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This paper analyses the maser oscillator equations which describe the interaction between the resonant
cavity and the inverted population of the electron spin system of the paramagnetic substance. It is shown
that these equations will not allow periodic solutions thus refuting the theory, based on computer solutions,
that this interaction is responsible for the pulsed mode of operation of the oscillator.

Characteristics of solutions of these equations are determined analytically, and the ambiguity of computer
solutions is discussed with the aid of examples. Numerical solutions are presented which show that periodic
solutions may be induced by supplementing the spin system equation with an additional term.

INTRODUCTION

HE treatment of the differential equations
describing the operation of the three-level para-
magnetic maser oscillator by analog or digital tech-
niques, encounters difficulties when questions of peri-
odicity and stability arise.!? A direct analytic investi-
gation of these problems is called for. This paper pre-
sents a proof of the nonexistence of periodic solutions
and limit cycles, and discusses the form of soultions with
the aid of numerical results.

EQUATIONS

According to Makhov,? the maser oscillator equations
are of the form

dx/dt= —crxy+calao— )¢5 f (x) (1)
dy/dt=cyxy—cyy ¢:>0, 2

where «x is the population difference in the spin system,
and vy is the magnetic energy in the cavity. The remain-
ing quantities are defined in references 1 and 3. Since
dy/dt<0 for x<x;, it is necessary to supplement the
system with the constraint equation

0<y0<y, 3)
where yo can be taken as noise in the system.
DISCUSSION OF THE EQUATIONS

In the following three sections the coefficient ¢z in
Eq. (1) is assumed to be zero. The system has two singu-
lar points (x1,y1) and (xs,ys) where

X1=cq/Cy 4)
1= C2(%0—%1)/c121 (5)
X9=X0
y2=0.

* This work was conducted by Project MICHIGAN under
Department of the Army Contract (DA-36-039-78801) ad-
ministered by the U. S. Army Signal Corps.

1H. Statz and G. DeMars, Quantum Electronics (Columbia
University Press, New York, 1960), p. 530.

2 G. Makhov, “On the theory of the three-level paramagnetic
maser oscillator,” Conference on Electron Tube Research, Mexico
City, 1959 (unpublished).

3 G. Makhov, J. Appl. Phys. (to be published).

The area of interest for solutions is in the region

0<x<xp
0<y.

Note that if a solution starts at x=0, {=0, y=1y,, no
oscillations are possible until x=ux,, =1{, y=y,. Al
further discussion assumes, as initial conditions

X=%1
=4
Y=Y
Analog computer solutions have led to the supposi-
tion! that periodic solutions may exist about the point
(1,1). It will be shown that no such solutions exist, but
characteristics of the equations will be pointed out

which show why computer solutions may lead to this
conclusion.

NONEXISTENCE OF PERIODIC SOLUTIONS
AND LIMIT CYCLES

On letting
0< x1<Xo

0<yo<<ys,

substituting z=x—=x; in the system, and eliminating !
by division,

dy dy c3y2
2.2 = fz). (6a)
dx dz  —ciys—cortca(x0—2x1) —cra1y]
From (5) citryi=ca(xo—#1), therefore,
fGEy)=—k k>O0. (6b)

Let y=yo+/o*f[ 2,y (z) Jdz=F (3) describe a traejctory
followed by a solution in the (2,y) plane. If a closed path
exists, a trajectory must start at some point (0,vo),
where 0<y,<y:; and as ¢ increases in a positive sense
the trajectory must follow some path about (0,y;) and
return to (0,y;). By expanding F(3) in a Maclaurin

series we find that
F(—3)<F(z) 0<z (6¢)

in a small neighborhood of z=0; and by substituting y;
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Fi6. 1. Diagram to clarify arguments
eliminating periodic solutions.

for yo we find that this is true for any section of a tra-
jectory which crosses the y axis.

The level curve dz/dt=0, shown in Fig. 1, is a branch
of a hyperbola with asymptotes z2=—ux, and y=—c¢y/c;.
At points on a trajectory which lie above the hyperhola
dz/dt<0, and at points below the hyperbola dz/d:>0.
Also, the derivative changes sign in the regions z>0,
y<y, and 2<0, y>y;. Choosing points (2;,y:), (—2:,¥:):
2:>0, yo<y:<y;, we find that

lf(—zi’yl')l < ‘f(zbyi)l’ (6d)

and therefore the magnitude of the slope of a trajectory
at any such point (z;,y;) must be greater than the mag-
nitude of the slope of the trajectory at the point’s reflec-
tion with respect to the y axis.

In Fig. 1, C is an arbitrary trajectory which is a
solution for the equations, C’ is the reflection of C with
respect to the y axis, and C” is the extension of C in the
region y<y;, 2<0. We know that the slope of C’ changes
sign, while the slope of C”” does not. For a closed path
we know [Eq. (6¢) ] that C”" must be below C’ near the
y axis. We know that C”’ cannot cross C’ from the inside
to the outside as ¢ increases, since the magnitude of the
slope of C” would then be greater than that of C/, in
contradiction of (6d). Therefore, since C" must be out-
side C’ to close the path, and since it cannot cross C’
from the inside to the outside, we conclude that if a
closed path exists, C’’ must always be outside C’. Now
if (21,51) is on C, and (z2,31) is on C”, it is obvious that

f2o] > ]21] 22<0<z,, (6e)

if a closed path exists.

We now let S (Fig. 1) be the extension of C in the
region 2>0, y>y,, intersecting the y axis at (0,y,). S is
the trajectory determined by the point (0,y;) in the
region y>y1, 2<0, and S’ is the reflection of S with
respect to the y axis. Using analogous arguments we
find that if S is part of the same trajectory as C, and if
(22,1) is a point on S, and (z1,y1) is a point on C,

2 >0
22<0
Y=

22| <|z]
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Fi1c. 2. Diagram showing construction of the
lower bound for damping.

From the second argument we conclude that the dis-
tance from the trajectory to the y axis on the line y=1y,
becomes successively smaller with each consecutive half-
cycle. The first argument states that, for finite z, the
distance must initially become larger to admit a closed
path. Since the trajectory must cross the line y=1y, with
a constant angle of inclination #£7/2 (with respect to
the z axis), a closed path consisting of the y axis is
eliminated. The level curve dy/dt=0 is the y axis; all
trajectories must cross this line horizontally, and there-
fore a closed path cannot consist of a line at an angle
other than /2.

Finally, as |z|—0, y=7y1, then |y;—y|—0, =0, and
therefore periodic solutions are not possible.

To eliminate limit cycles and to understand the
change in the damping which results from a change in
the position of the singular point (x1,y1), it is necessary
to find a lower bound for the quantity (|z:|—|2e|). In
Fig. 2, let S be a trajectory in the region y> v, >0,
such that (z1,y1) is a point on S. .S” is the reflection of S
with respect to the y axis, and §’ is the extension of S in
the region y>y,, 2<0. O is the point at which .S inter-
sects the hyperbola dz/dt=0. The tangent to S’ is
parallel to the y axis at this point; and extended to the
line y=1y;, it intersects at (z4/,y1).

Let @=tan™'(dy/dz) on S. It can be shown that 8 is
bounded on S, 7/2<tan"'(—k)<0<~. Let ¢y =mr—tan™!
(—k). Clearly [24| > |22|. From point O construct a line
which interesects the line y=y, with angle of inclination
¥, and call the point of intersection (z5',y1). Now
|25'| <|21|, since 6 is bounded on S and S”" must also
intersect the line y=1y; with angle of inclination y. We
now have a lower bound on the damping. Letting
|26'| —|24'| =4z,

|21| — | 22| > As.

We now find a simpler and more useful bound. Con-
struct the straight line defined by the points (0,y,) and
([®o—=11,0) and intersecting the line y=y; with angle
¢. This line, as shown in Fig. 2, is always below the
hyperbola in the region y> 7y, 2<0, and always above
the hyperbola in the region y<y;, 2>0. Preserving
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COMMENTS
1 ] I 1 . .
a3 =2 1 1 ' s It is apparent that although y, will determine the
*1 (x-3x,)x101€ amplitude and frequency of the oscillation, it will have

F16. 3. Phase plane plot of a solution with high”damping.

angles, we now let the point O follow the trajectory
until it reaches 0’, at which point the trajectory inter-
sects the straight line. Let O’ follow the straight line in
the direction of decreasing z, still preserving angles,
until the point (25",y1) coincides with the point (—z21,y1).

Now |z5"| =|21| and |z4'| > |2:] by reasoning used
previously, and Az’ is still a lower bound, and the magni-
tude can be determined easily:

A= |z1|—|2d"| =Kz
K=sin¢ cosy/sin(r—y¢—¢)=1/[1+4 (tany/tang) ]<1.

If 23, 24, . . . are successive intersections of the tra-
jectory with the line y=1y;, repetition of this argument
shows that z,=2,(1—%)", and the trajectory damps in
an exponential manner.
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F1c. 4. Phase plane plot of a solution with low damping.

no effect on the type of oscillation (i. e., damped or
undamped). '

An examination of the expression f(z,y) indicates that
the damping is a result of the term [ca(xo—x1) — i1y ].
Now as xy—x,, we see from Eq. (5), that y,—0, and the
trajectories become more symmetric. When x;=x, the
trajectories represent degenerate limit cycles at the
point (x0,0). The expression for Az’ indicates that this
does happen. Note that as x;—x, the singular point
(x1,y1) moves to a region in which the level curve
dx/dt=0 is more nearly horizontal. As x;—x, the angle
¢—m, Yy—u/2, and therefore K—0. Assuming that the
damping decreases as the lower bound approaches zero,
it would be expected that the trajectories would closely
approximate periodic solutions for x; close to xo.

This is verified by numerical solutions. Figures 3 and
4 are graphs of solutions which exhibit this property.
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F16. 6. Phase plane plot of a solution with damping corrected.
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F16. 7. Shows a damped solution in the (y, #) plane.

Since ¢4 is the constant most easily varied in the oscil-
lator (being inversely proportional to the cavity Q),
numerical results have been obtained varying only
¢4y s, and f(x). The values of the remianing constants
are: c1=10% ¢;=10, ¢3= 10712, xy=2X10".

Figure 5 shows the percentage of damping, pulse-to-
pulse, which results from varying ¢4 with ¢;=0. Note
that the damping for realistic values of ¢4 is of the order
of 197. Due to lack of resolution, analog or digital equip-
ment may not detect this amount of damping, and con-
sequently computer solutions may very easily lead to
erroneous conclusions.

EFFECT OF THE TERM c:f(x)

It has previously been shown,? that introducing the
term c5f(x), where f(x)=x", will make a limit cycle
possible. To illustrate this effect numerically, a value of
¢4 was selected which would produce considerable damp-
ing (509) and ¢s and # were adjusted to eliminate the
damping. Figure 6 is a graph of the solution in the phase
plane with damping corrected. Figures 7 and 8 show, in
the (y,f) plane, the damped solution, and the solution
with ¢; f(x) just sufficient to eliminate the damping. For
these graphs a realistic value of yo was used, so that
comparison might be made with the experimental
results.*

The introduction of ¢;f(x) has other interesting effects

4G, Makhov, R. Terhune, J. Lambe, and L. Cross, J. Appl.
Phys. 31, 936 (1960).
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F16. 8. A solution in the (y, £) plane with damping corrected.

on the solutions. The dashed line in Fig. 1 shows the
effect of the term on the curve dx/di=0. It has been
observed numerically that a solution can be initially
damped and spiral in to a limit cycle. It is also possible
to produce negative damping, and without Eq. (3) the
solution spirals out, and the amplitude and frequency
become infinite. With Eq. (3) in the system, ¢; and # can
be varied to produce identical pulses of arbitrary am-
plitude or frequency.

METHOD OF NUMERICAL SOLUTION

All computation was performed on the IBM 709.
Solutions were obtained using a variable step method
which utilizes the predictor-corrector equations of
Adams and Moulton.? The numerical accuracy was
checked by parallel solution of many cases using the
Runge-Kutta method, which is much slower, but is
stable in cases where predictor-corrector methods may
not be.f
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