from 
walks that may originate on any size cluster. 

Of special interest here are the other curves in Fig. 1, 
which refer to higher PJ (PI> 0.25) values. In the fractal 
limit (C = 0.60) we see that d; sharply decreases as PI in
creases. For PJ = 0.95 (at C = 0.60) we see that d; = 0.66 
only. This sharp decrease accompanies the fact that at the 
critical percolation threshold the correlated walks have a 
much smaller S N value than the uncorrelated walks, be-

cause, as was originally shown in the past,4 the particle in
dulges for long times in revisiting the same row of sites over 
and over again. We also used this idea3 to interpret experi
mental data on mixed naphthalene alloys at 2 K. The trend 
in this decrease is not simple, however. Actually for smallpl' 
in the region 0.25 <PJ < 0.50, we observe an increase in the 
d; value compared to PJ = 0.25, coming from a correspond
ing increase in the S N respective values. Only for high PJ, i.e., 
PI> 0.60, do we observe a clear decrease in the spectral di
mension, resulting from a drastic decrease in S N' This shows 
that the problem is considerably more complex than Fig. 1 
shows, but its details are not to be addressed here. Thus, our 
preliminary conclusion is that correlated walks do not be
long to the universality class of stochastic walks. Factors 
that have to be taken into account include: the exact value of 
C (remembering that C = 0.60 is not the critical point but 
Cc = 0.593), the length of time, contributions from runs on 
small finite clusters, the use of the "blind" or "myopic" ant 
model, 12 etc. 

As C increases, one observes for each PJ value the corre
sponding crossover to the classical behavior, since now, 
above C = 0.80, correlated walks are much more efficient 
than uncorrelated ones. The region 0.70 < C < 0.80, as seen 
from Fig. 1, is the "crossover region" between the different 
PJ values. 

In summary, we have presented a preliminary study for 
correlated random walk motion on fractal structures, and 
we investigated the two types of crossover that occur, i.e., the 
crossover from fractal to Euclidean behavior for any type of 
walk, and the crossover from uncorrelated to correlated 
walk at any given concentration. 

This work was supported by NATO Grant SA-5205-
RG-295/82 and NSF Grant DMR 8303919. 
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