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Earlier work of the author on the spatially periodic solutions of the Korteweg—de Vries equation is
here extended via an in-depth treatment of a special case. The double cnoidal wave is the simplest
generalization of the ordinary cnoidal wave discovered by Korteweg and de Vries in 1895. In the
limit of small amplitude, the double cnoidal wave is the sum of two noninteracting linear sine
waves. In the oppositie limit of large amplitude, it is the sum of solitary waves of two different
heights repeated periodically over all space. Although special, the double cnoidal wave is
important because it is but the particular case ¥ = 2 of a broad family of solutions known
variously as “N-polycnoidal waves,” “finite gap,” ““finite zone” solutions, “waves on a circle,” or
“N-phase wave trains.” It has been shown by others that the set of N-polycnoidal waves gives the
general initial value solution to the Korteweg—de Vries equation. This present work is the core of a
three-part treatment of the double cnoidal wave. This part, the overview, presents graphic
examples in all the important parameter regimes, explains how collision phase shifts alter the
average speed of the two wave phases from the “free” velocities of the two solitary waves,
describes the different branches or modes of the double cnoidal wave (it is possible to have many
solitary waves on each spatial period provided they are of only two distinct sizes), and contrasts
the results of this work with the very limited numerical calculations of previous authors. The
second part describes how the problem of numerically calculating the double cnoidal wave can be
reduced down to solving four algebraic equations by perturbation theory. The third part explains

how the so-called “modular transformation” of the Riemann theta functions is important in

interpreting N-polycnoidal waves.

PACS numbers: 02.30.Jr, 02.60.L;j

I. INTRODUCTION

The “Hill’s spectrum method,” developed in the mid-
1970’s by Lax, Novikov, McKean, and others, has been a
powerful theoretical tool for understanding the spatially pe-
riodic solutions of the Korteweg—de Vries and other soliton
equations. In particular, it showed that there existed solu-
tions which generalize the simple cnoidal waves found by
Korteweg and de Vries themselves in 1895. These general-
izations were dubbed “polycnoidal waves” in Ref. 1 but they
are known alternatively as ““finite band” or “*finite gap” solu-
tions in the Russian literature and sometimes as “N-phase
wave trains” in the American journals. The N-polycnoidal
wave is a function of N “phase” variables of the form

Si=kilx—ct)+ ¢, (1.1)
where the k; are wavenumbers, the ¢; are phase speeds, and
the ¢, are constant phase factors. The most compact expres-
sion for u(x,t ) is in terms of a N-dimensional Riemann theta
function whose arguments are the N “phase” variables de-
fined in (1.1). Although the polycnoidal waves, like the ordi-
nary cnoidal wave which is the special case ¥ = 1, are thus
special solutions, it has been shown that the class of poly-
cnoidal waves is dense on the set of solutions of the
Korteweg—de Vries (KdV) equation which are spatially peri-
odic. To put it another way, the solution to the KdV equa-
tion for an arbitrary initial condition can be approximated
for an arbitrary finite time interval to an arbitrary degree of
accuracy by an N-polycnoidal wave of appropriate param-
eters and sufficiently large N. Thus, to understand these spe-
cial solutions is to understand the general solution, too, at
least for finite time.
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Unfortunately, like its counterpart, the inverse scatter-
ing method for a spatially unbounded domain, the Hill’s
spectrum method is very complicated and a poor tool for
actual numerical calculations. To quote Ferguson et al.,’
“the exact formulas seem to be of little practical use.” An
alternative approach was discovered by Hirota>* and subse-
quently generalized to the spatially periodic problem inde-
pendently by Nakamura® and Boyd.! The reason for the al-
ternative’s effectiveness is that the theta functions satisfy not
the KdV equation itself, but rather Hirota’s transformed
version, which will be called the “Hirota-Korteweg—de
Vries” or "HKdV” equation; the solution of the KdV equa-
tion is obtained by taking the second derivative with respect
to x of the logarithm of the theta function. Because the theta
function depends on only a finite number of parameters, it is
possible to reduce the problem down to that of solving a
finite set of algebraic equations to determine these theta
function parameters.

The aim of this paper, which is a sequel to Ref. 1, is to
exploit this Hirota-theta function approach to deepen our
understanding of the spatially periodic solutions of the
Korteweg—de Vries equation, paying particular attention to
N =2, the double cnoidal wave. This article and its two
companion papers,®’ are a single connected work. The other
two papers discuss a perturbative (and numerical) solution of
the implicit dispersion relation for the theta function param-
eters and the role of the “special” modular transformation of
the theta functions in physically interpreting the polycnoidal
wave solutions. This paper will strive to provide a general
overview of the physics and mathematics of polycnoidal
waves, leaving the technical details to the other two articles
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wherever possible.

Before giving an outline of this work, it is useful to com-
pare and contrast its aims with those of three other schools of
polycnoidal wave studies. A. Nakamura and his collabora-
tors R. Hirota, M. Ito, and Y. Matsuno>®-!° have developed
the direct theta function method by showing, via a mixture
of clever theorems and occasional numerical calculations,
that it can be used in principle to reduce a large number of
different soliton-admitting partial differential equations to a
finite set of algebraic equations for the theta function param-
eters. Equations whose Hirota-transformed equivalent is a
set of coupled bilinear equations or a complex equation are
discussed as well as the simpler case of those which, like the
Korteweg—de Vries equation, transform into a single bilinear
equation with real coefficients. They emphasize that a num-
ber of as yet unresolved technical difficulties exist for these
other classes of equations, which is why this present article is
focused specifically on the KdV equation. The limitations of
their work are a lack of explicit calculations (except for ordi-
nary cnoidal waves and some numerical computations de-
scribed in Sec. VII), omission of perturbation theory such as
is given in Ref. 6, and restriction to theta Fourier series only.
The alternative Gaussian series for the theta function, intro-
duced in Ref. 1, is a better way to explore the near-solitary
wave regime.

Forest, McLaughlin, Flaschka, and Ferguson*'! have,
like the author, attempted to explore polycnoidal waves in
the spirit of applied mathematics rather than pure math-
ematics by taking a ‘“‘concrete viewpoint,” to borrow a
phrase from the title of Ferguson et al.> Though the philoso-
phy thus is similar, the line of attack is very different: this
work and Refs. 1, 6, and 7 scrupulously avoid any explicit
use of the Hill’s spectrum method while Ferguson et al.’
have “Spectral theory” as the first words of their title. Their
whole approach is oriented toward understanding polycnoi-
dal waves via calculation of the spectrum of Hill’s equation
and they avoid all mention of Hirota’s transformed bilinear
equations, perturbation theory, the special modular trans-
formation, and most of the other topics we will discuss.
Thus, their work is complementary to what will be presented
here.

The Polish school of Zagrodzifiski and Jaworski'? has
written an interesting series of papers on the sine-Gordon
equation. Their approach is inverse to that used here in that
they completey specify the theta matrix and then solve for
the wavenumbers k. This simplifies much of the analysis at
the expense of obtaining generally nonintegral k; so that
their solutions are “almost periodic” rather than periodic in
space.

Il. AN OVERVIEW OF THE DOUBLE CNOIDAL WAVE

The Hill’s spectrum method has shown that the N-po-
lycnoidal wave is most easily expressed in terms of an N-
dimensional Riemann theta function via

2
ulx,t)= lzj—zln[(}(x,t)], (2.1)
dx

where 6 (x,t) is the N-dimensional Riemann theta function
and where u(x,?) is the actual solution of the Korteweg—de
Vries equation
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u, +uu, +u,, =0. (2.2)

For the special case N = 2, which will be henceforth called
the “double cnoidal wave,” the theta function is defined by

o= 3 ) exp( — { Ty, + 2T onyn, + Topny?))

n=—o Ny= —

Xexp[2min X + n,Y)], (2.3)

where the T); are the elements of a 2X2 positive definite
symmetric matrix known as the “theta matrix”’ and where X

and Y are the “phase variables” defined, as in (1.1), by

X=kix—ct)+d, (2-4)

Y =kylx — 5t ) + ¢, (2.5)

Mathematicians normally define the theta function in terms
of an imaginary theta matrix as explained in Appendix A,
but the real-valued T, employed in (2.3) are more convenient
for calculations. The independent parameters are the wave-
numbers k, and k,, and the diagonal theta matrix elements
T,, and T),. The dependent parameters are the phase speeds
¢, and c,, plus the diagonal theta matrix element T,,. [There
is a fourth dependent parameter, the constant of integration
A in the “Hirota—Korteweg—de Vries equation” described in
Ref. 6, but this is only a calculational tool and does not ap-
pear in the final answer (2.1).]

The wavenumbers k, and k, can be arbitrary; Novi-
kov'® has emphasized from his earliest papers that if the
wavenumbers are incommensurable, i.e., if k,/k, is an irra-
tional number, then the double cnoidal will be “almost peri-
odic” in space rather than strictly periodic, but this is math-
ematically legitimate. Although some applications of
“spatial almost periodicity” can be envisaged,' it is suffi-
cient for most physical problems to take k; = 1 and k, = 2.
The reasons are that (i) in most Fourier series, the second
harmonic (k = 2) is the largest component after the funda-
mental (k = 1), and (ii) one can change the spatial period
from unity [as in (2.3) with &k, = 1] to an arbitrary period
through a trivial rescaling of the coordinates. The spatial
period is equal to one in all the figures and cases described in
the rest of this paper.

The diagonal theta matrix elements are thus the more
important parameters because they specify the amplitude of
the two waves that make up the double cnoidal wave. Figure
1 indicates the different wave regimes of the T',; — T,, plane.
When T}, and T,, are both large, the double cnoidal wave is
approximately equal to the sum of two linear, noninteracting
sine waves of different wavenumbers and phase speeds, i.e.,

uix,t)= — 48w’ [k e~ T cos27X)

+ kie~ ™ cos(27Y)]. (2.6)

When both T, and T, are small, the double cnoidal
wave is approximately given by the usual K orteweg—de Vries
double solitary wave with one tall soliton and one short soli-
ton on each unit interval in x. The Fourier series (2.3) con-
verges very slowly for small 7', and T,,. The central theme
of the author’s previous paper' is that one should substitute
instead the series
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FIG. 1. Schematic diagram showing the four main regimes of the double
cnoidal wave in Ty, — T, plane, where T, and T,, are the diagonal theta
matrix elements, which are always positive.

o o0 R
0= 5 5 ev(|(5)wenr
" Al h;lf?nl"ezg;s] “

SR+ mr )+ (52) ranp]). @7
where the sums are over the half-integers, +1, +3, +3, ...,
and where the R are proportional to the elements of the
inverse of theta matrix formed by the T;;. For obvious rea-
sons, (2.7) will be referred to as the “Gaussian” series of the
theta function since each term is a Gaussian function of X
and Y; this series is the Poisson sum of the Fourier series. As
explained in Appendix B of Ref. 6, the usual double solitary
wave can be obtained from (2.7) by truncating it to four terms
and taking the second logarithmic derivative as in (2.1), but
the result is too messy to repeat here.

The strength of using two alternative series represen-
taions, (2.3) and (2.7), is that the Fourier series converges
rapidly in the double sine wave regime where (2.7) converges
slowly, while the Gaussian series converges rapidly in the
double soliton regime where the Fourier series is almost use-
less. Consequently, in this paper and its two companions, we
shall move from Fourier series to Gaussian series and back
again with great freedom. As explained in Ref. 6, the me-
chanics of calculating the unknown phase speeds and diag-
onal theta matrix element (either T, or R ,) are such that the
Fourier-based computation is merely a special case of that
for the Gaussian series.

Unfortunately, neither series is rapidly convergent
along the T, and T, axes where one diagonal theta matrix
element is large in comparison to the other, but this is not of
vital importance because these near-axis regimes represent a
single solitary wave perturbed by a very small amplitude sine
wave. As such, these regimes are much less interesting than
those in which the two waves are of equal amplitude since
theories for the single soliton subject to an arbitrary pertur-
bation have been developed by R. Grimshaw'® and others he
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references. In practice, there is actually a high degree of
overlap between the Fourier and Gaussian series both with
each other and with the perturbed one-soliton regimes, so
the need for special methods for these near-axis double cnoi-
dal waves is usually academic.

The double solitary wave regime is the most interesting
case of all. In Sec. 1V, the geometry of the X-Y plane is de-
duced from the Gaussian series. To some extent, this will
merely repeat the construction given in Ref. 1 for the single
cnoidal wave, but it will also bring out several features such
as phase shifts and the special modular transformation
which are unique to polycnoidal waves with N>»2, and have
no counterpart for the ordinary N = 1 cnoidal wave. First,
however, some sample graphs are presented to give the read-
er a feeling for each of the four regimes of the double cnoidal
wave.

lil. SAMPLE DOUBLE CNOIDAL WAVES

Figures 2-5illustrate u(x,t ) for each of the wave regimes
indicated schematically in Fig. 1. The graphs were computed
in a frame of reference moving at the phase velocity ¢, so that
the tallest peak is approximately stationary; in this frame of
reference, the double cnoidal wave is simply periodic in time,
so it suffices to show half of one temporal period. Strictly
speaking, the double cnoidal wave solution has a mean value
of 0, i.e., the integral of u(x,? ) over a period is 0, but for visual
clarity, a constant'® has been added to the graphs.

The first case is that of a classic double solitary wave:
The tall soliton overtakes the short soliton and only a single
peak is visible at the time of maximum interaction. In time,
however, the two separate and emerge unchanged by their
interaction except for a shift of phase. In other words, the tall
peak is briefly accelerated and the short peak briefly deacce-
lerated by their encounter so that the tall soliton is farther to
the right than it would have been in the absence of the colli-
sion. In a spatially unbounded domain, where there are just
the two solitons on the whole interval x€[ — «, ], this col-
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FIG. 2. A Korteweg—de Vries double cnoidal wave in the double soliton
regime. The mode in this and the next three figures is [1,2] f or equivalent-
1y, {1,1} %, in the notation defined in Sec. V. The angle variable X, defined by
(2.4) was set equal to x, the spatial coordinate, for all curves so that we are
looking at the wave in a frame of reference moving with the phase speed, ¢,.
The double cnoidal wave is simply periodic in time in this reference frame
with a period P = 1/c,. Solid curve (¢ = 0), dashed curve (t = P /4), and dot-
ted curve (t=P/2) show one half of a time period. T), =0.397,
T,, = 0.359, and T, = 0.892 (with k&, = 1 and k, = 2, here and in the next
three figures).
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FIG. 3. Same as Fig. 2 except that the polycnoidal wave is in that intermedi-
ate parameter range where it can be regarded (and accurately approximat-
ed) as either a pair of linear sine waves or a pair of solitary waves. Solid curve
(t = 0), dashed curve (r = P /4), and dotted curve (¢ = P /2), where Pis the
time period.

lision is a once-in-a-lifetime event, and therefore does not
affect the average speed of the solitons. On the periodic do-
main, the collision is repeated endlessly, so the repeated
phase shifting does alter the average phase speed of the soli-
tons. The implications of this are discussed in the next sec-
tion and more particularly in Sec. V.

Figure 3 shows the double cnoidal wave when both
peaks are much smaller and wider. The parameter values are
such that the polycnoidal wave lies in that intermediate re-
gime where it can be equally well considered to be a solitary
wave or a pair of sine waves: both lowest-order approxima-
tions agree with the exact solution to within a few percent of
accuracy. The qualitative behavior is very similar to that of
the extreme double soliton case shown in Fig. 2, and can
likewise be interpreted as colliding solitary waves. The alter-
native sine wave interpretation is equally straightforward.'’
At ¢ = 0(solid curve, Fig. 3), a trough of the second harmon-
icis 180 degrees out of phase with the wavenumber one com-
ponent at X = 0. The result is a dimple at X = 0, where the
peak of the fundamental is partially cancelled by a trough of
the second harmonic, two peaks on either side of the origin
near nodes of the second harmonic, and very deep troughs at
X = + 1, where both the fundamental and harmonic have
negative maxima. When the second harmonic has moved a
quarter unit in X' (dotted curve), there is a single tall, narrow
peak at X = 0 where the fundamental and second harmonic
are in phase, and smaller secondary peaks at X = + | where
the narrow crests of the second harmonic rise from the flat-
ter troughs of the fundamental.

Figure 4 illustrates the rather boring case of a single
soliton modified by a small superharmonic (wavenumber
two) perturbation (7,,>T,,, where k, =2k,). Lax has
shown'® that when the two solitons are sufficiently unequal
in size, the tall soliton becomes shorter and broader during
the collision (i.e., while out of phase with the crest of the
perturbation) but the dimple at or near X = 0 (so that Figs. 2
and 3 always have two local maxima) does not occur so that
there is only a single local maximum for part of each period
in time.

Figure 5 shows the other perturbed soliton regime
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FIG. 4. Same as Figs. 2 and 3 except that the polycnoidal wave is actually a
weakly perturbed ordinary cnoidal wave. Solid curve (¢ = 0), dashed curve
(t = P /4), and dotted curve (t = P/2), where T = 1/¢, is the time period.
T, = 1.00, T, = 0.759, and T, = 3.00.

{T',,>T,,). This is a cnoidal wave of half-unit spatial period
weakly affected by a subharmonic perturbation of unit peri-
od. For clarity, a slightly different convention was used than
with the preceding three figures: Instead of keeping the
phase of X fixed while advancing that of Y by a half unit, the
phase of X was decreased by 0.25 while that of ¥ was in-
creased by 0.25 to trace out half a time period so that the
peaks are quasistationary in the graphical frame of reference.

The twin crests of the cnoidal wave do not merge under
the influence of the perturbation, but instead execute a small
oscillation about their mean positions. This is perfectly con-
sistent with interpreting this case as the collision of two soli-
tons that differ slightly in amplitude. Lax'® has shown that,
in the words of Fornberg and Whitham,'® “there are always
two maxima,; the wave approach each other and exchange
roles, but then shear away and do not pass through each
other.” Another way to look at this to examine the dimple at
x = 0 at the time of the maximum soliton overlap in Fig. 2.
As the ratio of the amplitude of the two solitons becomes
closer and closer to 1.0, this local minimum at x = 0 be-
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FIG. 5. Same as Figs. 24 except that the polycnoidal wave is a simple cnoi-
dal wave of half-unit period subject to a weak perturbation of unit spatial
period. For clarity, a different frame of reference was used such that the
phase of the angle variable X was decreased by 0.125 between graphs while
that of ¥ was increased by the same amount. Solid curve (¢, =0, ¢, = 0),
dashed curve (¢, = — 0.125, ¢, = 0.125), and dotted curve (¢, = — 0.25,
¢, =0.25). T\, = 3.00, T\, = 0.851, and 75, = 1.811.
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comes deeper and deeper until the two solitons are separated
by a wide, deep trough even at the time of closest approach.

One can also interpret Fig. 5 in terms of constructive
and destructive interference between two periodic waves of
different phase speeds. Although not obvious on the graph,
the right peak in Fig. 5(b) is in fact slightly taller than the left
peak as a result of constructive interference at x = 0.25 with
the crest of the £, = 1 component while the left soliton is
shrunk a bit because it rests on the trough of the perturbation
atx = — 0.25. As the perturbation continues to move rela-
tive to the tall peaks, it will reinforce and weaken each large
crest in turn. Thus, one has two alternative interpretations of
this case that lead to the same conclusions: (i) two colliding
solitary waves of almost identical amplitude on each period-
icity interval, or (ii) a simple cnoidal wave of half-unit period
whose crests swell and accelerate or shorten and slow down
as the crests and troughs of the sine wave perturbation move
through them.
IV. THE GEOMETRY OF THE X-Y PLANE

Although the samples of the preceding section illustrate
the general characteristics of double cnoidal waves, there are
some important, but subtle, aspects of polycnoidal waves
which can be explained only by examining 6 (X,Y ) and its
relation to u(x,z ). As noted in Ref. 1, a heuristic way of con-
structing a polycnoidal wave is to simply repeat the usual
multiple soliton solution over the whole x-axis. The resulting
approximation is obviously periodic, but generally is not an
exact? solution of the Korteweg—de Vries equation.

Boyd' shows, however, that Hirota’s transformed sin-
gle solitary wave solution,

F=1+exp(2sX), (4.1)

which gives the usual hyperbolic secant squared soliton
upon taking the second logarithmic derivative, can be gener-
alized to a “bi-Gaussian”

O (x,t)=exp| —s(X — 7/2)*/7]
+ exp[ — s(X + 7/2)*/7]. (4.2)

If one repeats (4.2) over the whole interval, one obtains the
Gaussian series of the one-dimensional theta function,
which is an exact solution of the Hirota—Korteweg—de Vries
equation, and therefore generates an exact solution of the
KdV equation upon taking the second logarithmic deriva-
tive. Figure 6, which is borrowed from Boyd,® illustrates the
procedure. The shape of the polycnoidal wave is determined
by the theta function; the only remaining unknown (for the
ordinary cnoidal wave) is to solve a pair of algebraic equa-
tions to determine the nonlinear phase speed c, in the *“an-
gle” variable X.

The same concept applies for higher polycnoidal waves.
In particular, a “tetra-Gaussian” consisting of four Gaus-
sian functions of identical shape but with peaks located at the
four corners of a unit square (X = + 0.5, Y = + 0.5) gives
the usual double soliton of the KdV equation on an infinite
domain in x. (A proof is given in Appendix B of Ref. 6.)
When this tetra-Gaussian is repeated with unit spacing over
the whole of the X-Y plane, it generates the Gaussian series
of the theta function.

In the near-double soliton regime (small T, T5, or
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FIG. 6. Schematic diagram showing the relationship between the bi-Gaus-
sian and theta function solutions to Hirota’s transformed version of the
KdV equation. The left side shows the situation when the domain is un-
bounded: The solution to the transformed KdV equation has just two peaks
on all of Xe[ — o0, x0], and the second logarithmic derivative of this gives a
single crest (corresponding to the valley betwen the two peaks of the bi-
Gaussian) which is the usual solitary wave. When the bi-Gaussian pattern is
repeated with even spacing over all X, it generates the Gaussian series of the
theta function. This, as shown on the right, is a spatially periodic solution of
the transformed KdV equation and its second logarithmic derivative is the
simple (¥ = 1) cnoidal wave. [Taken from Boyd'.] For the double cnoidal
wave, the basic unit is a tetra-Gaussian with peaks at the four corners of a
unit square in the X-Y plane which generates the double solitary wave when
the domain is unbounded. The idea is the same, however, repeating this
basic unit over all of X-Y space with even spacing gives a periodic solution to
the transformed KdV equation whose second logarithmic derivative with
respect to x is the double KdV cnoidal wave.

equivalently, large R, and R,,), the Gaussians are sharply
peaked so that the full infinite series can be approximated on
the unit square by the sum of the four Gaussians whose peaks
are at its corners. The reason that it is not possible to ap-
proximate the series by a single Gaussian is that u(x,) is
obtained by taking the second logarithmic derivative, which
for a single Gaussian would be u(x, ) = const. The solitons
actually lie in the valleys between the peaks of the Gaussians,
and the center of the square where the two valleys meet is
also where the solitons collide.

Figure 7 shows the graph of the theta function in the X-
Y plane with the contours of the function

Ux,Y)= 12{k%(10g O )xx + 2k ky(log 6 )xy

+ k3 (log 0)yy +aj (4.3)
also plotted. (The constant « has been added so that the
solitons asymptote to 0, as in Figs. 2-5.) The function u(x,t)
which actually solves the KdV equation is obtained from
U(X,Y) by drawing a line of slope k,/k, through the origin
(X = 0, Y = 0). The values of U (X,Y ) along this line then give
the values of u(x,t = 0). The function u(x,?) is obtained at
later times by moving the line with the velocity — ¢, in.X and
— ¢, in Y consistent with the definitions (for k, = k, = 1)

(4.4)

[The reason for the minus signs is so that u(x
=0,t) = U( — cit, — ¢,t) and similarly for other x to agree
with (4.4).]

If the solitary waves collided without a shift of phase,
then (i) the theta matrix and inverse theta matrix would be
diagonal, i.e., T}, = R, = 0; (ii) the ridges of U (X,Y’) would
be parallel to the X and Y axes. In reality, however, thereis a

X=x—cit, Y=x—c,t
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FIG. 7. Contours of the two-dimensional theta function {dashed lines) and
of U(X,Y)in the unit square whose cornersare X = 4+ 0.5and Y= £+ 0.5.
This is in the double solitary wave regime; the Gaussian series was used with
k,=k,=1,and R, =50, R, = 2.913, and R,, = 30. The function u(x,t)
for this case is shown in Fig. 2.

phase shift of both solitary waves after the collision—the
taller soliton is temporarily accelerated while the shorter one
is deaccelerated during their encounter—so the ridges of
U(X,Y ) are tilted with respect to the axes. The magnitude of
the slope is given in Appendix C of Ref. 6 along with other
formulas describing the contours of U{X,Y ) and so on, but
the mere fact of the slope is enough to show one rather star-
tling fact: The phase velocities ¢, and ¢, are not the speeds at
which the solitons travel when outside the collision region.

In the next section, the reason will be discussed in de-
tail. In brief, one concludes that ¢, and ¢, represent the aver-
age velocities of the two solitary waves, and these averages
are changed from the usual noncolliding soliton speeds be-
cause of the phase shifts that occur during the collision.
When the spatial domain is unbounded and there are but two
solitons, the collision occurs but once. With spatial periodic-
ity, the collisions recur endlessly and the average speed of the
solitons is altered. Before turning to this, however, we must
first explore the role of wavenumbers.

Figure 7, which shows a unit square in the X-Y plane,
implicitly assumes k, = k, = 1. When k, = 2, however, Y
varies by 2 when x varies by 1. Thus, for k; = 1 but &, = 2,
the whole of the rectangle shown in Figure 8 projects on a
unit interval in x. The line which takes U (X, Y ) to u(x,t ) now
has a slope of 2, and the reader can see (by laying a ruler
between the lower left and upper right corner) that for part of
each temporal period, there are three solitons on each unit
interval in x: one tall solitary wave and two short solitary
waves. Figure 9 shows u(x,? ) for the same wave as in Fig. 8.
Thus, the wavenumbers are extremely important in deter-
mining the qualitative nature of the flow, and Sec. VI will
examine that role in detail.
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FIG. 8. Contours of U(X,Y ) in the rectangle whose corners are X = + 0.5
and ¥ = 0.5, + 1.5for k, = 1 but k, = 2. When converted from Xand Y to
the actual spatial coordinate X, all of this rectangle projects onto a unit
intervalinx. R, = 32, R, = 2.20,and R,, = 8. The corresponding u(x,? ) is
shown in Fig. 9.

V. PHASE SPEEDS AND SOLITON VELOCITIES

As shown in Ref. 6, the overlap of the solitons on one
unit periodicity interval in x with those of another creates
corrections to ¢, and ¢, which can be calculated as a double
perturbation series in the parameters exp(— R,,) and
exp( — R,,). Since the solitons decay exponentially with x [as
exp( — R,,|x|) and exp( — R,;|x|)], it follows that these
“overlap” corrections decrease exponentially with the half-
widths of the solitary waves. The differences between ¢, and
¢, and the velocities of the solitons, however, decrease only
linearly with the widths of the solitons, and are therefore

2400
1920
1440

960

480

<

o] 1
-500 -375

L

L T Ty
-125 0 125 250 375 .500

n
-.250

FIG. 9. The KdV solution u(x,t ) for the wave whose theta function is plotted
in Fig. 8. As with Figs. 24, the phase of X is kept fixed so that we view u(x,?)
in a frame of reference moving with the phase velocity c¢,. In this reference
frame, the wave is periodic in time with a period P = 1/c,. Solid curve
(¢ = 0), dashed curve (t = P /4), and dotted curve (t = P/2).
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something quite different in nature.

One proof of this comes from the observation that the
slopes of the ridges of U (X, Y ), which are responsible for mak-
ing the phase and soliton velocities differ, are given by

—R,,/R,, and — R,,/R,,, respectively, as shown in Ap-
pendix C of Ref. 6. Since R, remains O (1) when R,, and R,,
become large, it follows that the slopes of the soliton ridges in
the X-Y plane become increasingly parallel to the Y and X
axis, respectively. The angles between the solitons and the
axes, however, are linear functions of 1/R,; and 1/R,, while
the “overlap” corrections, i.e., the higher-order terms in the
perturbation series of Ref. 6, are decreasing exponentially in
these same variables.

A more direct way is to simply calculate these quanti-
ties to zeroth order in perturbation theory, which is equiva-
lent to truncating the infinite theta function series to the
minimum of four Gaussian functions needed to generate the
double solitary wave. It is shown in Ref. 6 that the phase
velocities ¢, and ¢, that appear in the “angle” variables X and
Y are obtained from the “pseudofrequencies” €, and ¢, by
solving the pair of linear equations

(—Ru k) (—Rpk))| |e| = ‘ €, (5.1)
(=R k) (—Rpk)llel =1 &
To lowest order
€= —cs, i=12, (5.2)
where
6;=R,k,+R;k, i=12, j#i (5.3)

gives the width of each soliton and where ¢ is the “free”
velocity of a soliton, i.e., the speed at which the soliton tra-
vels when not in collision with another. When “free,”
u(x,t =387 sech®[ 8,(x — ¢i* )] in the neighborhood of the
ith soliton. If we add a constant'® to u(x,?) and the phase
speeds so that the solitons asymptote to O for large x—the
result is still a polycnoidal wave solution of the KdV equa-
tion—then

=8, i=1.2 (5.4)

which is the usual formula as given in Whitham,”’ for exam-
ple, although he uses « in place of our 6.

Through elementary algebra, one can show from (5.1)
through (5.4) that

(e — ") R1od,
kiR Ry — Rz Ry)

In the extreme soliton regime (R, R,,>1), R, Rpp> R,
which permits (5.5) to be simplified to

G = cslm + (Cs101 - CZOI) ky{R,/6,}. (5.6)

Now it can be shown (Whitham?®' and Appendix C of
Ref. 6) that the phase shift experienced by a soliton of ampli-
tude determined by R,, (which we shall call “type 1” for
short) after collision with a soliton of the other size is (R;,/
8,), so (5.7) implies, reasonably enough, that the difference
between the “free” speed of the soliton and the correspond-
ing phase velocity in X is proportional to this phase shift—
which argues strongly that it is the phase shift that is the
cause of this difference. If this explanation is correct, how-

¢ =c 4 (5.5)
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ever, then (5.6) should also depend upon the frequency with
which a soliton of type 1 collides with a soliton of type 2.
Since k, determines the number of solitons of type 2 per unit
interval in x, it follows that k,(c} — ¢) is the frequency
with which a soliton of type 1 will collide with a soliton of the
other size per unit time. The wavenumber k,, which deter-
mines the density of type 1 solitons per unit interval of x, is
conspicuously missing from (5.6); it has no bearing on the
number of collisions between a particular soliton of type 1
and all the solitons of the other height because a type 1 soli-
ton collides only with the solitary waves of the other ampli-
tude. Thus, (5.6) can be rewritten schematically as

sol

¢, = c” + {number of collisions/unit time} { phase shift/

collision} (5.7

and similarly for c,.

Thus, as mentioned earlier, ¢, and ¢, may be properly
interpreted as the average speeds of the solitary waves while
their instantaneous speeds (outside collision zones) are given

sol

by the different quantities ¢}

sol

and ¢3>.

VI. WAVENUMBERS AND THE SPECIAL MODULAR
TRANSFORMATION

The wavenumbers k, and k, have different roles in the
double-sine wave and double-soliton regime. In the near-
linear regime, k, and k&, are the actual wavenumbers of the
two sinusoidal, noninteracting waves that approximate the
polycnoidal wave. In the double-soliton regime, the widths
of the solitary waves are given by the “pseudowavenumbers”
defined by (5.3) above, and k, and &, instead give the number
of solitons on each interval. This was shown explicitly by
Figs. 8 and 9 in Sec. IV, where a double cnoidal wave with
three solitons on each unit interval was displayed. Since
R,, > R,, for this case and k, was the wavenumber equal to
two, the pair of identical solitons was shorter than the third,
but one could mix two tall solitons with a single shorter one
on each unit interval by either choosing &, = 2 instead or
taking R,, larger than R,,. More exotic combinations are
possible and it will be argued in the next section that Hy-
man?? computed a double cnoidal wave with four solitary
waves on each spatial period, three tall and one short.

This all seems rather straightforward, but in reality the
issue of wavenumbers is so complicated as to demand an
entire separate article unto itself (Ref. 7). The Serpent in
Eden is that the different roles assigned to the wavenumbers
for solitons and sine waves are contradictory. Figures 7-9
show clearly that the usual situation of two solitons of une-
qual size per unit interval in x demands k, = k, = 1, but in
the sine wave regime, this is absurd because the linear disper-
sion relation demands that two infinitesimal amplitude
waves of the same wavenumber must also have the same
phase speed, and the double cnoidal wave collapses into the
ordinary single cnoidal wave. The simplest possibility that
preserves two distinct phase speeds and “phase” variables
and is a true double cnoidal wave is to take k, = 2k, i.e., one
wave is the second harmonic of the other.

The resolution of this difficulty lies in a remarkable fact
that at first seems only to put us into more trouble: Each
theta function of two or more dimensions can be writtenin a
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denumerable infinity of ways via the so-called “special mo-
dular transformation” which is the central theme of Ref. 7.
The theta matrices and wavenumbers are transformed by
matrices whose elements are integers so that the equivalent
representations of a theta function with integral wavenum-
bers are restricted to those for which the new wavenumbers
are integers also.

Physically, of course, there is no ambiguity at least in
the limits of very large or very small wave amplitudes: In the
double-soliton regime, there is only one representation for
which the wavenumbers give the actual density of solitary
waves on the unit interval and the phase speeds of the phase
variables are the average velocities of the solitons, and in the
double-sine wave regime, there is again only one way of writ-
ing the theta function in which the wavenumbers and phase
speed of its arguments X and Y are the actual wavenumbers
and phase speeds of the two sine waves. The special modular
transformation is thus a way of providing the theta function
with a mathematical disguise which alters the arguments
and parameters of the theta function without altering the
Korteweg—de Vries solution which it generates. It would be
quite foolish, however, to dismiss the modular transforma-
tion as a mere mathematical curiosity.

In the first place, it implies that the nonlinear implicit
dispersion relation given in Ref. 6, which must be solved to
determine ¢, ¢,, and the diagonal theta matrix element, has
nonunique solutions. (In fact, an infinite number of them.)
Some care is needed to insure that one computes in the
“physical” representation so that the phase speeds comput-
ed are those of the actual components of the polycnoidal
wave being sought, and not merely mathematical disguises
for something quite different.

In the second place, the special modular transformation
resolves the dilemma of needing different wavenumbers to
make sense of the simplest double-soliton and double-sine
wave regimes. If one solves the residual equations by varying
the diagonal theta matrix elements in small steps, the so-
called ‘““continuation” method, one finds upon graphing
u{x,t ) that the mode which is the sum of one sine wave with
k, = 1 plus another with k, = 2 does indeed smoothly con-
tinue into a pair of solitary waves, one tall and one short, on
each unit interval. The phase speeds so computed, however,
are not those of the actual solitons, but can be made into
them by taking that modular transformation which reduces
the wavenumber from k, = 2 to k; = 1. In a similar way, if
one begins with the double soliton for k, =k, =1 and
marches in the opposite direction of decreasing amplitude,
the phase speeds computed from the residual equation will
not be those of the sine wave and its second harmonic that
dominate u(x,?) when the amplitude is small, but can be
changed into the physical wave speeds through the modular
transformation that sends &, from 1 to 2. The whole business
is discussed thoroughly with numerical tables in Ref. 7.

The modular transformation makes it necessary to in-
troduce some notation. A pair of numbers written in square
brackets, for example, [1,2], is used to denote the wavenum-
bers of the Fourier representation with k, written first. A
superscript “P*’ can be added to denote that the “physical”
representation is meant and not one of the infinite number of
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disguises allowed by the mathematics. (When there is no
danger of confusion, the superscript P will be omitted; when
this notation is used elsewhere in this series of papers, the
“physical” representation will always be meant unless ex-
pressly stated otherwise.) In a similar way, curly brackets,
i.e,, [1,1] will be used to denote the wavenumbers of the
Gaussian series of the theta function. The author apologizes
for burdening physics with more notation, but it is unavoid-
able. It is necessary to introduce separate notation for the
Fourier and Gaussian series because

[1,2]7={1,1} % (6.1)

In words, the mode which is the sum of a wave and its second
harmonic for small amplitude is the sum of one tall and one
short solitary wave for large amplitude.

Reference 7 goes on to describe in some detail the iden-
tifying characteristics of the “physical” representation.
First, it is that for which the off-diagonal theta matrix ele-
ment is small in comparison to the diagonal theta matrix
elements. Second, it is the representation employed by the
perturbation series of Ref. 6—the perturbation series always
give answers in the “right” representation, in other words.
The perturbation series suggest 7', and R, are always posi-
tive, so a representation in which either of these off-diagonal
elements is negative is almost certainly not the physical rep-

resentation.
Finally, one can give a graphical definition. Figure 10

compares U(X,Y) for two different {1,2} modes. The left
panel is simply a repeat of Fig. 8; the corresponding u(x,t ) is
given by Fig. 9 and truly has three solitary waves on each
unit interval in x. The right panel, however, is in an unphysi-
cal representation. Notice that the repeated soliton ridges
have a steep positive slope rather than a shallow negative
slope as in the left panel. The reason is that R, is large and
negative instead of being small and positive as it should be.

U

X X

FIG. 10. Contours of U (X, Y ) for two theta functions withk, = land k, = 2.
{a) [left panel] This is identical with that shown in Fig. 8; this choice of wave
numbers is the physical representation of this wave, so this mode is denoted
{12} ©. (b} [right panel] This is actually a {1,1} * mode in disguise with
R,;=74.17, R, = —27.09, and R,, = 30. Although (b) looks quite differ-
ent from Fig. 7, they are plots of the same theta function in different repre-
sentations; when the function shown in (b) is converted back into (x, ) co-
ordinates, the resulting u(x,?) is that shown in Fig. 2.
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By laying a ruler across the figure at a slope of k,/k, i.e., 60
degrees, one can convince oneself that even though one
wavenumber is 2, there are in fact no more than two solitons
present at any time. The actual u(x,t ) for Fig. 10{b) is in fact
that graphed in Fig. 2.

VII. PREVIOUS CALCULATIONS OF DOUBLE CNOIDAL
WAVES

Although there have been a huge number of abstract,
theoretical papers on polycnoidal waves, there have been
only two explicit attempts to calculate and graph KdV po-
lycnoidal waves before this present work. Both have limita-
tions which illustrate the usefulness of the ideas developed in
the two companion papers (Refs. 6 and 7).

Hyman?*? used a variational principle of Lax’ to numeri-
cally calculate a number of case studies of double cnoidal
waves, although only one is described in detail in his paper.
By carefully computing the trajectory of the maxima, he
showed “‘the peaks move with two distinct speeds. In any
spatial period three of the peaks are traveling with one speed
while the fourth is traveling faster.” This inspired the re-
mark by other researchers,?® “The general shape [of u(x,? )] is
still obscure, though a large body of numerical information
has been obtained by J. M. Hyman; for example, he finds
that for N = 2, the number of peaks and valleys is usually 4
and on occasion 5.” The case illustrated in Hyman’s own
paper has 4 peaks and 4 valleys.

In light of what has been presented earlier here, it is
difficult to escape the conclusion that Hyman actually com-

puted only double cnoidal waves with the physical represen-
tation {1,3} %, i.e., four solitons on each unit interval with
three of one size and a fourth of another, and missed the
{1,2} For {1,1} ¥ modes. Figures 2 through 5 show clearly
that the conclusion that the “number of peaks and valleys is
usually four” is nonsense; the {1,1} * — [1,2] * mode has
only two peaks and two valleys, sometimes less. The conclu-
sion would seem to be that Lax’ variational principle com-
bined with numerical nonlinear optimization is a poor way
to investigate polycnoidal waves.

Hyman’s paper is still of interest, however, because he
superimposed random perturbations upon his double cnoi-
dal waves and found them to be remarkably stable. It seems
probable that this is true of all polycnoidal waves, but a proof
is lacking, and Hyman’s paper is at present the only evidence
in favor of this hypothesis.

Hirota and Ito® have computed a double cnoidal wave
by numerically solving the implicit dispersion relation. Ta-
ble I gives their results in their original notation, translates
their results into the notation used here, and then compares
the results with the Fourier and Gaussian perturbation series
derived in Ref. 6. The result is a rather resounding triumph
for perturbation theory: The second-order Fourier series
gives all three physically significant unknowns to within 4%
relative error while the zeroth order Gaussian series, i.e., the
tetra-Gaussian double soliton, gives these same three quanti-
ties to within 4% error also. The conclusion is that number
crunching is not really necessary: for most purposes, the per-
turbation series of Ref. 6 are more than adequate.

TABLE I. A comparison of the numerical calculations of a double cnoidal wave from Hirota and Ito® with Fourier and Gaussian perturbation theory. The
first line of the table gives the numerical results of Hirota and Ito in their own notation. The second line gives the same exact solution in terms of the notation
and conventions employed here. (Their theta matrix elements must be multiplied by =, their constant of integration A divided by — 2 to give my 4, and their
frequencies converted into phase speeds by multiplying by — 1/k,. Because I normalize k, to 1, it is also necessary to multiply the phase speeds by 6.25? and 4
by 6.25* to increase the wavenumbers by a factor of 6.25 = 1/0.16.) The third part of the table gives the results of Fourier perturbation theory; because of the
smallness of the nome g, ~¢,?, the terms in ¢, were neglected in computing the first-order solution and ¢,* in the second-order solution. Relative errors are
given in square brackets. The fourth part of the table gives the results of Gaussian perturbation theory for R,; = 14.38, R,, = 6.478, which correspond to the
T,, and T,, values employed in the rest of the table. Normally, it would be necessary to determine these R, from the corresponding T, through some kind of
iterative procedure as explained in the text.

Hirota-Ito Notation

k, k, T Tr2 A @, @y T12
0.16 0.32 0.464 1.16 —2.01 — 0.086 1.23 0.297
Boyd Notation
k, k; T, T 4 €y [+ Ty,
1.0 2.0 1.458 3.64 1533 21.00 — 150.2 0.933
Fourier Perturbation Theory
A € ¢, Ty,
Oth order 0 [100%] — 39.5 [300%)] — 157.9[5.2%] 1.099 [17.8%]
1st order 1013 [34.5%)] 11.8 [43.5] — 157.9{5.2%] 0.936 [0.27%]
2nd order 1 547 [0.89%] 20.2 [3.8%] — 150.4 [0.15%] 0.933 [ <0.1%]
Gaussian Perturbation Theory
A ¢, [ Ry,
Oth order 1443 [5.8%]) 20.3 [3.6%] — 149.0 [0.79%] 2.335[0.56%]
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Their paper, however, is of further interest because it
also computes a triple cnoidal wave. This has only seven
unknowns but there are eight residual equations. Knowing
from the “Hill’s spectrum method” that theta function solu-
tions should exist, they boldly chose seven of the eight equa-
tions and solved them as a closed system, and then verified
after the fact that the extra equation was also satisfied to
within machine precision. It would be extremely interesting
to have an analytical proof of the redundancy of the residual
equations for N = 3 and higher, as opposed to their numeri-
cal proof, but none is yet known.

Thus, although the analysis of Refs. 6 and 7 makes it
possible to improve on these early, limited calculations by
Hyman and by Hirota and Ito, both papers are still valuable

for their intelligent use of numerical solutions to suggest as -

yet unproven theorems for the future.

Vlil. THE DOUBLE CNOIDAL WAVE IN PERSPECTIVE

The methods employed here and in Refs. 1, 6, and 7 can
be extended, with a few additional tricks, to most or all of the
“exactly integrable,” soliton-admitting equations which are
now known to be solvable via theta functions through the
“Hill’s spectrum” method. The Korteweg—de Vries equa-
tion is one of several whose Hirota-transformed equivalent is
a single bilinear differential equation: applying the new al-
gorithms to the Boussinesq equation,

Uy — Upx — Uyyrx — [uZ]xx = O’ (81)
for example, is merely a matter of altering the function § ( p.g)
which is defined in Ref. 6. Other soliton equations like the
sine-Gordon equation and cubic Schrddinger equation have
Hirota equivalents which are systems of bilinear equations
rather than a single equation. For these, there are still some
holes even in the Hill’s spectrum method, so the class of
“coupled bilinear” equations requires further work. Still,
there seems little doubt that most of the concepts developed
here (using the Gaussian series for large amplitude and the
Fourier series for small, reducing the partial differential
equation to the algebraic residual equations, computing ex-
plicit perturbation series, and applying the modular trans-
formation) will be important for these other types of soliton
equations, too.

A much harder question is to relate the KdV polycnoi-
dal waves to the nonlinear solutions of similar differential
equations that are not “exactly integrable” via the inverse
scattering or Hill’s spectrum algorithms. The Gaussian se-
ries, which converges most rapidly when the wave amplitude
is large, is a specific property of theta functions and does not
carry over to waves that cannot be described in terms of theta
functions.

Reference 1 (Appendix B) has shown, however, that it is
possible to compute Fourier series representations for polyc-
noidal waves by using Stokes’ expansions, which is a particu-
lar case of the singular perturbation technique known as the
“method of multiple scales,” without employing theta func-
tions in any sense at all. The Stokes’ expansion strongly sug-
gests that double and triple and N-polycnoidal waves exist
for almost any species of neutral, nondissipative waves
whether the governing equation is ‘““exactly integrable” or
not.
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This hypothesis must be qualified in several obvious
ways. First, a perturbation series for a wave is not quite the
same thing as an existence proof for the wave. For the
Korteweg—de Vries equation, the Hill’s spectrum method
shows that the theta series converges for all values of the
wave amplitude; the corresponding Fourier series for a non-
integrable equation may have only a finite radius of conver-
gence, or perhaps be an asymptotic series with no radius of
convergence at all.

Second, numerical experiments with nonintegrable dif-
ferential equations have shown that their solitons collide ine-
lastically with often the creation of a new soliton or the per-
manent destruction of an old one; such solutions cannot be
classified as (limiting cases of) polycnoidal waves. However,
this does not contradict the hypothesis that polycnoidal
waves exist for nonintegrable equations, too. What makes
polycnoidal waves so important for the Korteweg~de Vries
equation is that they are complete, that is, the general initial
value solution can be approximated to an arbitrary degree of
accuracy by an N-polycnoidal wave of sufficiently large V. It
seems probable that polycnoidal waves exist for at least some
nonintegrable partial differential equations, but lack this
property of initial value completeness. In other words, for
nonintegrable equations, there are solutions which cannot be
approximated to arbitrary accuracy by polycnoidal waves.

Itis known, however, that for some nonintegrable equa-
tions which are closely related to integrable equations, the
degree of inelasticity seems to be small. (This notion of
“nearly integrable” equations is well developed with many
examples in the review by Makhankov.?*) Perhaps with bet-
ter understanding of polycnoidal waves, it will be possible to
put a bound on the nonpolycnoidal part of the solution and
still apply the concept of a polycnoidal wave, at least qualita-
tively, to such nearly integrable equations.

IX. SUMMARY AND CONCLUSIONS

This article and its two companions (Boyd®’) have tried
to show that much can be learned about the generalized
cnoidal waves of the Korteweg—de Vries equations and relat-
ed equations by using rather elementary methods. The per-
turbation series of Boyd® provide an accurate means of cal-
culating both phase speeds and u(x,t) itself in all the
interesting parameter regimes. The Gaussian series is espe-
cially useful because it converges rapidly in precisely that
domain—Ilarge amplitude—where all normal perturbation
theories fail. The special modular transformation, which in-
volves nothing more esoteric than multiplying the theta ma-
trix by another matrix whose elements are explicitly given
integers, is essential in correctly interpreting the various
modes of the double cnoidal wave. The most important
mode is shown to be the sum of two solitary waves on each
unit interval in x for large amplitude and to be the superposi-
tion of two linear sine waves, with one being the second har-
monic of the other, for small amplitude.

The directions of future research are fairly clear. One is
to simply apply the formalism developed here to other soli-
ton equations like the Boussinesq equation (8.1) and turn the
crank.

A second, more interesting direction is to explore the
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connection between polycnoidal waves and the general ini-
tial value problem with spatial periodicity. The Hill’s spec-
trum method provides one complicated and indirect means
of calculating that polycnoidal wave which approximates a
given, arbitrary initial condition. It is known, however, that
one can obtain a simpler answer by employing the method of
multiple scales (a Stokes’ expansion-with-a-twist, if you will)
for small amplitude, and it appears possible to extend this
into an effective numerical algorithm for any amplitude.

A third line of attack is to explore those other soliton
equations whose Hirota bilinear form is a pair of equations
rather than just one. The sine-Gordon equation and the cu-
bic Schrodinger equation are examples. There are still some
gaps even in the Hill’s spectrum theory for these equations,
so the extension of the ideas presented here to the coupled-
bilinear class of systems is far from trivial. Nonetheless, one
expects that perturbation theory, Gaussian series, the alge-
braic residual equations, and the modular transformation
will all play a role.

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation through grants OCE 8108530 and OCE
8305648.

APPENDIX A: THETA FUNCTION NOTATION

Mathematicians normally define the theta function via

o[em= p) exp{m’ [ 53 "'f("" " 67)

=1 =1

e 2ag b D6l

(A1)

¢ is the N-dimensional vector of dependent variables; in the
theory of polycnoidal waves, &, =kx—c;t)+ ¢,
i = 1,...,Nasin (1.1). The quantity [{ ], the “characteristic”
of the theta function, consists of two N-dimensional row vec-
tors written one above the other with each element restricted
to be either O or 1. The vector n = (n,1,,...,1 ), and the sum-
mation is taken over all possible positive and negative inte-
gers (including O) for each of n,,n,,...,1y.

In applications to KdV polycnoidal waves, one can pick
the characteristic at will. The usual choice, as in Nakamura®
and Boyd, ' is to use 6 [ ] (6,T). For the Gaussian series (soli-
ton regime calculations), the formulas are a little simpler if
one employs

T[S N

Note that the two differ only in choice of the phase of &, but
like all wave phases, these are arbitrary anyway. The choice
of theta characteristic is physically irrelevant.

Although Ref. 7 uses the theta matrix in the mathemati-
cian’s form (A1) [for convenience in discussing the deriva-
tion of the “special” modular transformation from the gen-
eral transformation given by Rauch and Farkas®], it is
easier in most applications to eliminate the factor of 7i by
defining the real theta matrix elements
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(A3)

For the ordinary cnoidal wave T',,=w/s, where s is the pa-
rameter used in Ref. 1.

For the Gaussian series, it is similarly convenient to
define the elements R,; of a square matrix R, where

R=27T"', (A4}
T =2r"R™, (A5)

where T in (A4) and (AS) is the matrix whose elements are
T;. The factors of 7 in (A4) arise from the factor of 7 in (A1)
and (A3) and also from a similar factor of 7 when the Gaus-
sian series of the theta function is expressed in terms of the
inverse of the matrix whose elements are ¢;. The factor of 2 is
inserted into (A4} to eliminate a huge number of 2’s that
would otherwise appear in the formulas of the Gaussian se-
ries perturbation theory.

Ty= — mit.

APPENDIX B: CORRECTIONS AND CLARIFICATIONS
FOR BOYD?

This earlier paper contains a number of typographical
errors. A comma should be inserted between n’ and ¢ on the
left-hand side of (6.6). The letter & in the argument of & on the
left-hand side of (7.1) should be replaced by €. In Eq. (5.3),
12 sech? [sX ] should be 12s* sech[sX ]. In (7.9), a Gaussian
factor was omitted from the right-hand side of (7.9); the cor-
rect transformation is given by (2.10} of Ref. 7.

The author’s earlier article makes the remark (p. 384)
that “it is conventional to define the multidimensional theta
function so that it is periodic with period 2.” This is techni-
cally true for the general theta function, but it is somewhat
misleading since the special cases 8 [§] and 8 [} ]—the
only ones needed for polycnoidal theory—are periodic with
period 1, as true of ali the solutions discussed in this present,
later article and its companions (Refs. 6 and 7).

Finally, as noted in Ref. 20, Toda showed the ordinary
cnoidal wave has the exact series representation

— 24s

o0

+12¢ 5
n= — o
[integers]

The remark in Ref. 1 that repeating solitary waves with even
spacing over Xe[ — o0, 0] as in (B1) could give only an ap-
proximate solution to the KdV equation is incorrect. Toda’s
proof was based on the infinite product of the theta function.
Reference 26 shows that a more general method of proofis to
apply Poisson summation—the same transformation that
also generates the Gaussian series of the theta function—
directly to the Fourier series of #(x,? ) given by (A9) of Ref. 1,
and gives similar hyperbolic series for the elliptic functions
dn, cn, and sn. The handbook of Gradshteyn and Ryzhik*’
lists some 21 other known Fourier series for various ratios
and combinations of elliptic functions, and all can presuma-
bly be Poisson summed in the same way.

Unfortunately, the Fourier coeflicients for the hyperel-
liptic functions, i.e., (x,z ) for N> 1, are not known although
the theta function coefficients are known for all V. As a re-
sult, the Poisson summation method can only be applied to
the theta function except for the special case of the ordinary
cnoidal wave. Consequently, the author’s earlier comment

ulx,t) = sech?[s(X — nm)]. (Bl)
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that the theta functions provide the only efficient way of
generalizing solitary waves to spatially periodic functions

remains true for N> 1.
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