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The d-dimentional space-continuous time-discrete Markovian random walk with a distribution
of step lengths, which behaves like x ~ “** % with a > 0 for large x, is studied. By studying the
density—density correlation function of these walks, it is determined under what conditions the
walks are fractal and when they are nonfractal. An ensemble average of walks is considered
and the lower entropy dimension D of the set of stopovers of the walks in this ensemble is
calculated, and D = min{2,a,d} is found. It is also found that the fractal nature of the walks is
related to a finite value of the mean first passage time. The crossover of the correlation
function from the fractal to nonfractal regimes is studied in detail. Finally, it is conjectured
that these results for the lower entropy dimension apply to a wide class of symmetric Markov

processes.

. INTRODUCTION

The morphology of random fractals has recently be-
come of considerable interest. One of the primary motiva-
tions for this interest has been the central role that these
morphologies appear to play in a variety of kinetic growth
processes. Among major questions to be understood in these
processes are the questions of what conditions are necessary
and sufficient for fractal growth to occur, and how the cross-
over to nonfractal growth regimes takes place. Unfortunate-
ly, even relatively simple, moderately realistic growth mod-
els are sufficiently complicated to render analytic progress
toward understanding these questions difficult. Under these
circumstances, it is therefore useful to study a much simpler
process which exhibits both fractal and nonfractal growth
and in which one can make analytic progress both in charac-
terizing the nature of the fractal object generated in the frac-
tal regime, and in studying the crossover between the fractal
and nonfractal regions. To this end, we will study the process
of Levy flights, which, in a certain sense, exhibit crossover
from fractal to nonfractal growth as the step-length expo-
nent of the walk is varied. Although the Hausdorff dimen-
sion of the stopovers of a Levy flight is always zero, the lower
entropy dimension' (LED) for the process is nontrivial and
corresponds to our intuitive motion of a “‘mass dimension.”
This dimension, defined for an ensemble average of walks
(see below) will be used to distinguish between fractal and
nonfractal regimes of the walk. Aside from their utility as
analog growth processes, Levy flights are also of interest in
their own right. Some work on the subject has been done by
Mandelbrot,? and on the related subject of Weierstrassian
random walks by Hughes, Montroll, and Shlesinger and
Montroll and Shlesinger.> Furthermore, after the work re-
ported in the present paper was completed, we became aware
of the work of Hioe* in which a number of our results are
obtained in the context of a lattice version of Levy flights.

The structure of the rest of this paper is as follows: First,
we shall introduce some preliminary notions including a de-
finition of the LED. Then we shall relate this dimension to
the density—density corelation function, after which we shall
calculate the asymptotic behavior of the density—density
correlation function for the processes of interest. We shall
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end up with an expression for the LED of the stopovers of the
Levy flight defined over a certain ensemble, as well as obtain-
ing a relationship between the fractal nature of the Levy
flight and the mean first passage time. We will also be able to
study in detail the crossover between the fractal and nonfrac-
tal regions of the walk as we vary the step-length exponent.
We will conclude with several comments and speculations.

The process we will study, a discrete-time continuous-
space Levy flight, is a Markovian random walk process con-
trolled by the probability function P(n + 1,x|n,y)dx dy
which is the conditional probability for the walker to be in
the region x + dx at time step n + 1, if he was in the region
y + dy at time n. Here x and y are points in a continuous d-
dimensional space, dx =d?x, dy=d“y, and n is an integer.
We restrict ourselves to P(n + 1,x|n,y) = f(x — y), and we
will be particularly concerned with cases in which
fx—y)~|x—y|~“*® for large |x —y|. The Levy
flight is thus a random walk with a variable step length
whose size distribution is determined by f(x — y). To inter-
pret the Levy flight as a “growth process,” we imagine plac-
ing a particle at the end point of every step. Among the quan-
tities we will discuss is the lower entropy dimension (LED),
D, of the collection of these end points or stopovers defined
by averaging over a suitable ensemble of walks. This D is a
measure of how N (L), the average number of particles con-
tained in a nonempty region of linear dimension L, scales
with L: i.e., N(L)~L?% and is thus consistent, for this
process, with our intuitive notion of a mass dimension. If
D(L) is independent of L over some range then the system
has a well-defined LED over that range.

Before proceeding with the calculation properly, it is
useful to carefully define the quantities in which we shall be
interested and to clearly state how averages are to be under-
stood. Consider then the Levy flight defined by

P, (x) =J.dyf(X—y)Pn_1(y), (D

where P, (x) is the probability density for the nth step to
land on point x. We start our process at time n = 0 at point
x = 0, so that in terms of the conditional probability defined
above,
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P, (x)=P(n,x|0,0). 2)
Now, suppose we have generated a single sample of a Levy
flight with a total of m steps. Let p,,, (x)dx be the number of
stopovers contained in the region dx about the point x. The
density—density correlation function is then

C,.(rx)=p, (x+1)p, (X). (3)
This quantity can be integrated over r to obtain

L
N'(Lx) =f d% C7, (r5x), 4)
0

which is the number of points contained in the region of
linear dimension L weighted by p,, (x), the number of parti-
cles at x. Finally, we may average this quantity over a num-
ber of such m-step Levy flights and over all starting points x
to obtain

N(L)y=(N"(L;x))

L
=<f d"rC;,,(r;x))
o
L
=(f d"rpm(x+r)pm(x)>
0

L
=J dr{p, (x +1)p,, (X))
(1]

I L
:f d(C, (1)) =f d%C,,(r), (%)
0 (¢

where ( ) means averaging over the ensemble of samples.
An explicit procedure for performing this average will be
explained below. As we shall see, as a result of our averaging
procedure, N(L) and C,, (r) willbe independent of x. In any
case, the x dependence for large m would be trivial since the
process is translationally invariant. Therefore, N(L), the
average number of particles contained in a region of linear
dimension L, having a behavior like N(L) ~L P is equiva-
lent to C,, (r), the average density—density correlation func-
tion behaving like C,, (r) ~r” 4.

Il. THE AVERAGE DENSITY-DENSITY CORRELATION
FUNCTION

We now want to calculate the average density—density
correlation function for the processes in which we are inter-
ested. The result of this calcualtion will be an expression for
the LED of the Levy flight averaged over a suitable ensem-
ble. We will also be able to relate the fractal nature of the
Levy flight to its mean first passage time, and we will be able
to study in some detail the crossover from a fractal to non-
fractal structure for the walk as we vary the step-length ex-
ponent. Unless explicitly stated otherwise in the sequel,
when we refer to properties of the Levy flight, it should be
understood that these statements refer to quantities aver-
aged over the ensemble of sample flights, the construction of
which we now explain.

To do this, we begin by defining a modified correlation
function,

Cm (rij,X) = (Pm (X + r)pm (x)>(j,x) ’

where ( ),,, means averaging over those systems in the
ensemble in which the jth particle (i.e., the jth vertex of the
given path) is between x and x + dx. Then
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m

C, (vl jx) = Y "P(Lr +x]jx), (6)

i=1
where the prime on the sum means / /. This is just the aver-
age particle density at the point r + x if the jth particle is at
the point x. Averaging over x, we have the correlation func-
tion averaged over an ensemble of samples in which the posi-
tion of the jth particle is taken as one end point of the correla-
tion function: i.e.,

C,. () =Jd“xPj(x)Cm (r] jx). (7

Using Eq. (1) itisclear that P([xjm,y) = P, _,, (x —y) for
I>m, so that

J—1 m—j
Cotl) =S P(D) + 3 P, (). (8)
I=1 I=1

Finally, if we randomly choose one particle in the object as
the origin for calculating the correlation function, it is equal-
ly likely to be any of the particles, so that

1 : m -
C,(r)=—YSC, =2 (1 -—-—i)P (9
(r) m,;o (r| ) 1;} = (). (9)

We now want to take m — o in this expression. First we
show that C_, (r) and =], P,(r) diverge and converge to-
gether as m— «. To see this, note that if C,, (r) diverges as
m-s o, then ZJ1_, P,(r) also diverges since, recalling that
P, (r}>0, it follows from Eq. (9) that Z]L , P,(r)>1C,, ().
Furthermore, we can prove that if 3%, P,(r) diverges as
m— 0, thensodoes C,, (r) as follows: If 2*_ ; P,(r) — 0, a8
m — o, then for a given r there exists, for any L, an M such
that 27*, P,(r)>L. This means that for m > 2M,

¥ )
¢,0>23 (1-L)em

I==1

M M M
>25 (1-Mp @523 (1- )P

I==1

1
>2—L =L.
2

Therefore, for large enough m, C,, (r) is larger than any
preassigned number L, and so diverges as m— oo.
Finally we note that if C,, (r) converges we have

C(r) = lim C,,(r) =2 3 P,(x).
m=0 =1
The right-hand side of Eq. (10) is twice the mean first pas-
sage time for this random walk.
Now we use a Fourier transform to rewrite Eq. (10) as

1 JK .
dk - e~ T, 11
(hr)mf -/ (b

(10)

Cr)=2

where

- 1 - er
flk) = "”—'_'(27)&/zfdrf(r)ek

is the d-dimensional Fourier transform of f(r). We have
used P,(k) =f'(k). If we consider only those processes
which are independent of the angular variables, Eq. (11) is
reduced to a form of Hankel transform,
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C(r) =r—“- x)/zf°D dk }(lf)
o 1 —f(k)
Xk (d— l)/Z(kr) ”2-’(4_ 2/ (kr),
where r = |r|, k = |k|.
Let us now compute C(7) and the LED for Levy flights.
We consider walks for which the kernel in Eq. (1) has the
form

(11%)

n
f(r)~r“"2b,-r—“‘, A, >, 1> " >a,=a>0,
i=0

bo#0, (12)

for large r and some integer >0 (@ = o is included as a
special case).
It is easy to show that (see Appendix A)

flk) =1—Bk*+o0(k*) as k-0, (13)

where 4 = min{2,a}. Notice that f(0) = 1, otherwise the
P, (x) cannot be interpreted as probabilities.

Using (13) in (11) it is not difficult to determine the
necessary and sufficient conditions for the convergence of
C(r). We find that C(r) converges (a) for d>3 and any
a>0,(b)ford=2anda<2,and (c) ford=1anda<1.
Using (13) in (11), we see that for these values of d and a,
C(ry~r~“ % asr- ,andsince C{(r) ~r’ ¢, D=4 for
these values of d and a. By Eq. (10), the mean first passage
time is also finite for these vlaues of d and .

For values of d and a for which C(r) is divergent, we
need tostudy C,, () in the m — « limit a little more careful-
ly. This is done in some detail in Appendix B. Here we
report the results of this calculation. We find that for (d,a)
such that C(r) diverges, lim,_  C, (0)—>w, but
lim,, . . [C,, (0) — C,,(r)] is a finite function of 7. There-
fore, it is also possible to extract for this case a value of the
LED by rescaling the correlation function by its value at the
origin. Defining C,(r)=C,(r)/C,(0), we find
lim,,_ . C, (r) =1, and so the LED in this case is D = d.
This is the case in which the LED of the trail of points left by
a typical sample of the Levy flight passages has the naive
dimension of space, and is, by Eq. (10), also the case in
which the mean first passage time diverges. The value of the
LED for all of these cases, for both divergent and convergent
values of C(r) can be summarized by the formula
D = min{2,a,d}. Notice that we can mimic those cases in
which f(r) falls faster than a power as r— « by setting

= oo. We then find the usual Gaussian result for short
range random walks, namely D = 2 ford>2, and D = 1 for
d=1.

ill. THE CROSSOVER REGIME BETWEEN FRACTAL
AND NONFRACTAL

The structure of a typical sample of the Levy flight pro-
cess, as we can infer from the results of an ensemble average,
are markedly different in the fractal and nonfractal regimes.
Since, to our knowledge, this is one of the only analytically
tractable systems to exhibit this crossover, it is of consider-
able value to explicitly display the behavior of the correla-
tion function in the crossover regime. This is done in Appen-
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dix C. Here we wish to point out some features of this
crossover and comment on the qualitative differences in the
behavior of a typical Levy flight in the fractal and nonfractal
regimes. First, we want to make it clear that there are really
three qualitatively different types of behavior possible for the
Levy flight: (i) For D <d<2 and for D <2 and d> 3 the Levy
flight is fractal-like and self-similar and the mean first pas-
sage time is finite. (ii) For D = d<2 the Levy flight is non-
fractal and space filling and the mean first passage time is
infinite. (ii1) For D = 2 and d>3 the Levy flight is not space
filling, but neither is it fractal. (This case also corresponds to
the usual short-range finite step length random walk above
two dimensions.) Because the walk is not space filling the
mean first passage time is finite in this case, also.

The dynamics for case (i) differs markedly from the
dynamics for cases (ii) and (iii). In cases (ii) and (iii) in
which the step length distribution, f(7), falls relatively ra-
pidly, there will be no very large jumps and the stopovers will
tend to congregate near the origin of the walk with the distri-
bution of steps forming a Gaussian-like distribution which
grows smoothly in width (and for d<2, in height) at time
goes by. For d = 1 and 2 the phase space is restricted enough
so that these dynamics will cause C,, (0) todivergeas m — o
causing the mean first passage time to be infinite. For d>3
there are enough random walk paths to prevent C,, (0) from
diverging as m — oo, and so the mean first passage time is
finite. If, on the other hand, f(r) does not fall rapidly
enough, as is the situation in case (i), the dynamics is very
different. In this case very large jumps will be possible, and
the whole space will be sampled, although not densely. In-
deed, in computer simulations of fractal Levy flights it is
observed that the fractal structure is generated by the walker
spending some time in a given region of space, then taking a
single very large step to a far distant region, spending some
time there, and repeating the process in a scale invariant
way. This dynamics differs markedly from the smoothly
spreading Gaussian distribution of cases (ii) and (iii). In
terms of the density—density correlation function, we show
in Appendix B that for d = 1,2, if we set @ = d — ¢, then for
small positive e, C(r) ~ (1/€)r <. Thus C(+) » w0 as -0+
and [C(r) — C(0)] ~In r for large r and € = 0, a behavior
reminiscent of simple crossover effects in critical phenome-
na. This paradigm is worth keeping in mind as one studies
more realistic and complex growth processes with fractal—
nonfractal crossover.

iv. SUMMARY

In this paper we have analyzed the structure of Levy
flights in the continuum. Using the lower entropy dimension
as a criterion, we have found that the set of stopover points
can exhibit both fractal and nonfractal behavior depending
on the value of 4, the number of dimensions in which the
walk is embedded, and «, the power with which the jump
distribution falls off asymptotically. We were also to exhibit
in detail the behavior of an ensemble average Levy flights at
the fractal-nonfractal crossover point. We showed further-
more that if the mean first passage time diverges, the LED is
equal to d, and the typical Levy flight (understood as a rep-
resentative of our ensemble) is not fractal-like. If the mean
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first passage time is finite, then the typical Levy flight will
not be space filling and will generally be fractal unless d>3
and a2, in which case the dimension of the walk will be
D = 2, just as for the ordinary random walk with fixed, finite
step length.

We have analyzed the Levy flight for the specific step
size distribution of Eq. (10). However, a careful examina-
tion of the derivation of our results clearly suggests an inter-
esting generalization. We believe that the expression for the
lower entropy dimension of the stopovers of this random
walk, D = min{2,a,d}, will be correct for any symmetric
distribution f(7) where a is defined by

a= sup{a’U-}x}"f( Ix])d%*x < ]

The random Levy flight we have studied has a very rich
structure, but, using the techniques of this paper, is amena-
ble to considerable analysis. Such models should prove to be
simple but useful archetypes in the study of fractal kinetic
growth processes.

ACKNOWLEDGMENTS

We are grateful to Z. Schuss for helpful discussions and
comments and to B. Mandelbrot for a stimulating corre-
spondence.

This work was supported by the Department of Energy
under Grant No. DE-FG02-85ER45189. One of us (R. S.)
also gratefully acknowledges the partial support of an Alfred
P. Sloan Foundation Research Fellowship during the early
stages of this work.

APPENDIX A: LEADING BEHAVIOR OF (k) FOR SMALL
k

In this Appendix we show that for

”n
f(r)~r“’>:b,,r_“‘; A, >a,_ ;> >a,=a>0,
i=0

f drr—+e+0(1 — cos rky)
R

R
= — drr—U+e+0(1  cos rky) +
1/ky 1/ky

& (—1y+*! 2
IR Gl D TR Y
2 )

by 50 for large r, we have
Jky =1—Bk*+ o(k*),
where 4 = min{2,a}.
Sketch of proof: Without loss of generality, let us consid-
er the case f(r) =r~“@+®%= c.r~'for a>0, rlarge. By
using the integral representation of J, (x) for d>2 we have

» 1
k) = J drf(r)rf - ‘f dy(1 — y2)@—37205 kyr,
o 0

(A1)
where ¢ is a normalization constant. Equation (A1) can be
rewritten as

flky=1—¢

as k—»O,

]dy(l — )=
0

><[J°° drfiry*t— (1 —coskyr)}. (A2)
0

Let us first concentrate on the integral,

fw drf(r)r =1 (1 — cos kyr)
0

in (A2). We divide the integral into two parts by some large
number R above which the expansion of f(r) around r =
is valid, then expand the integrands properly, we have

derf(r)r“" 1 — cos kyr)
(3]
r21+d—1]

- k z;[f d — ()
121( y) Tt (2 )!
— cos rky).

+3a

=0 R

drr—(l+a+l)(1

Define

R i
e, (R) =J‘ arl=DAD) XG0 pPi+rd—1
o 2n!

thenitiseasy toseee,; (R)’sare finite forany R for « > R>0.
Next we divide the integral in the second summation into
two parts by (1/ky) (> R), then expand (1 — cos rky) in
the first part and rescale the integral variable in the second
part, and then we have

(A3)

drr=O+e+d(1 — cos rky)

R o0
drr—(+a+d+2 g (ky)”“’“’f drr=Q+e+d(] _cosr)
1

_ E( y)21( 1)j+l[ R2j-—(l+a+i)+l
= 2N L—U+a+i+1

+ (ky)—(1+a+n+1f drr—1+a+d{ _cogp)
1

= -—j;(ky)z’;gj (Ri) + (ky) ~“@*9h,,
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(ky)‘zj“’“"”“*")“‘]
Y—(l+a+i+1

(A4)
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where
X —1 Jj+1 R2i—(1+a+i)+1
gj(R’l)z ( ) s . s
N Z—U+a+id+1
and
© . j+1
B, = Z( 1.) ' 1 ‘
< @) Y—-QAQ4a+i+1

+J‘ drr=+e+9(1 _cosr).
1

There could be a In(ky) term for a = integer in the above
procedure, but it will not be the leading term, so it will not
affect our derivation.

Now we go back to (A3), and we found

fwdrf(r)ﬂ' (1 — cos rky)
0

= ;(ky)zf[e (R) — Eg. (R,l)cj]
+ ZC,.h,-(ky)_‘"“’. (AS)
i=0
Then we see

Jtky =1~ 3 k| [err - prIeny |

i=1

xf (11—
0

_cik —(a+i>[cihiJ‘1(l _yz)(d—s)/z z‘dy]
i=0 0
(A6)

)(d— 3)/2 2i dy]

Since ¢, #0
© ( _- 1)1 +1 1

A @)Y Y-—a
The leading term in the second summation is in order of
k ~“.The leading term in the first summation is k * for some
integer i > 0. If @ > 2, from the probability theory we know
that the second monent exists, therefore,
flk) =1—pPk? 4 0(k?). From all the above procedures,
we have shown for d>2,

Flky =1—Bk* + o(k*) with 4 =min{2,a} and B #0.

The proof for d = 1 is very similar (and also simpler).

By = #0.

APPENDIX B: FINITENESS OF C(0)—C(r)

In this Appendix we show that if
C(r) =lim,__ C,(r) diverges, then lim,_ [C,(0)
—C,.(nN] is a finite function of r so that

lim,,_  C, (r) =1,where C,(r) =C,, (r)/C,(0).

The Fourier transform of C,, (r) may be written
&, =23 (1= L)z
I=1
-H, f H, frrt
=2 -L ,
[f B mE | H ]
where H,, (k)=1— [ f(k)]1™

(B1)
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Weneed to examine the cases d = 1 and d = 2 separate-

ly.
(a) Ford=1,

C,.(0)-C, (r)~dek [1—cos(kr)]
0

(B2)

Recalling that f’ (k) <1fork>0 andf(O) = 1, itis clear that
for m — « only the first term in the curly brackets survives,
0

(o) —C(r)~f dk (1 — cos(kr)) 2 (B3)

o H,

For k-0, the right-hand side of (B3) behaves like
§o(K?*/K*)dk and so is convergent. For k— o the right-
hand side of (B3) is also convergent, having the behavior
f""f(k)(l — cos kr)dk. Therefore C(0) — C(r) is a finite
function of r.

(b) For D = 2; after integrating over the angular de-
grees of freedom,

= fk)
CO)-C(r)~ kdk—~
© () Jo H

1

1
XU (1—yp») 21 — cos(kry))dy].
(]
(B4)

For k-0 the right-hand side of (B4) has the behavior
§o(K3/K*)dk, which is convergent, and for k— o, the
right-hand side of (B4) behaves like

o 1
f k dk f(k) U (1—p)~ "1 — cos(kry))dy],
0

which is also convergent. Therefore C(0) — C(r) is a finite

function of r in this case also.

APPENDIX C: LEADING BEHAVIOR OF C(n) IN
CROSSOVER REGIME

In this Appendix we study the crossover between the
fractal and nonfractal regimes by examining the leading be-
havior of C(r) for large r and values of a close to the critical
crossover value.

(1) d = 1. Here the critical value of ¢ is a = 1. Let
a=1—e

(a) €<0. In this case we know from the results of Ap-
pendix A that lim,,__ C,,(r) = oo and C(r)/C(0) =1,
which we interpret as implying nonfractal behavior with the
LEDD=d=1.

(b) €>0.
cn) =’1i11:°Cm(r) j;(f)k —————cos(kr)dk
Y ('r/r)“‘,.( /) \cos " dr. )
o 1—F(r/r) e

We now want to show that the leading behavior of the
integrals as r— o is a constant proportional to 1/¢. To do
this we note that
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2 0= ()

is bounded and that

(C2)

1im 8T — . (C3)

T Tl_"

From this we can show that

[ (1_')] cos T ar, (C4)
r— r

1-¢€

lim ( )cosr I —
(1]

r— oo

and, since 7(0) is a finite constant, the integral in (C4) has
the behavior

J' limI(Z)] cosT ~J‘ cos 7 ~i.
o Lr-w \r/lst=¢ o 7€ €

The leading behavior of C(r) for r large and € > 0 is thus
C(ry~(1/e)r— -

Note that as € -0 for large 7,
C(ry~((1/e)[1—€elnr] =(1/€) —Inr.

Here we see explicitly thatase —» 0%, C(r) consists of a diver-
gent piece plus a finite function of 7, which at the crossover
point is proportional to In r.

(ii) d = 2. The derivation of the behavior of C(7) in this

case is quite similar to the one-dimensional case. Defining
a = 2 — ¢, we have, as before, nonfractal behavior with the
LED D = d = 2 for €£0. For € > 0 we can write
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“ 7k J' 1/2
- AL T k
cwr) fo ki = (1 — y*)V2 cos(rky)dy

_ _J‘ (r/r)2 ¢~ (T\Jo(r)
=r dr

o 1 —f(r/r) rlri=e
As before

(/r) - (Z)
1—Fr/r) \r
is bounded, and
Jo(T)

(C5)

lim =0,

T— o0 7'1 —€
S0 that
lim dr (r/r)*—¢ (T\JO(T)
rmwdo 1 —f(r/rY \r) 1 —¢

P eV
rewl —f(r/r) 1-¢ ¢

Therefore for small positive €, the leading behavior of C(r)
for large r is

C(r)~(1/e)yr—=.
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