One- and Two-Center Expansions of the Breit–Pauli Hamiltonian

PETER R. FONTANA†
Physics Department, University of Michigan, Ann Arbor, Michigan and
Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin

AND

WILLIAM J. MEATH‡
Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin

(Received 17 January 1966)

The orbit–orbit, spin–spin, and spin–orbit Hamiltonians of the Breit–Pauli approximation are expressed in terms of irreducible tensors. One- and two-center expansions are given in a form in which the coordinate variables of the interacting particles are separated. In the one-center expansions of the orbit–orbit and spin–orbit Hamiltonians the use of the gradient formula reduces some of the infinite sums to finite ones. Two-center expansions are discussed in detail for the case of nonoverlapping charge distributions. The angular parts of the matrix elements of these Hamiltonians are evaluated for product wavefunctions.

1. INTRODUCTION

Relativistic effects cause energy splittings and energy shifts in atoms and molecules. They are responsible for certain “forbidden transitions,” which are often significant in spectroscopy. These effects also modify the interaction between atoms and molecules at large separations.

The lowest-order relativistic corrections to the energy of a system can be calculated by using the Breit–Pauli Hamiltonian. Corrections of order higher than \(\alpha^2 \) (where \(\alpha \) is the fine-structure constant) cannot be obtained consistently in this approximation. This Hamiltonian is limited to systems containing nuclei with \(Z \ll 137 \). However, this does not seem to be a practical limitation for many problems since the valence electrons are shielded by the inner-shell electrons and thus are not appreciably affected by the bare nuclear charges. In long-range force calculations the Breit–Pauli approximation is valid for intermolecular separations less than the wavelength of the characteristic transition in the molecules.\(^1\)\(^2\) At larger separations retardation effects become more important and quantum electrodynamics must be used to calculate the higher-order corrections.\(^3\)

In this paper one- and two-center expansions for the orbit–orbit, spin–spin, and spin–orbit Hamiltonians are derived using the algebra of irreducible tensors.\(^4\)\(^5\) This technique makes it possible to separate the coordinate variables of the interacting particles. If product wavefunctions are used, then the matrix elements can be evaluated in a straightforward manner.

In the one-center expansions the coefficient involving the radial variables contains an infinite sum. In the case of the orbit–orbit and spin–orbit Hamiltonians, the use of the gradient formula results in a finite sum. This technique has also been used by Blume and Watson\(^6\) for the spin–orbit Hamiltonian.

In the two-center expansions only the expressions for nonoverlapping charge distributions are discussed in detail. The general case, however, can be treated using the same techniques.

For other expansions and integrations of the spin–spin Hamiltonian, see Ref. 7.

2. THE BREIT–PAULI HAMILTONIAN

The following Breit–Pauli Hamiltonian\(^8\) describes the interactions of electrons moving in a nuclear Coulomb field. The operators for the spin and linear momentum of the \(j \)-th electron are denoted by \(\mathbf{s}_j \) and \(\mathbf{p}_j = (1/\hbar)\mathbf{V}_j \), respectively. All the results are in atomic units (energy in \(e^2/a_0 \) units, length in \(a_0 \) units where \(a_0 \) is the Bohr radius). The vector going from electron \(k \) to electron \(j \) is \(r_{jk} = r_j - r_k \). We use Greek

\(^*\)This research was supported by the National Aeronautics and Space Administration, Grant NsG-275-62.

† Present address: Physics Department, Oregon State University, Corvallis, Oregon.

‡ Present address: Chemistry Department, University of Western Ontario, London, Ontario, Canada.

\(^8\) The starting point for this Hamiltonian is the Breit–Hamiltonian: G. Breit, Phys. Rev. 34, 553 (1929); 36, 383 (1930); 39, 616 (1932).
indices to designate nuclei and Roman indices to represent electrons.

The derivation of the Breit–Pauli Hamiltonian is discussed for a 2-electron atom by Bethe and Salpeter. The generalization to a molecular system is given by Hirschfelder, Curtiss, and Bird.

The grouping of the terms is similar to the one used by Bethe and Salpeter:

\[H = H_e + \alpha \beta H_{rel}, \]

where \(\alpha \) is the fine structure constant,

\[H_e = -\frac{1}{2} \sum_i \nabla_i^2 - \sum_{i,j} Z_{ij}^2 + \sum_k \frac{1}{r_{ik}} + \sum_{\beta, \alpha} \frac{Z_{\beta} \alpha}{r_{\alpha \beta}}, \]

and

\[H_{rel} = H_{LL} + H_{SS} + H_{SL} + H_P + H_D, \]

with

\[H_{LL} = -\frac{1}{2} \sum_{i,j} \frac{1}{r_{ij}} \left[r_{ij}^2 p_i \cdot p_j + r_{ij} \cdot (r_{ij} \times p_i) p_j \right], \]

\[H_{SS} = \sum_{k, l} \left\{ -\frac{8\pi}{3} (s_i \cdot s_k) \delta^{(3)}(r_{ik}) + \frac{1}{r_{ik}^3} \left[r_{ik}^2 s_i \cdot s_k - 3(s_i \cdot r_{ik})(s_k \cdot r_{ik}) \right] \right\}, \]

\[H_{SL} = \frac{1}{2} \sum_{i,j} Z_{ij}^2 \left[(r_{ijk} \times p_j) \cdot s_i - 2(r_{ijk} \times p_k) \cdot s_i \right], \]

\[H_P = -\frac{1}{8} \sum_i p_i^2, \]

\[H_D = \frac{\pi}{2} \left[\sum_{\beta, \alpha} Z_{\beta} \alpha \delta^{(3)}(r_{\beta \alpha}) - 2 \sum_{k, l} \delta^{(3)}(r_{kl}) \right]. \]

Equation (2.2) is the usual nonrelativistic Hamiltonian for the system. \(Z_a \) is the nuclear charge of the \(a \)-th nucleus.

The first term in the relativistic Hamiltonian \(H_{rel} \) gives the orbit–orbit interaction corresponding to the classical electromagnetic coupling of the electrons.

The coupling of the spin–magnetic moments is given by \(H_{SS} \). The Fermi contact term involving the delta function gives the behavior of this Hamiltonian when \(r_{jk} = 0 \). The second term is only applicable when \(r_{jk} \neq 0 \).

\(H_{SL} \) represents the spin–orbit magnetic coupling between electrons.

\(H_P \) is the relativistic correction due to the variation of mass with velocity.

\(H_D \) is a term characteristic of the Dirac theory, which has no simple interpretation.

In the above equations the nuclei are considered fixed (Born–Oppenheimer approximation) and we assume no external electric or magnetic fields.

In order to derive the one- and two-center expansions of the Breit–Pauli Hamiltonian, it is convenient to use the algebra of irreducible spherical tensors. This method allows the separation of the variables into product form and permits the application of the Wigner–Eckart theorem in the calculation of matrix elements. The first step in this procedure is to write the various terms in the Breit–Pauli Hamiltonian as contractions of irreducible tensors. To illustrate the method of contraction, we consider \(H_{LL} \) specifically, and then state the results for the other relativistic Hamiltonians without derivation.

In the first term of \(H_{LL} \) one has to contract \(p_i \cdot p_k \). This can be done by introducing the following spherical tensor of the arbitrary vector \(A \):

\[T_{l l}(A) = \pm \frac{1}{\sqrt{2}} (A_x \pm iA_y); \quad T_{l l} = A_z. \]

Then

\[p_j \cdot p_k = \sum_{\alpha = -1}^1 (-1)^{\alpha} T_{l \alpha}(p_j) T_{l \alpha}^*(p_k). \]

The second term of \(H_{LL} \) can be written as a double contraction. The first contraction is as follows:

\[r_{jk} \cdot p_j = \frac{4\pi}{3} \sum_{\alpha = -1}^1 (-1)^{\alpha} \delta^m_1(r_{jk}) T_{l \alpha}^*(p_j) T_{l \alpha}^*(p_k) \]

where \(\delta^m_1(r_{jk}) \) is a solid spherical harmonic which in general is defined as:

\[\delta^m_1(r) = r^m Y^m_l(\theta, \varphi). \]

Then

\[r_{jk} \cdot (r_{jk} \cdot p_j)p_k = \frac{4\pi}{3} \sum_{\alpha = -1}^1 \sum_{\eta = -1}^1 (-1)^{\alpha + \eta} \delta^m_1(r_{jk}) \delta^m_1(r_{jk}) T_{l \alpha}^*(p_j) T_{l \eta}^*(p_k). \]
The two solid spherical harmonics can now be coupled together:

\[Y_{\ell}^{m}(r_{jk}) Y_{l}^{m}(r_{jk}) = r_{jk}^{2} \sum_{\tau} \frac{3}{t^{4}(2t^{2} + 1)^{4}} C(11t; \omega, \eta) \times C(11t; 0) Y_{\ell}^{m}(r_{jk}, \phi_{jk}) Y_{l}^{m}(r_{jk}, \phi_{jk}). \]

(2.14)

The Clebsch-Gordan coefficient \(C(11t; 0) \) vanishes unless \((1 + 1 + 1)\) is even and \(l\) is in the range 0 to 2.

Using Eqs. (2.10)–(2.14), one obtains

\[
H_{LL} = \sum_{k>j} \frac{1}{r_{jk}} \left[-\frac{3}{2} \sum_{\omega} (-1)^{\eta_{\omega}} T_{1}^{\omega}(p_{j}) T_{1}^{\omega*}(p_{k}) \right]
- \left(\frac{2\pi^{2}}{15} \right) \sum_{\omega, \eta} (-1)^{\eta_{\omega}} C(11t; \omega, \eta) \times Y_{\omega}^{m}(\theta_{jk}, \phi_{jk}) T_{1}^{\omega*}(p_{j}) T_{1}^{\omega*}(p_{k})
\times Y_{\omega}^{m*}(\theta_{jk}, \phi_{jk}) T_{1}^{\omega*}(p_{k}) T_{1}^{\omega*}(p_{j}).
\]

(2.15)

The first part of Eq. (2.15) contains a contribution from the \(l = 0\) term of Eq. (2.14). The Clebsch-Gordan coefficient in Eq. (2.15) can be given in closed form:

\[
C(11t; \omega, \eta) = \left[\frac{(2 + \omega + \eta)! (2 - \omega - \eta)!}{6(1 + \omega)! (1 - \omega)! (1 + \eta)! (1 - \eta)!} \right]^{\frac{1}{2}}.
\]

(2.16)

In a similar fashion the spin–spin Hamiltonian can be contracted to yield:

\[
H_{SS} = \sum_{k>j} \left[-\frac{8\pi}{3} \delta(tk, jl) \sum_{\omega} (-1)^{\omega_{\omega}} T_{1}^{\omega}(s_{j}) T_{1}^{\omega*}(s_{k}) \right]
- \left(\frac{24\pi}{5} \right) \sum_{\omega, \eta} (-1)^{\omega_{\eta}} C(11t; \omega, \eta) \times Y_{\omega}^{m}(\theta_{jk}, \phi_{jk}) T_{1}^{\omega*}(s_{j}) T_{1}^{\omega*}(s_{k}).
\]

(2.17)

It is sometimes convenient to couple the spins together to form a total spin tensor defined by:

\[
T_{1}^{\omega}(s_{j}, s_{k}) = \sum_{k>l} C(11t; \omega, \eta) Y_{\omega}^{m}(r_{jk}, \phi_{jk}) T_{1}^{\omega*}(p_{j}) T_{1}^{\omega*}(p_{k}).
\]

(2.18)

Then the Fermi contact term contracts to a scalar and in the spin-dipole–dipole term the spin transforms like a second-rank tensor:

\[
H_{SS} = \sum_{k>j} \left[\frac{8\pi}{\sqrt{3}} \delta(tk, jl) T_{1}^{\omega}(s_{j}) \right]
- \left(\frac{24\pi}{5} \right) \frac{1}{r_{jk}} \sum_{\omega} (-1)^{\omega_{\omega}} \times Y_{\omega}^{m}(\theta_{jk}, \phi_{jk}) T_{1}^{\omega*}(s_{j}) s_{k}.
\]

(2.19)

In the spin–orbit Hamiltonian \(H_{SL} \), one can first introduce a tensor \(T_{1}^{\omega*}(r \times p) \) to give

\[
H_{SL} = \frac{1}{2} \sum_{j \neq k} \sum_{\omega} (-1)^{\omega_{\omega}} T_{1}^{\omega}(r_{jk} \times p_{j}) T_{1}^{\omega*}(s_{i})
- \frac{1}{2} \sum_{k>j} \frac{1}{r_{jk}} \sum_{\omega} (-1)^{\omega_{\omega}} \times [T_{1}^{\omega}(r_{jk} \times p_{j}) - 2 T_{1}^{\omega}(r_{jk} \times p_{k})] T_{1}^{\omega*}(s_{i}).
\]

(2.20)

In the first term of Eq. (2.20), \(r_{jk} \times p_{j} \), is the orbital angular-momentum operator of electron \(j \) with respect to nucleus \(\beta \). The vectors \(r_{jk} \times p_{j} \) and \(r_{jk} \times p_{k} \), however, are not angular momentum operators about a fixed center. Here it is convenient to write them as a contraction which separates the position variables from the momentum operator:

\[
T_{1}^{\omega}(r_{jk} \times p_{j}) = \frac{1}{i} \frac{8\pi}{\sqrt{3}} \sum_{\omega} C(11t; \eta, \omega - \eta) Y_{1}^{m}(r_{jk}) T_{1}^{\omega*}(p_{j}).
\]

(2.21)

The Clebsch–Gordan coefficient in Eq. (2.21) is given by

\[
C(11t; \eta, \omega - \eta) = \left[\frac{(1 + \eta)! (1 - \omega + \eta)! (1 + \omega)! (1 - \omega)!}{(1 - \eta)! (1 + \omega - \eta)! [\eta (1 - \omega)!]^{\frac{1}{2}}} - \left(\frac{(1 - \eta)! (1 + \omega - \eta)! (1 + \omega)! (1 - \omega)!}{(1 + \eta)! (1 + \omega - \eta)! [\eta (1 - \omega)!]^{\frac{1}{2}}} \right) \right]^{\frac{1}{2}}.
\]

(2.22)

3. ONE-CENTER EXPANSIONS

In general, the origin of the coordinate system is arbitrary. The vectors \(r_{jk} \) and \(r_{j} \) denote the position of a nucleus and an electron, respectively.

The derivation of the one-center expansion for \(H_{LL}, H_{SS} \), and \(H_{SL} \), respectively, consists of three steps. First one has to express the \(Y_{1}^{m}(\theta_{jk}, \phi_{jk}) \) as a sum of products in the spherical harmonics of \((\theta_{j}, \phi_{j}) \) and \((\theta_{k}, \phi_{k}) \). Then \((1/r_{jk})^{n}\) is expanded in a similar...
manner. Finally the two expansions are coupled together.

The general addition theorem for the solid spherical harmonics is given by Rose17:

\[
\psi_N(r_{jk}) = [4\pi(2N + 1)!]^{\frac{1}{2}} \\
\times \sum_{\ell=0}^{N} \sum_{k=\ell}^{\infty} (-1)^{L} C(L, N - L, N; \kappa, \mu - \kappa) [[(2L + 1)!(2N - 2L + 1)!]^{\frac{1}{2}} \\
\times \psi_{\ell}^{\kappa}(r_j) \psi_{k}^{\mu}(r_k).
\]

(3.1)

The one-center expansion for \((1/r_{jk})^{n}\) can always be written in the form18

\[
\frac{1}{r_{jk}^n} = 4\pi \sum_{l=0}^{\infty} \sum_{\nu=-l}^{l} \frac{r_{-l}^{2n+l}}{r_{l+1}^{2n+l+3}},
\]

(3.2)

where \(R(-n, l)\) is a function of \(r_j\) and \(r_k\). Only the radial coefficients for \(n = 1, 3,\) and 5 are required. In the limiting case \(r_j = r_k\) the functions \(R(-n, l)\) diverge for \(n \geq 3\), and one has to introduce a special cutoff in the integrations. Letting \(r_j = r_k (1 - \epsilon)\) at the limit avoids these difficulties. After integrating and adding up the sums, \(\epsilon\) can be set equal to zero. If one uses the Laplace expansion, then18

\[
R(-1, l) = \frac{r_{-l}}{r_{l+1}},
\]

(3.3)

\[
R(-3, l) = (2l + 1) \sum_{n=0}^{\infty} \frac{r_{-l}^{2n+l}}{r_{l+3}^{2n+l+3}},
\]

(3.4)

\[
R(-5, l) = \frac{(2l + 1)}{3} \sum_{n=0}^{\infty} \frac{(n + 1)(2l + 2n + 3)}{r_{l+5}^{2n+l+5}},
\]

(3.5)

where \(r_{+}\) and \(r_{-}\) stand for the greater or lesser of \(r_j\) and \(r_k\). The coefficients \(R(-n, l)\) can also be written symmetrically with respect to \(r_j\) and \(r_k\). There are two such expansions; they involve powers of \((r_j^2 + r_k^2)^{\frac{1}{2}}\) and \((r_j + r_k)\), respectively18,19:

\[
R(-1, l) = (2l + 1) \sum_{n=0}^{\infty} \frac{(2n + 1)}{(n + l + 1)!!(n - l)!!} r_{l+1}^{2n+1},
\]

(3.6)

\[
R(-3, l) = (2l + 1) \sum_{n=0}^{\infty} \frac{(2n + 1)}{(n + l + 1)!!(n - l)!!} r_{l+3}^{2n+3},
\]

(3.7)

\[
R(-5, l) = \frac{(2l + 1)}{3} \sum_{n=0}^{\infty} \frac{(2n + 3)}{(n + l + 1)!!(n - l)!!} r_{l+5}^{2n+5},
\]

(3.8)

where

\[
r = (r_j^2 + r_k^2)^{\frac{1}{2}},\quad n = l, l + 2, l + 4, \ldots,
\]

(2k)!! = 2 \cdot 4 \cdots 2k,

and

\[
R(-1, l) = (2l + 1)
\times \frac{\sum_{n=0}^{\infty} (2l + 2n + 1)!!(l + n)!!(r_j r_k)^{l+n}}{n!(r_j + r_k)^{2l+2n+1}},
\]

(3.9)

\[
R(-3, l) = (2l + 1)
\times \frac{\sum_{n=0}^{\infty} (2l + 2n + 1)!!(l + n)!!(r_j r_k)^{l+n}}{n!(r_j + r_k)^{2l+2n+3}},
\]

(3.10)

\[
R(-5, l) = \frac{(2l + 1)}{6}
\times \frac{\sum_{n=0}^{\infty} (2l + 2n + 3)!!(l + n)!!(r_j r_k)^{l+n}}{n!(r_j + r_k)^{2l+2n+5}},
\]

(3.11)

Finally, Eqs. (3.1) and (3.2) are combined using the coupling theorem for spherical harmonics14:

\[
\frac{1}{r_{jk}^n} \psi_{N}(r_{jk}) = [4\pi(2N + 1)!]^{\frac{1}{2}} \sum_{l=0}^{\infty} \sum_{\nu=-l}^{l} \chi^\kappa_{\nu}(l; v; L; \kappa; q; t) \\
\times \frac{1}{r_{jk}^n} \psi_{\ell}^{\kappa}(r_j) \psi_{k}^{\mu}(r_k) \\
\times \frac{1}{r_{jk}^n} \psi_{\ell}^{\kappa}(r_j) \psi_{k}^{\mu}(r_k).
\]

(3.12)

where

\[
\chi^\kappa_{\nu}(l; v; L; \kappa; q; t) = (-1)^{L+v} \\
\times \frac{C(L, N - L, N; \kappa, \mu - \kappa) C(N - L, l, q; \mu - \kappa, v) \\
[(2q + 1)(2l + 1)(2L)!(2N - 2L)!]^{\frac{1}{2}} \\
\times C(N - L, l, q; 0) C(L, l, t; \kappa, -v) C(L, l, t; 0).
\]

(3.13)

Here the sums over \(q\) and \(t\) are controlled by the Clebsch–Gordan coefficients.

One can now apply Eq. (3.12) to the tensorial representation of the relativistic Hamiltonians [Eqs. (2.15), (2.17), and (2.20)]. The resulting one-center
The angular momentum of electron does not simplify appreciably. In all these expansions, the variables associated with electron j and k are now separated. In this form the angular part of the matrix elements of these Hamiltonians can be carried out in a straightforward manner (see Sec. 5). A difficulty arises in the radial integrations since the coefficients $R(-n, l)$ for $n > 1$ involve infinite sums.

In the case of H_{LL} and H_{SL} these infinite sums can be transformed into finite ones by applying the gradient formula to Eqs. (2.4) and (2.6), respectively. The procedure makes use of the fact that $r_{jk} r^{-2}_{k}$ appears in these two Hamiltonians. By making use of the relationship

$$r_{jk} = -\nabla_{j} \frac{1}{r_{jk}} \tag{3.17}$$

and the gradient formula21

$$T:\left(-\nabla_{1} \frac{1}{r_{12}}\right) = 4\pi \sum_{l, m, n} \delta(0, l) Y_{n}^{m}(\theta, \varphi)$$

the μth component of $r_{jk} r^{-2}_{k}$ can be written as

$$T_{\mu}^{(0)} = C(1; l, 1, 1; \nu, \mu) Y_{\nu}^{m}(\theta, \varphi)$$

where

$$A_{l+1} = \frac{(2l + 1)^{1/2}}{(2l - 1)^{1/2}} r_{jk}^{2} \epsilon(r_{j} - r_{k}),$$

$$A_{l-1} = -\frac{(2l + 1)^{1/2}}{(2l - 1)^{1/2}} r_{jk}^{2} \epsilon(r_{j} - r_{k}), \tag{3.20}$$

and $\epsilon(x - y) = 1$ for $x > y$, $\epsilon = 0$ for $y > x$. With these equations one can rewrite H_{LL} and H_{SL} in the following way:

$$H_{LL} = -\sum_{k > j} \frac{1}{r_{jk}^{2}} \left[2\partial_{j}(p_{j} \cdot p_{k}) - (r_{jk} \cdot p_{k})(p_{j} \cdot p_{k}) - (r_{jk} \cdot p_{j})(p_{k} \cdot p_{j}) \right]$$

The terms of the form $(r_{jk} \cdot p_{k}) \cdot l_{j}$ represent the coupling of the angular momentum of electron k relative to electron j with the angular momentum of electron j. The transformed Hamiltonian has the following form

$$H_{LL} = -\sum_{k > j} \frac{1}{r_{jk}^{2}} \left[2\partial_{j}(p_{j} \cdot p_{k}) - (r_{jk} \cdot p_{k})(p_{j} \cdot p_{k}) - (r_{jk} \cdot p_{j})(p_{k} \cdot p_{j}) \right]$$

The terms of the form $(r_{jk} \cdot p_{k}) \cdot l_{j}$ represent the coupling of the angular momentum of electron k relative to electron j with the angular momentum of electron j.
In a calculation of matrix elements of molecules, In this case one can expand the Breit—Pauli with the one-center result, transforms to the second coordinate systems. To generalize Eq. (3.1) to two centers, one makes use of the relations \[r_{jk} = r_j - r_k = r_j - r'_k - R. \] Then

\[\Psi_N^N(r_{jk}) = \left[4\pi(2N + 1) \right]^{\frac{1}{4}} \sum_{L=0}^{N-L} \sum_{\kappa=0}^{N-L-J} (2L + 1)!(2N + 1)!(2L + 1)! \times C(L, N - L, N; \kappa, \mu - \kappa) \times Y_{\ell}^N(r_{jk}) \times Y_{\ell}^N(r_{jk}), \] (4.1)

where on the right-hand side we have permuted \(r_k \) and \(r_j \), which introduces the phase factor \((-1)^N\). Since \(r_k = r'_k + R \), \(\Psi_{N-L,J}^N(r_k) \) can be expanded using Eq. (3.1) to give

\[\Psi_{N-L,J}^N(r_k) = 4\pi \sum_{L=0}^{N-L} \sum_{J=0}^{N-L-J} \sum_{\ell=0}^{N-L-J} \frac{(2L + 1)!}{(2N + 1)!} \times C(J, N - L - J, N; \ell, \mu - \kappa - \omega) \times [2L + 1]!(2J + 1)!(2N - 2L - 2J + 1)! \times \Psi_{L,J}^N(r_{jk}) \times Y_{\ell}^{N-L,J}(R). \] (4.2)

If \(R \) lies along the \(z \) axes, then

\[\Psi_{N-L,J}^{N-L,J}(R_z) = R^{N-L,J} \left[\frac{2N - 2L - 2J + 1}{4\pi} \right] \delta_{\mu-\omega,0}. \] (4.3)

and

\[\Psi_{N-L,J}^{r_{jk}}(r_{jk}) = r_{jk}^{N-L,J} Y_{\ell}^{N-L,J}(\theta, \varphi, \psi) \] (4.4)

The two-center expansion of \(r_{jk}^{N-L,J} \) for overlapping charge distributions is in general very complicated. For \(n = 1 \) the expansions have been done for the overlap regions. A method has been developed that can be used for the general expansion of \(r_{jk}^{N-L,J} \). For the nonoverlapping region a useful expansion has recently been derived by Sack. In this case

\[\Psi_{N-L,J}^{N-L,J}(r_{jk}) = \left[4\pi(2N + 1) \right]^{\frac{1}{4}} \sum_{L=0}^{N-L} \sum_{J=0}^{N-L-J} \sum_{\ell=0}^{N-L-J} \frac{(2L + 1)!}{(2N + 1)!} \times C(J, N - L - J, N; \ell, \mu - \kappa - \omega) \times [2L + 1]!(2J + 1)!(2N - 2L - 2J + 1)! \times \Psi_{L,J}^{r_{jk}}(r_{jk}) \times Y_{\ell}^{N-L,J}(\theta, \varphi, \psi) Y_{\ell}^{r_{jk}}(\theta', \varphi', \psi'). \] (4.4)
electrons j and k are associated with centers A and B, respectively. The following result is valid for R along the z axes:}

$$\frac{1}{r_{j k}} = 4\pi \sum_{l_1, l_2, l_3} \sum_{\ell, \ell', \ell''} (-1)^{l} (-1)^{l_1+l_2+l_3} K(l_1, l_2, l_3; \nu) \times G(n; l_1, l_2, l_3; q, t; r_j, r_k) \times Y^*_l(\theta_j, \varphi_j) Y^*_l(\theta_k, \varphi_k), \tag{4.5}$$

where

$$K(l_1, l_2, l_3; \nu) = \frac{[\delta(l_1 + l_2 + l_3)]}{[\delta(l_1 + l_2)] [\delta(l_1 + l_3)] [\delta(l_2 + l_3)]} \frac{[(2l_1 + 1)(2l_2 + 1)(2l_3 + 1)(l_1 + l_2 + l_3)]}{(l_1 + l_2 + l_3 - 1)!} \times C(l_1 l_2 l_3; - \nu, \nu) \tag{4.6}$$

and

$$G(n; l_1, l_2, l_3; q, t; r_j, r_k) = \frac{2^{l_1+l_2+q+t} \Gamma(n - 1)(2l_1 + 2q + 1)! (2l_2 + 2t + 1)! q! t!}{\Gamma(\frac{n}{2}) \Gamma([n(l_1 + l_2 + l_3 + q + t)] \tag{4.7}$$

In Eq. (4.7) $\Gamma(x)$ is the Gamma function and the double factorials are defined in Sec. 3. The two center expansion for the orbit–orbit, spin–spin, and spin–orbit Hamiltonians can now be obtained by substituting Eqs. (4.4) and (4.5) in Eqs. (2.15), (2.17), and (2.20), respectively, and coupling the various spherical harmonics. In the resulting equations the variables associated with centers A and B are separated.

The Wigner–Eckart theorem when applied to the angular parts of the matrix elements of H_{LL}, H_{SS}, and H_{SL} yields selection rules for these Hamiltonians.

5. MATRIX ELEMENTS

The one- and two-center expansions of the Breit–Pauli Hamiltonians H_{LL}, H_{SS}, and H_{SL} are of the general form

$$H_{LL} \sim \sum \left\{ Y^*_l(\theta_j, \varphi_j) Y^*_l(\theta_k, \varphi_k) T^{-a}(p_j) T^{-a}(p_k) \right\}, \tag{5.1}$$

$$H_{SS} \sim \sum \left\{ Y^*_s(\theta_j, \varphi_j) Y^*_s(\theta_k, \varphi_k) T^{-a}(s_j) T^{-a}(s_k) \right\}, \tag{5.2}$$

$$H_{SL} \sim \sum \left\{ Y^*_l(\theta_j, \varphi_j) Y^*_s(\theta_k, \varphi_k) T^{-a}(p_j) T^{-a}(s_k) \right\}. \tag{5.3}$$

If the wavefunction Ψ is of the type

$$\Psi = \sum \Psi_n(r_j, s_j), \tag{5.4}$$

where

$$\Psi_n(r_j, s_j) = \Phi(r_j) Y^*_l(\theta_j, \varphi_j) \eta_n(s_j), \tag{5.5}$$

then the matrix elements of the Hamiltonians can be calculated in a straightforward manner. In Eq. (5.5) $\eta_n(s_j)$ is a two-component spinor ($i = \pm \frac{1}{2}$).

In H_{LL} and H_{SL} one first has to operate with $T^{-a}(p_j)$ on the wavefunction. Application of the gradient formula [Eq. (3.18)] yields

$$T^{-a}(p_j) \Phi(r_j) = \frac{1}{i} \sum \Psi_n(r_j; \nu) \eta_n(s_j) \Phi(r_j), \tag{5.6}$$

where

$$A_{l, l+1} = \left(\frac{2l + 1}{2l + 3} \right)^{\frac{1}{2}} \left(\frac{d\Phi}{dr_j} - \frac{l}{r_j} \right),$$

$$A_{l, l-1} = \left(\frac{2l + 1}{2l - 1} \right)^{\frac{1}{2}} \left(\frac{d\Phi}{dr_j} + \frac{l + 1}{r_j} \right).$$

with all the other A's vanishing because of the triangular condition in $C(l,1, u; 00)$. The angular integrations in H_{LL}, H_{SS}, and H_{SL} are now all of the same form, namely

$$\langle Y^*_l(\theta_j, \varphi_j) Y^*_s(\theta_k, \varphi_k) Y^*_m(\theta_j, \varphi_j) \rangle = \left[\frac{(2l + 1)(2q + 1)}{4\pi(2l' + 1)} \right] C(lq'l'; m, m') C(lq'l'; 00). \tag{5.8}$$

The selection rules for this angular integration can be directly obtained from the Clebsch–Gordan coefficients. The integral vanishes unless $l + l' \leq q \leq |l - l'|$ and the sum $l + l' + q$ is even. Also $m' = m + \nu$.

See, for example, Ref. 4, p. 62.
The integration over the spin variables is given by the expression28

\[\langle \eta_{\mu}(s_i) | T^\dagger_{1\omega}(s_i) | \eta_{\nu}(s_j) \rangle = \frac{\sqrt{3}}{2} C(\frac{3}{2}; \mu, -\omega, \mu') \]
\[= (-1)^{\frac{3}{2}} 1_{\mu}[C(1 - \mu + \mu')(1 + \mu - \mu')]^{\frac{1}{2}}. \quad (5.9) \]

28See, for example, Ref. 4, p. 89.

The remaining radial integrals depend on the particular choice of \(\Phi(r_j) \) and cannot be done in a general manner.

ACKNOWLEDGMENTS

The authors are indebted to Professor J. O. Hirschfelder for his helpful remarks and critical comments. One of us (P. R. F.) gratefully acknowledges the hospitality extended to him by the members of the Theoretical Chemistry Institute at the University of Wisconsin.

Some Variational Principles for Integral Equations

P. D. Robinson and A. M. Arthurs

Department of Mathematics, University of York, England

(Received 19 January 1968)

Complementary variational principles are developed for the solution of Fredholm integral equations with symmetric positive-definite kernels. In particular, the theory is applied to linear equations of the type

\[\varphi(r) = f(r) + \lambda \int \kappa(r, s) \varphi(s) ds, \]

and bounds are obtained for \(\int \varphi dr \). When \(\lambda \) is negative, the bounds are complementary upper and lower ones. When \(\lambda \) is positive, the bounds are one-sided, but an improvement is made on a result of Strieder and Prager [J. Math. Phys. 8, 514 (1967)]. A condition given by these authors for the existence of bounds does not seem to be strictly necessary, and alternative conditions are derived. Systematic improvement of bounds by iterative and scaling procedures is discussed.

1. INTRODUCTION

Recently Noble1 and Rall2 have developed complementary variational principles which are relevant in physical situations described by a pair of simultaneous equations

\[T\Phi = \frac{\partial W}{\partial U}, \quad (1a) \]
\[T^\dagger U = \frac{\partial W}{\partial \Phi}, \quad (1b) \]

\(T \) being a linear operator and \(T^\dagger \) its adjoint. Applications of the theory have been made to ordinary differential equations3 and also to partial differential equations of diffusion4 and Poisson5 type.

In this paper we show how the theory can be applied to integral equations with symmetric positive-definite kernels, and, in particular, to nonhomogeneous linear integral equations with parameter \(\lambda \). When \(\lambda \) is negative, we obtain complementary upper and lower bounds; and when \(\lambda \) is positive, we obtain one-sided bounds which are an improvement on a result of Strieder and Prager.6 A condition given by these authors for the existence of bounds does not seem to be necessary, and alternative conditions are derived. Systematic improvement of bounds by iterative and scaling procedures is also discussed.

2. THEORY

A. Complementary Variational Principles

In the simplest form of the theory (which suffices for the present paper), \(\Phi \) and \(U \) are real functions of the position vector \(r \) and \(W \) is also real, depending on

6 W. Strieder and S. Prager, J. Math. Phys. 8, 514 (1967).