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FOREWORD

This Final Technical Documentary Report was prepared by the Aircraft
Propulsion Laboratory, Department of Aeronautical and Astronautical Engi-
neering, The University of Michigan, on Contract AF 33(657)-8630 for the
Aerospace Research Laboratories, Office of Aerospace Research, United
States Air Force, The work reported herein was accomplished on Task
7065-01, "Fluid Dynamics Facilities Research' of Project 7065, '"Aerospace
Simulation Techniques Research' under the cognizance of Capt. Ralph Prete
of the Fluid Dynamics Facilities Laboratory, ARL, At The University of
Michigan the project supervisor was Prof, J. A, Nicholls, This report covers

work done during the period 1 May 1963 to 15 November 1963,

ii



ABSTRACT

Experimental and theoretical investigations into the technology associated
with three-phase AC arc heaters is presented and critically discussed. The
behavior of the three-phase arc is extensively considered and it is shown that

a previously reported analysis can adequately predict this behavior.

The problems of designing arc heater components are discussed and in
particular those associated with the pressure vessel, It is shown that the
present, low pressure chamber extracts an unacceptable amount of energy

from the arc heated gas resulting in a rather low unit efficiency.

Finally, the benefits which might result from coupling a magnetogasdynamic
accelerator to the arc heater for flight simulation are discussed and on the basis
of perfect accelerator performance (no losses) it seems that significant increases

in stagnation properties can be effected.
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I. INTRODUCTION

During the subject reporting period basic investigations into the problems
associated with AC arc heating were continued, In the spirit of our past work
these investigations were of a theoretical as well as experimental nature, The
progress to date will be reported in several specific categories, Experimentally,
that which has been learned from the operation of the large 3-phase facility will
be discussed as well as the information gleaned from some related small scale

experiments,

In almost all instances theoretical work has either preceded or accompanied
our experimental efforts and this report will serve to document the most thorough
and/or most important of these analyses, Included among these will be certain
tasks which were performed prior to the subject reporting period and they are
described herein for the sake of completeness, Since such a variety of subjects
will be covered, the investigations will be described as separate entities with

little or no cohesive material joining their presentations,

Subjects to be covered include the properties of AC arcs subjected to both
normal and axial flow, the feasibility of using a magnetogasdynamic accelerator
for hypersonic simulation, the prediction of pressure vessel heating due to an
arc heated gas, the design of a water cooled magnetic field coil, and finally some

general design considerations for both high and low pressure arc heaters,

Manuscript released by the authors 1 February 1964 for publication as

an ARL Technical Documentary Report.



II. EXPERIMENTAL INVESTIGATIONS

In this section the highlights of the arc heater experimental program will be
discussed with the emphasis being placed upon the lessons learned therefrom
rather than simply displaying large amounts of data. The data which are presented
are of a typical (summarizing) nature and show trends associated with the perti-
nent phenomena. In addition to the information gleaned from the low pressure
3-phase arc heater, the results of certain small scale experiments will be pre-
sented and discussed. With these small experiments it has been possible to iso-
late and closely examine certain phenomena which are present in the larger device

but are usually obscured by complex interaction with other events,

Some of the experimental programs described herein are quite complete and
are essentially closed subjects. Others, however, are really only preliminary
and more data needs to be gathered when improved facilities, i.e., the high pres-

sure arc heater, become available.

A. THE CHARACTERISTICS OF THE 3-PHASE ARC AND ITS ROLE AS A
CIRCUIT ELEMENT
Quite early in the arc heater developmental program considerable effort was
directed toward obtaining data related to the characteristics of a 3-phase AC dis-
charge and attempting to fit those data into the framework of a relatively simple
circuit theory. The advantages of having such a theory are, it seems, quite

evident,

Using oscillographic analysis it was hoped that a great deal could be learned
about the arc characteristics as they are influenced by the magnetic field, pres-
sure level, and flow rate. This approach has proved to be quite successful but
the effect of the magnetic field should be examined in still more detail. With the
present arrangement the magnetic field which the arcs experience cannot be varied
too greatly. In particular, at high power operation the field strength cannot be

varied at all without allowing the electrodes to be destroyed.



Consider first the behavior of the arc voltage and the line current when both
the magnetic field and chamber pressure are held constant. In Figure 1 a typical
oscillogram of these quantities is reproduced. Traces 1 through 3 are the arc
voltages corresponding to phase voltages 1-2, 2-3, 3-1, respectively while the
remaining active traces are the line currents. The circuit is shown in Figure 2
and it is seen that the arc behaves somewhat like a lossy neutral point in a wye-
connected inductive circuit. It should be pointed out that the arc characteristics
for a 4-wire circuit would be quite different from those shown in Figure 1, see
Reference 1. In Figure 1 the galvanometers used on voltage traces 2 and 3 had
a high frequency response and were driven with a large fraction of the actual sig-
nal voltage. It is clear that there is a great amount of random behavior which is
attributable, it is felt, to the forced spot motion caused by the magnetic field.
This is not surprising since the location of electrode spots on cooled metallic
electrodes is a rather random affair anyway without the further disturbing action
of an external magnetic field. Oscillograms similar to Figure 1 have been made
when there was no magnetic field present and the voltage waveforms were consid-

erably smoother.

It is clear that when such random high frequency disturbances are present
in a phenomenon very little information about its behavior in the large can be de-
termined by using high frequency response galvanometers. For comparison, the
first voltage trace has been recorded with a galvanometer which will not pass
much of the randomness and which, moreover, is driven with a smaller signal
so as to decrease the maximum required writing rate of the recorder. Here the
large scale behavior of the arc voltage is far clearer than in traces 2 and 3 and
it is possible to determine a type of square wave behavior. According to this pat-
tern the arc burns with a positive polarity for 27/3 radians, is extinguished and
remains dormant for 7/3 radians, and is then reignited to burn with a negative
polarity for 27/3 radians followed by the 1/6 cycle dormant period. Of course,
the arcs burning between the other phases must behave identically but shifted in

time by 27/3 and 47n/3 radians respectively. The arcing pattern is something
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FIGURE 2. CIRCUIT ARRANGEMENT FOR THREE PHASE ARC HEATER.



like that shown in Figure 3. For the three wire system shown in Figure 2 the
instantaneous sum of the voltages e AR’ ®BC’ €CA must always be zero, imply-
ing, of course, that there is some relation between the arc voltages which must
be satisfied for every instant of time. The pattern shown in Figure 3 is just such
an arrangement but mathematically it is not the only one possible. It is interest-
ing to examine the physical reasons behind the arcing arrangement which the sys-
tem exhibits. Before proceeding to discuss this, however, it will be helpful to

have a more lucid picture available of the actual arcing phenomenon.

In order to obtain voltage and current waveforms for a 3-phase arc system
which is not subjected to the random disturbances of blowing and magnetic field
effects a small model arc was constructed which duplicates the electrical charac-
teristics of the large 3-phase unit. That is, the arcs were inductively stabilized
and the inductors were wound so that the resistive portion of their impedance was
the same fraction as the large scale inductors. A variety of electrode materials
were used including tungsten, carbon, brass, and water-cooled copper. There
was no externally applied magnetic field and the only blowing which the arcs ex-
perienced was due to free convection. The rms current level was of the order of
30 amps and the open circuit voltage was as high as 600 volts. Figure 4isa
rather busy oscillogram of the arc voltages for all three phases upon which is
superimposed the corresponding line voltages. The single low amplitude sine
curve at the bottom is the line current corresponding to the arc voltage at that
location, Its polarity is reversed for the sake of clarity. It is seen that the arc-
ing arrangement is strikingly similar to that depicted in Figure 3. With the aid
of this oscillogram (which was taken with tungsten electrodes) it is possible to

discuss the physical aspects of this three phase mode of arcing,.

First one observes that for a given arc gas, electrode material, and elec-
trode spacing, there is a unique burning voltage corresponding to the current
imposed upon the arc. This is quite evident for the DC arc where the voltage-
current characteristic is nearly hyperbolic and elementary considerations can

show there is but one stable burning condition. While harder to demonstrate
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FIGURE 4. THREE PHASE MODEL ARC WAVEFORMS.

FIGURE 5. THREE PHASE ARC VOLTAGE (One electrode pair) .

FIGURE 6. THREE PHASE ARC CURRENT (One electrode pair) .
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the same is nonetheless true of an AC arc (see Reference 2). Then in a perfectly
balanced 3-phase circuit one would not expect an arc to burn between one pair of
electrodes with a voltage, say, €y while between another pair there exists an
arc burning with a potential difference of Zea., - Hence when an arc exists it burns
at the unique voltage of € which may either be positive or negative. Since there
are three possible locations for arcing in the three-phase, three-wire circuit it
follows from the above arguments that only two arcs may exist simultaneously

at a given instant of time, Moreover, they must be of opposite polarity because
of the zero voltage summability condition mentioned earlier. As mentioned be-

fore, there are other mathematical arrangements which can fulfill this condition

than the one shown in Figures 3 and 4 but the physics of the system dictates only

one,

To see this, consider an instant in time for which the arc of trace 3 (Figure
4) is burning with a positive polarity., Also suppose the arc of trace 2 is burning
negatively so that arc number 1 is dormant. As the line current which feeds arcs
1 and 3 approaches its zero passage the arc of trace 3 must begin to extinguish.
As its voltage drops to zero the voltage across the dormant arc must rise propor-
tionately to preserve the null summability condition for the circuit, Arc number
2 continues to burn unchanged. The just extinguished arc (number 3) experiences
the instantaneous open circuit voltage existing across its terminals which how-
ever is not sufficient to reignite it. In the other phase, however, across arc
number 1, the line voltage is near its maximum and reignites the previously dor-
mant arc. It is here that one can see the advantages of a three phase arc burning
in this three wire mode, The extinction transient of one arc is the reignition
transient for another; a feature which promotes arc stability, The extinction and
ignition process described above is repeated 1/6 cycle later where the arc of

trace 2 extinguishes and arc number 3 ignites again.

The long dormant period which an arc experiences suggests that it carries
no current during this time, That this is indeed the case is shown quite clearly

in Figures 5 and 6. Here one finds the arc voltage waveform for a single



electrode pair along with the corresponding arc current. Again tungsten electrodes
were used and it is seen that during the periods of non-conduction the arc voltage is

nearly zero,

This simple arc voltage behavior has suggeéted an analysis of a three phase
inductive circuit containing idealized, square wave-type arcs. This analysis is
presented in its entirety in Reference 3 and has proved to be quite valuable in pre-
dicting the performance of the large 3-phase arc heater. In fact it is quite inter-
esting to compare these predictions with actual data since a maximum in attainable
useful power was predicted if the arc voltage reached a certain critical level. Now
it was predicted that this critical arc voltage would be a significant fraction of the
available line voltage so that there was some doubt as to whether this condition
could be realized experimentally, K, however, the high arc voltage is attained
by causing the arc to burn in a high pressure environment it has been found that
the realization of this maximum point is indeed possible. To see this consider the

following presentation of data.

In Reference 3 it was predicted that the power factor, F, of a three phase
circuit containing arcs which are inductively stabilized is a function only of the
ratio of the arc voltage, €, to the peak line voltage, Em. Figure 7 shows this
relationship and it is shown to be very nearly linear. Now both variables of
Figure 7 can be measured so it is possible to check the validity of the curve quite
precisely. The power dissipated by the arcs as well as the circuit KVA is meas-
ured continuously throughout a run and their quotient is the power factor regardless
of any waveform non-harmonics. Figure 8 shows such a set of traces. The arc
voltage is easily measured on an oscilloscope and the results obtained from sev-
eral typical runs are shown as open circles in Figure 7. The agreement is quite
satisfactory so one may reasonably assume that arc voltage can be inferred by
entering Figure 7 knowing only the power factor and reading off ea/ Em from the
theoretical curve. In Figure 9 a non-dimensional power is plotted as a function
of the ubiquitous voltage ratio ea/ Em. Again the open circles summarize the

data gleaned from many runs of the 3 phase arc heater. The data point nearest
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the power maximum corresponds to the actual extremum in the measured
power of Figure 8, The deviation from the solid curve is due to the fact that
the circuit resistance was neglected in the analysis, It is concluded that

if one knows the voltage ratio, ea/ Em, the pérformance of a three phase arc
heater system can be predicted rather accurately. It is quite difficult, however,
to have prescience of the arc voltage unless experimental data are available.
One knows that such parameters as electrode spacing, the type of arc gas, and
the pressure level should influence the arc voltage by varying amounts but to say

a priori what their combined effect will be for a specific arc chamber is indeed

quite beyond the present state of technology.

The effects of the aforementioned agents upon the arc voltage in the three
phase facility have been examined experimentally and the findings are interest-

ing but not too unexpected.

Since a wide variety of sonic orifices have not been available for these studies
nor has the air injection system been entirely adequate it is not possible to sepa-
rate the effects of mass flow loading and pressure level on the arc voltage meas-
urements to be presented. The indicated parameter will be the pressure but it
should be borne in mind that the arc is probably affected equally as much by con-
vective column loading. In Figure 10 the results of several typical elevated pres-
sure runs are presented where the power level has been selected as the dependent
variable and is plotted versus the logarithm of the chamber pressure in atmos-
pheres. The data are presented in this manner because it is known that the effect
of high gas pressure should be to increase the arc burning voltage according to
the relation

ea=AQnP+B

when all other variables are held constant. Furthermore, for the range of con-
ditions presented in Figure 10 the power is a proportional indicator of the voltage
level and an unambiguous power measurement is easy to obtain. It is seen that a

linear relation between the power and {n P does not hold and this deviation is

14
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preliminarily ascribed to the presence of mass flow effects. In subsequent
investigations the variables of mass flow and pressure will be much more inde-

pendently controllable and better data on this matter can be obtained.

The effect of electrode spacing on ea’ the arc voltage, is exactly what one
would expect, there exists a linear relation between the two. Gap sizes ranging
from 3/4 inch to 2 1/2 inches have been studied and for all other variables held
constant there is a proportional effect upon the arc voltage when the electrode

spacing is increased.

The presence of an externally applied magnetic field is felt in many profound
ways by the three phase arc. Of course, it induces rapid electrode spot motion
which in turn prevents electrode attrition, This is the primary reason for having
a magnetic field. In addition the magnetic field interacts with the arc in such a
way as to increase the burning voltage; undoubtedly by lengthening the arc column,
This voltage increase is immediately apparent in the power measurements and
within the range of variation of field strength that has been possible it appears
that there is nearly a linear effect of magnetic field on power dissipation. Since
the arc voltage was quite low for the measurements in question, the arc power
proportionately follows the arc voltage so it can safely be inferred that there is
a linear relation between arc voltage and magnetic field strength for the range
of conditions considered. The data supporting this statement are shown in Figure
11. Here the chamber pressure was one atmosphere, the electrode spacing about
one inch, and the magnetic field strength indicated on the abscissa is that field

which existed at the approximate arc location as measured by a gaussmeter.

The arc stability is greatly affected by the presence of a magnetic field
through the induced motion but no conclusive data are available on this phenomenon.
The problem is being studied analytically at this time (Section III-A) and further

experimental investigations will be made later in the program.

16
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B. UNIT EFFICIENCY AND ACHIEVABLE STAGNATION CONDITIONS

Since it is the prime function of an arc heater to produce a stream of high
enthalpy gas all attention must inevitably focus on how well it performs this job.
Disregarding for the moment questions of contamination and stability one must
ask how much of the energy which is being added to the gas in the arc chamber
eventually shows up in the gas stream which one wishes to study. This leads
one to a study of how much energy is being extracted from the water cooled hard-
ware of the system., One would, of course, like to minimize losses to the cooled
components but in a high power device which must operate for periods of time
greater than one minute a certain amount of water cooling is absolutely neces-
sary. In the present facility water cooled electrodes are used to reduce effluent
contamination and they seem to extract an almost fixed fraction of the arc power
{(about 25%). The exit nozzle, of course, must be water cooled but losses to that
component have proved to be insignificant. The only other major component which
extracts energy from the heated gas is the chamber or pressure vessel. This
unit is a copper cylinder 20 inches long, with a 10 inch inside diameter and 1 1/2
inch thick walls, This is obviously quite a massive component and one would
predict that it would rob the heated gas of much of its energy. The chamber has
this particular size for a number of reasons. The original set of electrodes were
patterned after those first used by General Electric and the internal diameter of
the chamber, of course, had to be large enough to accommodate them. Second,
it was felt that the nonuniformities in temperature and velocity which would be
added to the flow by the arc heating process could be evened out only by the still-
ing effect of a rather long chamber. Hence, the seemingly undue length of the
pressure vessel, It was recognized that flow uniformity would be obtained only
at the expense of lower stagnation conditions but this was deemed unavoidable

at that time, In brief, the chamber losses have proved to be excessive,

18



A rough analysis of the situation shows that one might expect rather severe
losses to the chamber and also indicates to what extent they can be mitigated.
Suppose the distance x is measured from the electrode location in the chamber
and at x = S the hot gas has left the pressure vessel. If qw is the heat transferred
to the chamber walls at each axial station, x, H is the stagnation enthalpy of the
flow, and D the internal diameter of the chamber, one can write the following

differential equation

di _ 7D
dx W qw

where w is the mass rate of flow of the heated gas. The wall heat flux q_W will,
in general, include radiative as well as convective contributions, The radiative
component is not easy to express analytically in terms of chamber properties
but according to Section V the convective heat transfer has the following form

. 1/2
Qeon ™ Cl H/x

where C1 is a function of chamber conditions and varies only slightly from end

to end. Then the above differential equation can be written as

o

au "PC1 _17a ~TDAag
L 1Hx = rad
dx W W

where dra d is assumed to be constant. This is easily integrated to give at x = S

1/2 4
Heas =H, - rad[eaS(aS_1)+i]

f i Cla

where Hi and H, are the enthalpies corresponding to conditions at x = 0 and x = S,

f
respectively and a = 27 DCl/Gvo For the arc chamber presently being used S £ 10 in.,
D =10 in., and w £ 0, 10 lb/sec., In Figure 12 the above expression for Hf/Hi is

plotted for two typical stagnation pressures, 15 atmospheres and 30 atmospheres.

19
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It is seen that a large fraction of the energy initially imparted to the gas is
extracted before the gas can reach the chamber exit, leaving a relatively cool

effluent,

Consider now some typical measured results., Table I presents the re-
sults of six very typical arc heater runs. The greatest difference between these
runs is that their duration varies considerably, Run number 8744 is the only true
steady state run, that is all components reached their respective equilibrium
temperature before the run was terminated. The results show quite clearly that
about one minute must elapse before equilibrium running conditions will exist,
The energy losses accountable to each major component are listed as well as the
maximum energy input to the system. Electrical circuit conditions such as KVA
consumed and power factor are also listed. The most dismal fact which is dis-
cernible from this table is that the unit efficiency, defined as arc power less
power lost all divided by arc power, drops to 14% for steady conditions at about
6 atmospheres chamber pressure. There is some uncertainty in the air mass flow
for these runs but it appears that the effluent produced under conditions for which
run number 8744 is typical has a stagnation temperature which is less than 4000°K
but at least SZOOOKo This is a large uncertainty but further measurements will

refine the determination of this parameter.

One can obviously conclude that the amount of energy being claimed by the
pressure vessel is intolerable and must be reduced, Toward this end new elec-
trode configurations are being studied which will not require so large an enclo-
sure and the chamber length on future arc heaters will certainly be less than in

the present case,

Attention is called to the fact that up to now the maximum arc power has sel-
dom exceeded one megawatt. Even with a low efficiency higher final stagnation
conditions can be obtained if one simply adds more energy at the beginning, In
fact, with the present highly lossy facility it should be possible to nearly double
the stagnation enthalpy in this way.

21
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III. THE ELECTRIC ARC IN A FLOWING ENVIRONMENT

Present day applications of the electric arc as a gas heater have led to the
need for a better understanding of the interaction of the flowing stream and the
arc column. This need arises, not only so that the enthalpy distribution in and
around the arc can be predicted, but because the flow has a profound effect upon
the stability of the arc discharge. Although this latter remark certainly applies
to DC arcs the stability problems which exist for AC arcs are much more complex.
In fact, a complete stability analysis of the non-linear system of equations offered
by the dynamic arc has never been attempted. Only the method of small disturb-
ances introduced by Kauffmann (4) has been employed with any success. This
method assumes that small AC perturbations are imposed upon an otherwise stable
steady-state discharge and by examining the roots of a secular equation one can
obtain sufficient conditions for complete stability. These conditions thus obtained
are only necessary to cause instability but not, unfortunately, sufficient since one
cannot say whether disturbances which seem to cause instability for a linear prob-
lem will indeed lead to arc extinction when the amplitude of the disturbances has
grown too large to be considered linear, Of course, these same considerations
apply in the study of the stability of any non-linear system. Perhaps the advanced
techniques of Liapunov which have been used so successfully in the study of non-
linear control systems could be applied to the present problem but this has not

as yet been investigated.

Presented herein is a first attempt at an understanding of the behavior of the
dynamic arc which is subjected to two simple flow configurations. The first is
an analysis of the arc in cross-flow (convection determined arc), that is, normal
to its axis. Here an extention of the method used by Rother (5) is employed and
it will be seen that even for the simple flow field that is assumed the problem is

quite complex,
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The second problem concerns an AC arc burning in a tube (wall stabilized
arc) with a flow along the axis of the tube, Here, following the approach of
Stine and Watson (6), one can show that the behavior of the arc as it approaches
the fully developed column can be predicted, as well as the ultimate character
of the asymptotic column. It should be borne in mind, however, that both of these
models are quite crude and their shortcomings will be pointed out at appropriate

instances.

A, THE DYNAMIC ARC IN CROSS-FLOW

It is well known that when an electrode stabilized arc is blown normal to the
arc axis the column assumes a new shape which is determined by the flow velocity
and the nature of the gas which comprises the discharge. For moderate blowing
this new shape is nearly circular and one may characterize the column geometry
by a radius of curvature, p. Furthermore, the distortion of the electric field
due to the blowing may be determined by assuming that the field lines follow the
arc and that, since the integral of E - ds along any path through the arc and between
the electrodes is constant, the field strength will be greater on the concave (wind-
ward) side of the arc than on the convex side {leeward). Figure 13, which follows,
illustrates this situation. Here one sees that the electrode axis is along the co-
ordinate axis and that the blowing is along the x axis from left to right. The
radius of curvature; p, is not known a priori but must be determined from a solu-
tion of the problem to be posed. It is assumed now that the cross-section A - A
is characteristic of the entire arc since it is there that the velocity has its full
component. Then this region should determine the stability of the entire column
since energy removal processes by convection are the most severe there. It is
simple to show that the field strength in the Section A - A can be represented by
E = Eo /(@ +x/ p), where E0 is the field strength at x = 0. Eventually it will be
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SECTION A-A
(Enlarged)

FIGURE 13. SKETCH OF BLOWN ARC COORDINATE SYSTEM.
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necessary to assume that Joule heat can only be produced within a circle of radius
"a" (essentially the arc radius) but the analysis can be carried up to a point with

greater generality and this assumption will not be invoked until necessary.

One proceeds now by writing an energy equation for the arc and its surround-
ings which includes the effects of convection. Subsequent developments assume
that thermodynamic equilibrium prevails everywhere, a quite justifiable assump-
tion for the pressures (greater than one atmosphere) and the alternation frequencies
(of the order of a kilocycle or less) which shall be of interest here. Neglecting
diffusion of species due to mechanisms such as baro- and thermal-diffusion as
well as that due to concentration gradients implies that thermal conduction and
forced convection are the dominant modes of energy transfer. Again, this is

easily justified.

In vector notation the energy equation becomes:

n(—a—t—l +U.vh| - v (kvT) = GEZ (x,t) (3-1)

ot

Here 7 is the mass density, h the static enthalpy, « and o the thermal and elec-
trical conductivities respectively, and U is the velocity vector of the imposed
flow field. To be precise one should also write the equations of conservation of
mass and momentum as well as an equation of state. This would, however, lead
to insurmountable complexities so, as usual, one makes some rather stringent
assumptions. Here it is assumed U has a component along the x-axis only and is
constant at a value U o Before making further simplifications notice that the
Equation (3-1) is made far more tractable by introducing the transformation

T

S= f kdT'

T
0

where S is often called the heat flux potential and T0 is some convenient reference

temperature, Then, since dh = cp dT, one can write Equation (3-1) in the form:
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oS = 2 2
=+ UO~VSJ -V S=0E" (x,t)

Y
%

where cp is the specific heat at constant pressure. The group of parameters

(ne p/ k) is the reciprocal of what is commonly known as the thermal diffusivity

and is not, strictly speaking a constant. However, its variation with S, the new
dependent variable, is not severe over rather wide ranges of temperature so that

it will be assumed to be constant at some representative value. Defining X = /7 cp
one can write the above equation in cartesian coordinates

1 (as 38

ot t Yo ax

Finally, one assumes that the complex dependence of o upon S can be legitimately

mitigated by assuming a linear relationship between the two variables. Then write

O‘=CIS+ C2

and introduce for facility of computation a(x,t) = ClE2 (x,t) and

4nf (x,t) = CZE2 (x,t). The equation then assume s the form:

—t - — - — — +a(x,t) S = - 4nf(x,t) (3-2)

This equation must be solved subject to the initial condition S (x,y, 0) = So and
the boundedness condition,
lim S (x,y,t) =0
Xiy Iyi—=®©
Notice that if a non-zero temperature exists at infinity a simple transformation
will bring the problem into the above form. Now the problem is facilitated by

transforming out the term involving 8S/9x and this is done by introducing



This casts Equation (3-2) into the form

5 on
y, Py 1oy % RERY
s+ g - Tart|alxt) - —5|p= - 4me f(x,t) (3-3)
0x  0x 4) |

Since Equation (3-3) applies in the infinite domain and there are no boundaries
it is possible to find a Green's function by the method of multiple fourier inte-
grals (Reference 4). In the following, g(R,7) denotes the Green's function where
R=|T- ?O], the distance between source and field points, and 7 = (t - to), the
time between source emission and field observation., This Green's function must

satisfy the equation

2
2 1 Uo -
vig--g +|0(R,T) -—5|g=-416 (R) 6 (1) (3-4)
Aot 42

where the continuous function exp (- on/ 2))f(x, t) is replaced by a product of

delta "functions", 5 (R)- 5 (7). Next one assumes that g (R, 7) has the form

1 ip-R -
g(R,T):(zn)zfe 7(p,T)de

where de is the volume element in p-space which is two dimensional in this

case. Applying the operator of Equation (3-4) to the above Fourier integral one

obtains
U2
1 [ bR _pzy_lgl_er a(R,7) - == |yYdV_=- 47 5(R) 6(7)
4772 A dT 4A2 p

However it is known that

=s)

iz e Nav = 5(R)
47 p
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SO one can write

2
dy 2 Uo
==+ A|p” - (R, T)+ —5 |y =47A5(7)
dr 4:)\2

This is a first order, ordinary differential equation for y (p, 7) whose solution

is easily found to be

U2 T
y{p, 7) = 4nx u(r) exp |- AT p2+—0§ + A f a(R, £) d&
4 X
0

where the properties of the 6 function and the unit step function u (7) have been
employed; namely
T 0, 7<0
ar)= [ o) a=
-0 1, 7> 0

and

T

f h(z) 6(£) dt = u(r) h(0)

where h is any function {§. Finally the expression for the Green's function

becomes:
2 T
g(R,T)=-—ﬂ—-—eXp “ Ay - a(R, §) d¢ de exp [ip* R - ATp-p
4 0

This can be integrated to yield

7U 2 7 - —112-—

T 41T
g(R;T)zE}('_)'eXp 'A_%"‘/'Q(Ryg)dg €
4 0
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which is the Green's function being sought. Notice that even though the original
Equation (3-3) is written in cartesian coordinates the Green's function is quite
general and is not tied to any specific coordinate system. By superposition of

sources one can write the general solution of Equation (3-3) as
U x
0

t 0
""X’yft)‘fdtofdxo dy e 2N et ) g [ -x), (v - v ), (t -t )]
0

1
* 47 / dxo dyo [‘-”g]t():o

The second term in the right hand member represents the effects of initial condi-
tions and will henceforth be neglected since one is only interested in the quasi-
steady state. Notice that the original differential equation has been cast into the
form of an integral equation by introducing the notion of the Green's function.
Such is always the case when one solves a differential equation in this manner
and even though the resulting integral equation is not readily solvable there is a

wider variety of methods available to attack it.

At this point it is suitable to introduce specific functions for @ and f. Recall
that the variation in electric field strength through an arc which is blown into a

circular shape is given by

E (x,t) = E(t)/(1 + x/p)
Now presume further that the curvature is slight (p large) so that one can write

2

a(R,¢) = ClEo (¢)[1 -2 (r cos 6 - r, cos 90)/p]

- 2
411f(t0)- CZEO (to) (1-2 r, cos Bo/p)

Here, in anticipation of further assumptions cylindrical coordinates have been

introduced and as before the subscript ( )o on r and # denotes source coordinates.
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As was mentioned earlier it is now necessary to assume that Joule heat is
produced only within a circle of radius "a'" so that the limits of integration are
from 0 to 27 for 90 and from 0 to a for T Introducing the necessary transfor-

mations one finds that the Green's function assumes the form:

UorO cos 90 _ r2 9
4zt 77U
2\ e 2MA(7T)rcos ¥ 0
e g(R,T)=}- exp ¢- (; - 5 - A(7)
4
r 2 rr
__9_ _|Ug _ 22A(7) 0 ]
o e r_cos 90+2M cos (6 .90)
.
where A(7) = J' CIEO2 (¢£) d.. The required integration over the source coordi-
0

nates is rather tedious and only the final results are presented here. The solu-

tion can be written as

t10(1'.7950:'('? +J
1 2
where
t -—-I-E- Uz‘r
<[1~.=)\C2JdtoE02 (to).e 4T xp(- A 2 ()rcos9+——0-2—A(T)
0 4
2
2 2
x et [1-3 6% 9]
t r UZ’T
2)C -
J2=-———12-J'th2(t)e Mexp-AZA()rcos€+ OZ—A(T)
p 00 ‘o 4x
2
.2 9
XWZ— al, (Za) e 4)\7_2)” et [l-J(yz,uz)]
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There are several new relationships that must be defined:

2

2 r2 2AT (Uo 2 1MA(T) 2
+ sin 8

2\ p

yz = a2/ 4x7 and J (yz, uz) is a function which has often been called the offset

circle probability function., It is defined by the following equation:

Y

-V2 1 2 2 2
fue IO(ZuV)duzie“ [1-J07 )]
0

wherein IO is the modified Bessel function of the first kind. Furthermore

U
W =(Lcos 6 2 X A(7)

9 _
21T 2\ p
2

N r sin 6 2
2N T

It would be quite superfluous to point out the extreme complexity of the above

DOf =t

7 - rcos f HQ_Z?&A(T)
) 2T 2 p

solution and it should be borne in mind that there yet remains an integration over
the variable tO to be performed. It appears that this cannot be done in general
but that some sort of asymptotic expansion for large t and large U0 must be em-
ployed. An extreme simplification results when p — or the arc does not bend
in response to the flow. This situation has been rather exhaustively studied and
it can be shown that there is no physical meaning connected with it except that

it could result when U0 = 0. However, the present model displays a weakness

in this instance because it provides no mechanism for thermal stabilization of
the arc column., This is not too serious since even a small velocity provides a
thermally stable arrangement and should yield reasonable results. The failure

of the zero curvature case with non-vanishing velocity can be laid to the fact that
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no intensification of field strength is provided to balance the convective cooling
on the concave side of the arc. Hence the position of maximum temperature re-
sides at the edge of the arc which gives a meaningless situation. Allowing for
some curvature remedies this situation and, in fact, the radius of curvature, p,
is determined by applying the condition that the value of S is a maximum at the

origin,

The analysis has progressed no farther at this time but the next step will be
to find the radius of curvature as a function of the most significant parameters
and to find a perturbation solution which would allow an investigation of the sta-
bility of the blown arc by the method of small disturbances, It seems, however,
that a complete solution to Equation (3-6) will have to be obtained with the aid of

an electronic computer.

B. THE DYNAMIC ARC IN AXIAL FLOW

An arc/flow arrangement of as much importance as the cross-flow situation
is provided by a discharge through a well defined cylindrical tube through which
gas is also flowing., In general, if one considers entrance effects, this is a very
difficult problem and even when an arc is not present the fluid dynamics problem
is rather formidable. Eventually, several tube diameters from the entrance, a
fully developed Poiseuille flow is attained at which point the flow field and tem-
perature field are decoupled. However, the velocity profile is still dependent
upon the temperature distribution through the variable viscosity. Up to this point
the energy and momentum equations must be solved simultaneously in order to

arrive at the proper distribution of velocity and temperature,

Recently, Stine and Watson (6) have analyzed the DC arc in a tube and after
making many simplifying assumptions arrived at a fairly simple relationship be-
tween the important parameters of the problem. Successive experimental inves-

tigations to test the validity of this analysis have shown it to be amazingly good
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for a very wide range of conditions. This fact prompted a similar analysis of
the AC arc column with the hope that certain salient features of the arc behavior

would emerge,

In Reference 6 is presented a figure which serves to classify the various por-
tions of the arc discharge and indicates what type of analysis applies to each part.
This figure is reproduced herein as Figure 14, The region immediately adjacent
to the electrode contains a space charge zone and there is no known analysis which
could apply. As the arc begins to spread and fill the constricting tube, deviations
from charge neutrality are slight but the fluid dynamics problem is very difficult,
Chen (8) has performed an approximate analysis of this portion of the arc but it
is applicable only to a continuously spreading arc and hence breaks down as the
discharge approaches the wall. Shortly downstream of where Chen's model fails
the model of Stine and Watson begins to be valid. Eventually, the so-called asymp-
totic column is attained and in the case of the DC arc many good analyses exist for
this region. For the dynamic arc even the asymptotic column is not well under-
stood but several crude analyses have been attempted. Herein is presented an
approximate analysis of the transition region from the point where spreading stops
to the asymptotic column position for an AC arc. Many of the same assumptions
that Stine and Watson have used apply in this case as well as the further assump-

tion that the arc is fed by a current source and is therefore stable, Briefly, one

| assumes that the electric potential is constant on planes normal to the flow direc-
tion, that axial conduction is small compared to convection, the arc has a constant
radius, p, Kkinetic energy changes are small compared to static enthalpy changes,
radiation is negligible, the electrical conductivity can be represented as a linear
function of the heat flux potential, S, and the thermal diffusivity, A, is constant.

With these simplifications one obtains the following form of the Ebenbaas-Heller
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equation

19 [ Joas, Ps  _12s 327
ror | ar| A 9z p 2 T aot
4szjrSdr
0

Here S = S1 + f kdT, U0 is the flow velocity down the tube, I is the total current
through the arc, and B is a constant which appears in the linear approximation

to the electrical conductivity; o = B (S - Sl)' The above equation can be solved
by combining the techniques of separation of variables and the Laplace transfor-
mation. Equation (3-7) is valid in the domain 0 <r <p, t>0, z> 0 and has the
boundary conditions that when r =p, S =0 and S(r,0,t) = 0. Then since the equa-
tion and its boundary conditions are homogeneous one can assume a solution of

the form:
S (r,z,t) = P (z,t) R ()

Inserting this form into Equation (3-7) one obtains

}.____(rR')' -_1_..2..P_+E9. QE - Iz (t) 0_1_.._. - a:z
r R AP 3t AP oz 2 27
p P
4Tr2B [err
0

where ozz is a separation constant and ( )' = d/dr. Then the above equation yields

the two equations

(rR")' + aer =0 (3-8a)
2 U .2 2
19P* ‘o oP 2 2  (t)
XF % s t2¥ P - 2 (3-8b)

2172B r Rdr

og\b
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Equation (3-8a) is easily solved in terms of Bessel functions and since the solu-

tion must be well behaved at r = 0 one obtains simply

R{r) = I (ar)

Furthermore, since S {p,z,t) = 0 for all z and t one finds that
J, (ap) =0
so that (ap) is the first zero of the Bessel function which shall be denoted by Bl.
Finally
R(r) =J_ (8, t/p)
For use in Equation (3-8b) one evaluates the integral appearing therein as:
p p 9

- T gy =P
erdr-—J, rd, (Blp dr—Bl I5 (Bl)
0 0

Now for convenience introduce W(z,t) = P2 (z,t) and consider the following partial

differential equation:

27\312 )&Blz I2 (t)

W +UW + W= (3-9)
2 3 4_2
tooez 21 "Bp'J, (B))

This equation may be solved with the help of the Laplace transform with respect

to t and since S(r,z,0) = 0 one obtains

d 2"512
pw(z,p) + U = w(z,p) + —5— wiz,p) = k(p)
p
where
o8]
W(z,p)=f[W(z,t)]=f e'ptW(z,t)dt
0
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and
B 7
282 ()

2 4

k(p) =L N
27" Bp~J," (8))

. ~J

Now one is confronted with a simple, ordinary, first order differential equation

for w(z,p) where p is simply a parameter. Since S(r,o0,t) = 0 one must set

w (o, p) = 0 and obtain

™ o]
2
218
Kk 1 | z
w(z,p) .—.—M——z—g - exp |- P+ —5— G (3-10)
Z)LBI p 0
b+ D) L _ J

Using the theory of the convolution integral one can invert Equation (3-10) and find

2
2 ABIZ 278, zwlz

t (t-1) 2 t t-n7)

2 p U 2
W(z,t)=fe p K(7)dr - e © fe p K
0 0

T - dr

Z
U
0

where K(7 - z/UO) =0 for 7< z/U0 and for convenience

o >\312 (1)
K(7) =
2712Bp4J12 (,)
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. _ . 1/2
Recalling that P = W / one can write the solution to Equation (3-7) as
B

ZA,BZ
8.7 g g_) t - 21 {t-1
S A1 ollp p 2
(r,z,t) = e B I (7)dr
mp- 3, (B | g
- =
1/2
2)\612 2)\312
-z t - (t-7) (3-11)
U 2
-e p o e P I {7-=]\dr
U0
0

Equation (3-11) is an expression which relates the internal structu—i'e (S distri-
bution) of the arc to the nature of the gas which comprises it (through A, B, and
Sl)’ the geometry of the tube which encloses it, (through p) and the current which
is imposed upon it. Although it is not necessary at this point to assume a current
waveform (one could write a circuit equation and allow the current to determine
itself), it will be instructive to assume the arc sees a current source of strength
I0 sin wt, First, however, notice that by using Ohm's Law,
p
27 BE f rS(r,z,t)dr =1 ,
0

one can obtain an expression for the local electric field strength in the arc column,

This is found to be:

[ zwlz zwlz zwlz
5 t -—y t-7) -—3 t -— t-7)
I p 2 p Uo p Z
(ft} =2\B| | e I'(7)d7 - e je elr-Z
U
0 0 ©
- (3-12)

Then specializing to the asymptotic column (z -~ ) one obtains the expression

39




2
9 2?\31
wt

2 2ABL B w(t-7) )
— = e WP sin” (w7) d(w7)
E w

0

Upon integrating this expression one obtains:

)\B@E_ sin wt
2 V1 - sin 6 sin Qwt + )

(3-13)

where O = pz/A 312 and § = cot-1 (v ©). This function is plotted in Figures 15 through
18 for several values of (0 @). One can think of © as being the time constant charac-
teristic of the arc/tube system, If the product w® is very small, implying either

a small applied frequency or a small time constant, the arc is able to follow all
fluctuations without any appreciable lag and adjust its internal structure accord-
ingly., As w® becomes larger there is a lag in the thermal behavior of the arc
column with respect to the forcing function until the frequency, w, becomes so

large that the arc cannot follow the current input at all, At this point the arc
behaves as an Ohmic resistor and displays an E - I characteristic with the expected

positive slope.

Unfortunately, the waveforms of instantaneous voltage across the arc do not
correspond to reality at intermediate values of w@ Consider Figure 19 which
is an oscillogram of the column potential of an arc burning in nitrogen with an
RMS current of about 30 amperes. The upper waveform is the arc current and
it is immediately evident that the arc does not see a current source but is pro-
foundly influencing the current in the circuit. Nevertheless, the voltage waveform
is typical and one should notice particularly the two peaks which occur every half
cycle. The one which occurs at the beginning of the cycle is called the reignition
peak and arises due to the cooling of the arc column during the current zero pas-

sage. There is also an extinction peak occurring just before polarity reversal
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FIGURE 19. NITROGEN AC ARC WAVEFORMS.

FIGURE 20. ARGON AC ARC WAVEFORMS.
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and this likewise arises due to column cooling as the current input decreases,

It is evident that none of the analytical waveforms show the extinction peak and the
reignition peak is not large enough relative to the plateau value to be a realistic
description of a real arc. However, this analysis does predict trends due to changes
in the transport properties of the arc gas (which is reflected in the thermal diffu-
sivity, A). Notice, for instance, a voltage waveform obtained under the same
conditions as in Figure 19 but for argon rather than nitrogen and shown in Figure
20, Argon has a thermal conductivity which is lower by about a factor of 10 for

the temperatures which prevail in these arcs. Then for the same applied frequency
(60 cps in both cases) the product w © is about ten times larger than for nitrogen.
The general differences are a much less severe reignition peak and no extinction

peak at all and this trend is clearly shown in the analytical curves.

Further refinement of the theory is clearly necessary, however, and the next
step is to include a variation of the arc radius with time. It is felt that this will
provide voltage waveform predictions which are in much closer agreement with

experiment, both qualitatively and quantitatively.
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IV, MAGNETOGASDYNAMIC ACCELERATOR

For some practical problems, the description of the motion of plasma from
the microscopic point of view is too detailed to be useful. Even though the plasma
is a mixture of various species; charged and neutral particles, in many practical
cases, the variation of its composition is small and its effect is negligible, In
such cases, the plasma may be considered as a single fluid of definite composition,
Hence for these problems one postulates the fundamental equations for the dynamics
of a plasma based on the continuum conservation laws of mass, momentum, energy
and charge. In the dynamics of a plasma, one must consider both the electromag-

netic forces as well as other gas dynamic forces.

With the above thoughts in mind one can introduce Maxwell's field equations
and then show how these equations are coupled with the gas dynamic equations,
and show in more or less a crude manner how the magnetogasdynamic equations
arise, Then with the background established for magnetogasdynamic flow prob-

lems a cross-field plasma accelerator will be examined.

A, INTRODUCTION OF MAXWELL'S FIELD EQUATIONS AND THE GASDYNAMIC
EQUATIONS
It is postulated that at every ordinary point in space the field vectors E, B, D,

and H are subject to Maxwell's equations:

vxE+%—_—?= (4-1)

- oD -
vxH - = =] (4-2)

where E is the intensity of the electric field
H is the intensity of the magnetic field
D is the electric displacement

B is the magnetic induction

J

j is the vector current density.
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An ordinary point is one in whose neighborhood the physical properties of the

medium are continuous,

Any ordered motion of charge constitutes a current, A current distribution
is characterized by a vector field which specifies at each point not only the inten-

sity of the flow but also its direction. The differential equation

-+ ow
v ]+-§%—=O (4—3)

expresses the conservation of charge in the neighborhood of a point where w is

the charge density.
From Equation (4-1) it may be concluded that
V- B=0 (4‘4)

provided that in the past history the field has vanished, for example at the time
of initial generation of the field. Likewise from Equations (4-2) and (4-3) one

obtains
voD=w . (4-5)
Equations (4-4) and (4-5) are frequently included as part of Maxwell's system.

If the physical properties of a body in the neighborhood of some interior point

‘are the same in all directions then, at every point in the isotropic medium

-

o
"

(4-6)

B (4-7)

anl)
"
Sl p

where € and H, are scalar quantities., To Maxwell's equations there must now be
added a third and last empirical relation between the current density and the field.
This relation proves to be linear throughout a remarkably wide range of conditions

in both solids and weakly ionized solutions.

T: oE (4-8)

where o is called the conductivity of the media.
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In summary one is led to the following equations for an isotropic conducting

media:

V><E+%—?—=O (a)
VXﬁ-%—?—:T (b)
V°-]’+%0—:—=O (c)
v-B=0 (d)
v-D=w (e)
D=eE (f)

w1 =
H=—1B (g)

He

J=0E (h)

It is also easy to show that wE and 7 X B are quantities whose dimensions are

those of force per unit volume and that
f=wE+] xB

which is the sum of two force densities.

(4-10)

It is necessary for later use to extend Maxwell's theory for media at rest to

moving media. If primed coordinates refer to a moving system and unprimed

to laboratory coordinates one can find by the usual arguments

EE=E+VxB

By using similar arguments one finds

i

B =

thus leading to what is usually called the generalized ohm's law
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J=0E'=0(E+ TV xB) (4-13)
and to the Lorentz force
'fL =JxB (4-14)

where a neutral plasma has been assumed.

Now writing down the familiar equations of gas dynamics wherein the plasma

is considered to be a single fluid one has:

P =pRT Equation of State (4-15)
9p L9 (ou.) =0 Conservation of Mass (4-16)
ot 0 xi i
Du;  ap 97
P =" axi + 8xj + fLi + ng Conservation of Momentum (4-17)

where P,p,u, and T are the pressure, density, velocity, and temperature

respectively.

Considering the fluid as a pure thermodynamic system with the electromag-
netic effect entering only through the work done by the electromagnetic force and

the joule heating, one must add to the energy equation fLi u; +J 2/ o.

But note that

2 2
3T L =5 TxB)+ 2

L o K3
=u-(JxB)+J-(E+VxB)
zj.o-E.

Thus the conservation of energy equation becomes

apu.e dPu, du, 7., Q.
pe  “ 1 1,1 1J+EiJi+—1 (4-18)

ot 0X. 0X. 0X. 0X.
i i i i
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B. ORDER OF MAGNITUDE ANALYSIS AND APPROXIMATIONS TO BE
EMPLOYED

Considering the plasma as a single fluid the fundamental equations are as

follows:
P = pRT (2)
ap , 0 _
at " 7%, (bu,)=0 (b)
Dui-— aP+6T3+f + f (c)
Dt ~dx, odx, L, ’g.
i i i
ape+apuie=-apui+auj Tij+EJ +i€%} @
ot 0X. 0X, 0X, ii ox.
i i i
-~ = 0cb
vXH=J+ T (e)
aﬂeﬁ (4-19)
V.:f: 0 (g)
Ji =0 [Ei I (u x H)i] (h)
v-H=0 (i)
v-E=0 ()

It will be convenient to introduce the following non-dimensional quantities:

X t
X*=iy v=v-L |, t*=-£—
0
x4 4-20
w4 (4-20)
- B - H - J
X o * — L N
E “E_ H H J ou UH
0 0 e 0



Then Equation (4-19¢) in terms of the non-dimensional variables becomes

R R
%
‘RL vk X H* = J* + RCRE.%% (4-21)
ot

g

, tOU
where Rt =1
L = the characteristic length

U = the characteristic velocity of the flow field

EO = the characteristic value of the electric field

H0 = the characteristic magnetic field strength

2
U 2
Rc 5 = U uee

H

¢
¢ = velocity of light

Tt should be noticed that all the non-dimensional variables in Equation (4-20)

are of the order of magnitude of unity. Under magnetogasdynamic approximations,
RCRE/Rt << 1 in Equation (4-21) so that

vxH=7 (4-22)
since the displacement current is negligibly small compared with the curl of the

magnetic field.

From Equation (4-19h)

E =

qley

- b, (ux H)
and substituting Equation (4-22) into this one obtains
E=lox®)-p @xB) (4-23)
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Thus all the electromagnetic variables may be expressed in terms of the magnetic

field H.

Now consider the steady flow of plasma through a nozzle which is of major inter-
est here. If the variation of the cross-sectional area of the nozzle is small, the
flow may be considered one-dimensional so that all variables are functions of x only.
For large Reynold's numbers assume that the uniform external applied magnetic
field is in the z direction. The total magnetic field strength is then H(x) = H0 + h(x)
where h{x) is the induced magnetic field due to the flow. Furthermore assume
that the uniform external applied electric field is in the y direction. The total
electric field is then E(x) = EO + e(x) where e(x) is the induced electric field due

to the flow.

The fundamental equations for this nozzle problem become:

puA =1m Equation of Continuity
du dP dH . .
u i vl My H ix Equation of Motion
dT 2 du dH| 1 dH \
pu Cp TP T or—u;a; - uH Equation of Energy
duH d | 1 dH . R
x - ax oI a—x—) Equation of Magnetic Field
or (4-24)
1 di, uH + E
UL, dx

where .E0 is the constant of integration which depends on the external applied

electric field, and

P = pRT Equation of State

The set of Equations (4-24) may be simplified even further depending upon the

order of magnitude of the magnetic Reynolds number. This may be seen by the

03



following. Substitute Equation (4-23) into Equation (4-19f) and obtain

aueH
ot

VX-(I;(VXﬁ)—VX Ky (Ux H) = - (4-25)

Besides the non-dimensional quantities of Equation (4-20), introduce one more

non-dimensional quantity

TH,

(Uﬂe)* = '(a;)—o

The Equation (4-25) in terms of the dimensionless quantities with Rt =1

becomes

* - -
%%— = v* x (u* x H*) - " V* X F:Tlf“)T (v* x H*) (4-26)
ag e

where Ro = oueUL = magnetic Reynolds number.

If the value of the magnetic Reynolds number is very small the first term on
the right hand side of Equation (4-26) will be small compared to the second term.
In this case the magnetic field His practically independent of the flow motion.
That is, for Ro small one can legitimately neglect the induced electromagnetic
field components and consider H(x) and E(x) as the given external applied fields.
Then for this case (Ro << 1) Equations (4-24) reduce to:

PUA = m Conservation of Mass
pu du dP _ oEH - oH% Conservation of Momentum
dx dx
(4-27)
dT 2 du 2 .
pu Cp il L e 0E~ - 0dEHu Conservation of Energy
P = pRT Equation of State
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C. THEORETICAL STUDY OF A CROSS-FIELD PLASMA ACCELERATOR
(STEADY FLOW)
Magnetogasdynamic accelerating nozzles or "ducts'' can be envisaged which
are designed for either; constant area, constant velocity, constant temperature,

or constant pressure,

Some combination of these might also be effected by tailoring either the elec-
tric or magnetic field. However the use of the constant area design seems to be
quite attractive. This has the advantage of being a constant area design for all
operating conditions; while one of the other designs mentioned above is valid for

only a particular condition,

For the case of the constant area duct; assuming frictionless flow without heat
addition, small magnetic Reynolds number, etc.; and constant E and H; and for a
first order approximation assume o, Cp and C‘r are constants also; then the mag-

netogasdynamic equations become:

%le =0 or pu=nm (constant) Conservation of Mass
u du + dp = oEH - 0H2u Conservation of Momentum
dx dx
dT 2 du 2 .
pu Cp & TP xS oE™ - cEHu Conservation of Energy
P = pRT Equation of State

Now one would like to solve for u,p,P, and T in terms of the initial conditions and

for a given 0,E,H, and A. First, solve this set of equations for the velocity u.

Upon rewriting the conservation of momentum equation above, one obtains

aP 2 . du
a-GEH—oHu-m&— (4-28)
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Similarly rewriting the equation of energy above yields

2
dT _oE__ u du _0oEHu (4-29)

Now integrating the above two equations and substituting these expressions

into the equation of state the following relation in u is obtained:

X

X
' 2

2 . du mR oE u du oEHu mR
j[oEH-oHu-mCTX]dx+Pi- uf]:zhc 'E—&'mCde+_u—Ti (4-30)
0 0 p P

Or Equation (4-30) becomes

RE
HU-E——

p

cEx C

P

=mR [T, + 54— (4-31)

which can be written as,

X
Axu+Bx+(Cu+D)fudx+Eu2+Fu+G=0 (4-32)
0

where A = dEH
B=- oEzR/C
Cs=- 0H2 ’
D= oEHR/Cp
E=m (R/ch - 1)
z i iiljli%Jr(Tn.lii)u.z/ZC )
i i p
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For simplicity let
X
V= f udx or —=1u
0

Then Equation (4-32) can be written as,

EV'2+(CV+AX)V'+(DV+ Bx)+ Fv' + G=0

Now at this point it is important to note,
B
(Dv + Bx) = x (Cv + Ax)
Thus Equation (4-33) can be written as

EV'2+(CV+AX+ F)(v'+-§-)+G—§-F=O (4-34)

Now let v = w + nx where n is a constant which will be determined shortly.

Equation (4-34) becomes

E (w'2+ 2nw'+n2)+ [C(w+ nx)+ Ax+ F] (w' + n+§-)+ G --EF::O (4-35)
Now let n = - %to eliminate the variable coefficient and obtain
2
W+ aw + Bww +yw+ €=0 (4-36)
F A
where a = —E-- 2~C—)
B=C/E

v = C/E (B/A - A/C)
2
€= F/E (B/A - A/C) + (A/C)* + G/E - F/E (B/A)
Note that one is not really interested in v but rather v' or u. Consequently

one is interested in w' not w. Thus solving for w in Equation (4-36) and differ-

entiating the result one finds
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. (2W' + a) w'' .\ (w12+ aw' + 6)

w' = - Cpw't . (4-37)
(BW + ) (Bw' + .y)z
Equation (4-37) can be written as
1 1 2 t? 72 1
w(BwW + )"+ w [pw T+ 29w + (@Y - €8)] =0 (4-38)

Note: y = B¢ where ¢ = (B/A - A/C). Now Equation (4-38) can be immediately

integrated to yield a relationship between x and w', i.e.,

?

\ 9 X
1 (et -e-£9 ., _
W'f [V+ szw +[de-0
1 0

w' (w' + &)

or

2
w' at - ¢-¢ 1 1 _1
MW'1+( £ ){(W'%)_(W'i%) E“
2

But note that w' =u+ A/Cand w' + £ =u+ B/A and that af - e - £° =
B/A (F/E - B/A) - G/E and also that 8 = C/E.

W'+
; 3

. w',
—‘ﬁ—f—ﬁ-w—lﬂ +Bx=0  (4-39)

Thus Equation (4-39) becomes

E_E(F_-E) us B
E A\E A IE_A 1 11, A
2 W\A~TC B~ _B| " B
B A U, + = u+ - u, + —
('A--e) i A A i A
E-E(E-B) LA
JE AR 2A 1) {n (i:%x . (4-40)
B iA‘. ui+6
A°T

o8



Now Equation (4-40) can be written in the form

, =K x (4-41)

_KI{K2 (1—A1-1)+£n)\1}+(K1-1)£n)\2 3

which is the solution for the velocity in terms of x, and where

l_ER

ER
wHC 2 T WHC
i p i p
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Having solved for the velocity u one can determine the pressure P in terms
of the velocity. From Equations of momentum and energy, one can easily obtain

the following relation:

B u@-+5‘£—uc g-T+ u2£i_g
HiMaxax| " Mpax TP &
or
C 2
Ed . _d(p o U )
ﬁdx(mu+P)_dx RPu+m2) (4-41a)
Now integrating Equation (4-41)
. 2
E Cp n.mz Cp mui )
ﬁ[(mu +P) - (mui+ Pi)] = —R—Pu | - —ﬁ-Piui+ —5— (4-42)
Dividing Equation (4-42) through by Piui and rearranging there results
plE Spul_ 2l | E[u ) [E S
P lulH R ul| " |2( 2 u.Hlu, uwH R
ili i u, i\ i
or
2 C
2|1]u E [u E p
M= g - =L &= P
e Y i i vy 1)+u.H R
p u, i i i
P = (4-43)
i E _Sou
uH R u.
i i

Now one can also very easily find the temperature ratio from the equation

of state,
T_P u
T. P. u
i i i



It should be mentioned that the important parameters appear to be R/ Cp, E/ uiH’
and 'yMiz which should facilitate the mapping of the variables.

Before proceeding further into the analysis of this accelerator model examine

the nature of the solution,

From Equation (4-41) one sees that the singularities which possibly exist are
where )\1 = o, and where AZ = w0; that is, Equation (4-41) presents problems when
u, = R/ Cpo E/H or when u, = E/H. To investigate these two cases one should look

at du/dx as u approaches either of the values just mentioned.

From Equation (4-38)

2
_ 1 (vt
W = (w' + £) (4-44)
(W + 26w' + ak - €)
but w' =u - E/H
and w'+ £ =u - E/H-R/Cp
Thus Equation (4-44) becomes
v [y E[,_E RV
2 H H C
S - S [ P (4-45)
|2 - & wrd s 2ew 4 at - o
ZCp

In general, then, one concludes that for u to approach either the value E/H
or R/ Cp- E/H, it must do so in an asymptotic manner due to the fact that du/dx
approaches zero as u approaches either of these values. The two exceptions to

this is where (a£ - €), i.e., the initial conditions have certain values,

It is instructive to examine these two exceptions:
1) Ifag_ezgz(ioec,K

;= 0)it is required that

2
EoRyMi+1+ (4-46)
H C -
u, P ,YMiz uiH Cp \2 Cp YMi ch




which determines the initial conditions for this special case,

Equation (4-44) now becomes

w'' = - W'B
or
du 0H2 E
ax = —-———-———. R ciu - "I':I‘) ° (4'47)
m(—zc -1
p

Thus one concludes, theoretically at least, that the flow will maintain smooth
passage through u = R/C . E/H because du/dx does not vanish there., The solu-

tion for this special case can be obtained immediately from Equation (4-47),

2) If at - € =0 then

2
1 1 R E R 1 E 2R
R || 2 2C "uH C Mz”) " uH (T T (4-48)
i. €., Equation (4-48) determines the initial conditions for this special case,
Equation 4-44) now becones
2
wit = B(W' + ‘g)
(w' + 2£)
or
- B u - E- _B'._ 2
du H Cp
d~x-= . E_ - @ (4—49)
U H C
P
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Again, from a theoretical standpoint the flow will maintain smooth passage
through u = E/H due to the fact that du/dx does not vanish. The solution for this

special case can be obtained from Equation (4-48).

These two special cases are really the tunnel solutions that Resler and Sears

originally pointed out in 1958 in Reference 9.

Figures 21 and 22 present numerical solutions for the above mentioned equa-
tions for several pertinent parameters. Of special interest are the following
examples A and B which have been computed using parameters and physical con-

starts appropriate to the 3-phase arc heater effuent.
Example A

E = 150 volts/cm (Electric field)
B = 10,000 Gauss {(Magnetic field)
A=2 in2 {cross-sectional area of duct)
with
Mi =, 414 (Mach number at entrance to duct)
u, = 1640 ft/sec (initial velocity of flow)
o = 1 mho/cm (conductivity)

m =, 3 lb/sec (mass flow)

Then for a channel length of 13. 65 in. one would have the following exit

conditions:
Mex =, 541 TO
-3 80 = 8,512
uex/ui T 0.
1n
g ex Pex
B = 2, 317 e 2,218
0, m
mn
Tex
T = 8, 428

in
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Example B
E = 100 volts/cm
B = 15,000 Gauss

A=4 in2
with the initial conditions
M. =1,47
i

u, = 4370 ft/sec
0 =1 mho/cm
m =, 3 lb/sec

then for a channel length of 13, 10 in, one has the following exit conditions:

Mex = 3,09 Pe
5-’5 =.902
P in
oex
Po = 16, 87 Tex
1n T_ = 3. 61
in
T
Oex uex
= 5, 49 — = 4,00
T u.
0. in
in

D, CONCLUSIONS

W. R, Sears in response to a number of comments about the validity of the
set of equations which have just been used in regard to the magnitude of the mag-
netic Reynolds number, makes this comment: The variables P(x), u(x), etc.,
were defined as average values of pressure, velocity, etc., for the cross sectional
station, x. Thus, the current J y(x) is also the average value, and Jsz the aver-
age body force at x, Maxwell's equations are not needed here, since the effects
they describe do not enter explicitly in determining the above average quantities,
The average value Hz(x) is the same as the boundary value, i, e,, the field strength

at the walls of the channel
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The assumption of neglecting the induced part of the boundary values Hz(x)
is valid for nearly uniform slender channels; and for sufficiently slow variations

of properties along the channel it is valid for any magnetic Reynolds number.,

Sears shows that hZ (the induced field) is of the order {J yo%—?) over the middle
portions of the duct. The approximations made in the derivation of the equations
employed herein was to neglect terms of this order in comparison with the applied

value of Hz(x)o This is justified if L is sufficiently large.

By contrast, the component hX is of the order Jy° a according to Amperes
law. Up to now no mention has been of this component and it has significance for

computation of the pinch effect.

The constant area accelerator model has been discussed quite thoroughly by
Resler and Sears in Reference 9. Their general results are summed up quite

concisely in Figure 23.

Just two of the regions (a and B) have been investigated in the analysis pre-
sented herein, then only rather sketchily, But here the general solution has been
found. The conclusions which can be drawn from the consideration of these two
regions is that the stagnation conditions can be increased quite considerably by
this accelerator and this, of course, is of major interest, But perhaps of greater
interest is the tunnel solution, i. e., accelerating the flow through Mach number
of unity, not from just a theoretical standpoint but from a practical one as well,

For this operating condition seems to be an optimum situation in many respects.
It seems to be the only solution which can accelerate a subsonic flow by the greatest
amount in relatively short distances and at the same time increase the stagnation

values considerably.

The tunnel solution, provided it is physically possible, should be a self-regu-
lating operating condition if the channel is of sufficient length. Reference to

Figure 23 indicates that by operating in the region A at too high an initial Mach
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number would tend to choke the duct at some position. This of course means that
the initial conditions are forced to change in such a manner so as to decrease the
initial Mach number such that one would be operating the accelerator at the tunnel
conditions. If this is not a physically possible situation then the asymptotic condi-
tions would result provided the length of the channel were quite long. For short
channels the accelerator could operate with the flow just choking at the exit of

the duct.

Region B in Figure 23 shows great promise for accelerating a supersonic
flow., As a matter of fact this region might be the only practical regime for oper-
ating a constant area plasma accelerator if one wishes to obtain a large increase
in stagnation values, that is if the tunnel solution is not physically possible due
to flow instability.

There are of course some very interesting problems which have not been
considered:

1, Stability of the tunnel solution.

2. Pinch effect.,
and 3. The interaction of the electromagnetic fields with the flow at the ends

of the channel.
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V. PRESSURE VESSEL HEATING

A, THE CONDUCTION PROBLEM

An important facet of the design of an arc heater facility is the prediction
of the integrity of the chamber or pressure vessel. In general, one must deter-
mine two things; will the wall temperature of the chamber exceed that value
which is allowable for the particular material from which it is fabricated and will
the combined thermal and pressure stresses be too severe for reliable operation
of the facility? There is no simple way of finding exact answers to these ques-
tions and even an attempt to provide approximate answers is quite complicated.
First one must know with some certainty what is the thermodynamic and fluid dy-
namic state of the gas which is being contained by the pressure vessel. By the
very nature of the arc heating process strong gradients in these properties exist
within the chamber so that in order to obtain any answers at all one must assume

the existence of some representative homogeneous state,

Next, one must determine the amount of energy being transferred to the cham-
ber walls by the hot gas; a task which is complicated by the presence of significant
radiative transfer at elevated temperatures and pressures. Having determined
the heat flux to the chamber walls one must next solve the heat conduction problem
in order to find the temperature distribution in the walls, This problem is not
difficult for the steady state but if one is interested in the transient temperature

distribution considerable complexity can be encountered,

Once all of the above steps have been completed one is in a position to find
the combined stresses which will prevail in the confining walls of the chamber,
Herein is presented a procedure for obtaining engineering estimates for the tran-
sient and steady state temperature distributions and for the determination of the
heat fluxes which lead to these distributions, The stress analysis problem, while

having been considered, will not be treated in the present report.
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As stated above one must first presume the existence of some homogeneous
gas state, By assuming reasonable flow rates and power dissipation capabilities
of the arc one can arrive at a velocity, temperature, and pressure for the arc
heated gas and it is assumed that these conditions prevail throughout the chamber,
This procedure is straightforward and involves the consultation of appropriate
charts and tables for the thermodynamic properties of high temperature gases.

At this point the heat conduction problem will be discussed; the computation of
the heat fluxes being deferred since the conduction problem dictates certain forms

in which they can conveniently be expressed.

For a cylindrical geometry it is easily shown that if the thickness of the cham-
ber walls is much less than the mean cylinder radius one can solve the infinite
slab conduction problem and obtain results which are almost indistinguishable
from those obtained by solving the much more difficult cylinder problem. Then
consider a slab of thickness L. which is of infinite extent and is being cooled at
x = L by a flowing medium and being heated at x = 0 by the flowing hot gas. The

appropriate form of the heat conduction equation is:

— 9 —
CAL I 0<x<L, t >0
TN <x<

Here k is the thermal diffusivity K/pC, the quotient of the thermal conductivity
and the specific heat per unit volume, U is the temperature of the wall material,
and t' is the time variable. Assuming Newton's law of heating and cooling is

applicable one obtains the following boundary conditions:

oUu . .
k==(0,t") =h'; [U(0,t") - A"]

U —
k== (L,t") =hy' [B' - T (L,1")]
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Here h'1 and h'2 are the film coefficients on the hot and cold sides of the wall,
respectively and A' and B' are the corresponding bulk stream temperatures. It

is convenient to introduce the following simplifications:

- ? - 4 - 1
hl-hl/k, hz-hz/k, t = kt',

U=(U- T ), A=(A"-T), and B=(T_ - B,

where TO is the initial uniform temperature of the chamber walls before heating

begins. Then one has the following boundary value problem:

U _ 3%
=TT
5t~ , 2
U (x,0) =0 0<x<L, t>0)

(5-1)
au
2 0,0=h,[U0,1) - A]

aUu
E;(L)t) = h2 [B -U (L’t)]

Introducing the Laplace transform

o0

u (%, s) =I e st U (x,t) dt
0

one obtains the following ordinary differential equation

2

(o]
ol
|
0
=]
]
o

)

along with the boundary conditions

de—u (0,s) = hl [u(0,s) - A/s]
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L (L,s) = by [u(L,s) - B/s]

The solution of this equation is found in a straightforward manner to be

cosh Vs x + C.. sinh Vs x

u(x,s)=C1 5

where

and

h,, BYs + hy AYs cosh Ws L) + hyh, A sinh s L)

€= (s + hyh,) sinh (Vs L) + (hy + hy) Vs cosh (Vs L)

(5-2)

(5-3)

Now for the transient problem one can facilitate the inversion of Equation (5-2)

to the real plane by noting that only the temperature on the hot side (at x = 0) is

really of interest since it will clearly be the highest value anywhere in the wall,

In the steady state case the whole profile is easily found since the distribution

must be linear. Then from Equation (5-2) one sees

u (0, s) = C1

and one need only concentrate upon inversion of the coefficient C1°

sion sC1 has singularities whenever s = 0 or when

(s + h1h2) sinh (s L) + (h1 + hz) ¥Ys cosh s L) =0

The latter condition can only be satisfied if Ysisa pure imaginary number so

one sets ¥s = i@ and finds that singularities occur when
a (h1 + hz)
2

(@, - by

tan (anL) =
1 2)
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In Equation (5-4), n=1,2,3. . . etc., since there are an infinite number of such
singularities. The residue at s = 0 can be found by expanding sCl(s) in a Laurent
series about the origin and finding the coefficient of the s_1 term. One obtains in

this manner the steady state value of U (0, t)

h,A(1+h,L)+h,B
U =-L 22 (5-5)
ss hlth + (h1 + hz)

Since the roots of Equation (5-4) result in simple poles it is an easy matter to find
the residues resulting therefrom. One can write the complete solution to Equation
(5-1) as

o0

u (0,t) = Uss + Z pn(t) (5-6)
1

where pn(t) are the residues due to the values of s which cause the denominator

of Equation (5-3) to vanish. One finds

anzt
e p(t)=

(5-7)

h. Ba +h
n

5 Aozn cos (anL) + Ahlh2 sin (anL)

1

anz an 2
h1h2 -5 (hlL + th + 4)| sin (anL) t 5 L (hlh2 - )+ 3 (h1 + hz) cos anL
The pertinent conduction problem is now solved but there remains the task
of finding values for h; and A, The cold side film coefficient is easily obtained
if one assumes no nucleate boiling exists in the cooling passages and for a conser-

vative design this assumption is made. One proceeds now to find expressions for

h1 and A which include the effects of both convective and radiative heating,
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Because of the low velocities which prevail in the arc chamber it was found
that modified flat-plate incompressible relations could be used to predict the
convective heat transfer to the interior walls of the chamber. More refined
methods such as the reference enthalpy technique were explored but were found
to yield no benefits in accuracy. Using the Colburn Prandtl number correction

one writes for the convective heat transfer

2
PooVoo 3 By
o = L ? _
Geon =332 == (r ) “C | -T(0,1) (5-8)
0 w pw

Here the subscript ( )OO refers to conditions at the edge of the boundary layer and
p, v, Re, and Pr are the density, velocity, Reynolds number, and Prandtl num-
ber, respectively at those conditions. Furthermore Hoo is the stagnation enthalpy
in the chamber and pr is the specific heat of the hot gas under the conditions
which prevail at the wall, However, one must also take into account the radiative
heating qra d which is a function of the stagnation conditions and the chamber
geometry. Determination of this flux can be quite involved particularly at very
high pressures but presume for the moment it is known. Later more considera-
tion will be given to this matter. Assuming that the total heat flux to the wall qw

can be written in an uncoupled manner

qw = qcon * qrad
one finds
2 .
p_V -z H q
o _ 0 3 0 rad N ' _
4y =-332 —(Pr) “C  |lg—+ 5 U(0,t')  (5-9)
® W pw poovoo "3
. 332 Pr ) °C
vRe 0 pw
L ®© J
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Recall that the hot side boundary condition was written as

@ 1 — K I 51 =4
k0,0 1, [T (0,0] -4

1

so one can make the following identifications:

2
p_v -2
o0 3
h', =.332 Pr C
0 w
and (5-10)
q
C A'=[H + rad
P oo} 2
W PV "3
. 332 P
r——Reoo( roo)

One sees that the inclusion of dra d has necessitated defining an effective bulk
temperature so that radiation can be treated within the framework of Newton's
linear law of heating. Now, fortified with sufficient thermodynamic data as well

as the radiative properties of the gas in question, one can calculate a series of
curves which indicate the steady state temperature distributions which will pre-
vail in the walls of the pressure vessel as well as determining the time it requires
to reach this steady state, It is interesting to note that the computations described
above indicate that about 45-50 seconds will elapse before a steady distribution

of temperature is attained in the walls of the arc chamber and experimental records

indicate very nearly that value, 48 seconds almost independent of chamber conditions,

B. RADIATIVE HEAT FLUX CALCULATIONS

It was mentioned above that the radiative heat flux to the walls of an enclosed
vessel is dependent upon the geometry of the enclosure as well as the thermody-

namic state of the radiating substance. It is no simple task to translate tabulated
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radiation properties of gases into a heat flux which is suitable for use in Equation
(5-10). Herein is presented the computations which lead from the basic radiative
parameters of the hot gas to an engineering expression for qra q for several com-

mon enclosure geometrics,
The volume element dV of gas radiating to an area element dA is in spherical
coordinates (Figure 24(a))
2 .
dV =r" sin 6 df d¢ dr (5-11)
and in cylindrical coordinates (Figure 24(b))
dV =p dp dz d¢ (5-12)

The solid angle d2 subtended by dA at distance r and angle 6 away from the

normal to dA is in spherical coordinates (Figure 24(c))

an=- 220080 (5-13)
r
and in cylindrical coordinates
dAz
Q= -
d 373 (5-14)
2 2
" +2%)

If N is the radiant intensity of the gas (the total energy radiated per second per
cm3 into 47 steradians), then the power passing through area dA from volume

dV is given by

ar

dP = Y. dudv e (5-15)
47

The last factor is included to account for the attenuation of the radiation leav-
ing dV toward dA. The parameter, @, is the absorbance per ¢m of path length.
Since for a gas at equilibrium, the radiant emissivity per cm, €, equals the absorb-

ance per cm by Kirchoff's law then
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FIGURE 24. VOLUME ELEMENTS OF RADIATING GAS .
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€r

N -
dP = ir dQdV e (5-16)
Integrating over the entire volume of radiating gas we find in spherical
coordinates
=—I%dA /ffcos 9 sin 0 e ¥ do do dr (5-117)
roéd
and in cylindrical coordinates
W/ p+ z2
_ N pz e _
-4 [f /2 d¢ dp dz (5-18)
zp o (p + z

In a large number of cases ea < < 1, where a = characteristic dimension of
the gas, so that the exponential can be neglected or expanded in a series. This

is the case of an optically thin radiating gas.
Consider now the radiation from some simple gas volume geometries.

An important case is the radiation to an area element at the center of a hemi-

sphere of radius a.

Equation (5-17) becomes

a 27 /2
N -
- dﬁfe“drf d¢f sin 0 d sin 0
0 0 0
_NdA (1-e' a
=—7 2 a (5-19)
when €a < < 1 one finds
PszAa 1__@__+ (ea)z_ (5_20)
4 2 6 ¢ © ©
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and if ea =0

N dA

P = 1

a (5-21)

Furthermore, for a slab of thickness a, with € =0

7/2 a/cos 6 27

P=N4C:TAf / f d¢ dr sin 6 cos 6 d 6
0 0 0

or

N dA

4Za

2

Comparison of the hemisphere when € = 0 to the nonabsorbing slab shows that
the radiation from a slab of thickness a is the same as the radiation from a hem-
isphere having radius 2a. This is a special case of what is known as the shape

factor S. See Reference 10,

In general the radiation from any shape of gas body to a specified point can
be replaced by the calculation of the radiation from a non-absorbing equivalent
hemisphere having radius = Sa where a is a specified characteristic dimension of
the actual body. For the non-absorbing slab S = 2 and for the absorbing hemisphere
radiating to a point at its center,
~ €
S = (1 - € )
€a
For an absoring slab of thickness = a and € # 0 one finds (defining 6 by the

accompanying sketch)

'\6
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7/2 afcos 6 27

P=N4d:*f f f dd e ¥ dr sin 9 cos 6 d6
0 0 0

or

/2

-;—+f cos 0 e-ea/cose d cos @

0

- NdA

P="

m Do

Let z = 1/cos 6 to transform the remaining integral and obtain

w—
NdA_Z_l_fe caz
€12

P=4 3dz
Z

1

Integrating twice by parts one finds
0 0
e 2% - € - e 2 [ e
f 3 dz = 2e - 2€ae + 2(ea) f
1 2 1

€az
dz

Z

and letting u = €az

o] a0

fe—EaZd—Z= f e_u%gz—Ei(-ea)

Z
1 €a

where Ei is the exponential integral function.

Thus

N _ -
P .-.—-gé%(% —{Ze € _ geae” Py 2(631)2 [- Ei(- ea)])
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Simplifying, one obtains

N dA 1 2 -e - € :
P=— Za{zea-ae + 2e -2€a[-E1(-ea)9

Thus

1 2% _a
S=2{26a- o+ 2e -2ea[-Ei (- ea)§

for the absorbing slab of thickness a.

Next, consider a sphere of diameter a, radiating to a point on its inner sur-
face with € = 0. Here one writes
/2 acos f 27
d¢ dr cos 6 sin 6 db

so that

a2
3

Therefore, S = 2

Y the shape factor for the sphere,

For an absorbing sphere of diameter a

m1/2acos f 27

NdAf ffdcpe €T dr cos 6 sin 6 db

- €a cos @
/ cos 8 d cos 6
0

Ig

Transforming by letting y = cos 6 and integrating by parts we find
p.NdA 11}, 2 [(ea+1) e ¥-1]
4 €a 2
(ea)
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so that

As ea -0

2 3
S--3-[1—§ea+—-—(6a) o ]

Now consider the very pertinent case of a cylinder with height equal to the diam-
eter (which equals a), € = 0, and radiating to a spot at the center of the end.

Here one finds

a a 2m
p-N ff f d<l>pzdpdz
- 2 232
0 0 (p +z
=N2Aa(3—*f§)

Therefore for a nonabsorbing cylinder with height equal to the diameter

radiating to a spot at one end on the axis
S=3-v5=.764

Also for a cylinder with height equal to the diameter and € = 0 radiating to a spot

at the edge of one end it can be shown

m/2acosd a

P,_NdA z dz pdp d¢
- 47 2 232
-7/2 0 0 (" +2z")
/2
=N4(117A2a‘/' (cos¢-\/cosz¢+1+1)d¢
0
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Now
/2

f \ cos2 ¢+ 1do
0

1
V2 E —) = v2 (1. 35064

= V2 E| ) = v2 (1. 35069

where E is the complete elliptic integral of the second kind.
Thus
p . Nda {2 - 21/-2—(1035064)+1r}
= a
4 l

So that

_2-2v2(1.35064) + 7
w

S

=, 421

for a spot at the edge of the end of a nonabsorbing cylinder whose height equals
the diameter. Recalling that for a spot at the center of the end of such a cylinder
S = . 764, we see the radiation flux falls in going from center to edge on the end

of a cylinder.,

Finally consider the case of a cylinder with height equal to the diameter,
€ = 0, radiating to a spot on the cylinder wall, midway between the ends. Proceed-

ing in the usual manner

/2

_NdA _1_1___1_ / 2

= ~In 43 1+4 Zf 4 cos o+ 1d¢o
0
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Now
/2

f \/4cosz¢+1d¢>
0
=v5 E(@l: 2. 64

where again E is the complete elliptic integral of the second kind. Thus

_NdA

P==

a (, 702)
Therefore
S=,702

for a nonabsorbing cylinder radiating to a spot on the cylinder wall halfway

between the ends,

It is instructive to consider the relation between ¢/L {the emissivity per cm

of a gas) and N, the radiant power per cm3 radiated into 47 steradians.
The total power radiated to 1 square centimeter

N
P--—4—aS

where S = shape factor.
For a transparent slab of thickness a, S =2, Therefore

& watts

2 2
cm

P=

Consider all the gas to be projected onto a hemisphere of radius = a, Then
€ = -E d = apparent emissivity of the surface of the hemisphere where d = dis-

tance through the slab to the far side and is equal to a/cos 8. Therefore
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a
cos 0

€=

—m

Now the radiation emitted from area dA' on the hemisphere into 27 steradian is
€' 0T4 dA'

The solid angle subtended by a projected area dAn when viewed from a dis-

tance "a'" at angle 6 from the normal to area dA is

dAn
dQ = _2—
a
and dAn = dA cos §. Therefore
40 = dA czos )
a

The fraction of the total radiation into 27 steradian, going into d2 is

@
27

Therefore the emission from area dA' on the hemisphere going into solid angle

df} i, e., the radiation that passes through area dA is

4
4 d? € a oT dA'dA cos é
? | St —
€ 0T dA' 57 =7 059 27 2

4

9T 4A" dA
2T a

£
L
Now as seen from dA, area dA' on the hemisphere subtends a solid angle df2 given

by

dA'=a dQ'
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The total power going through unit area dA from all dA' is

o [ (e [ e [ gt
Hemi Hemi Hemi
But
SO
N=2{7 o1

The parameter €/L for air is tabulated as a function of p/ P, and T in Reference 11.
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VL. THE DESIGN OF A WATER COOLED SOLENOID

Since the use of an external magnetic field to induce arc rotation is of such
importance in the successful operation of many plasma-jet facilities it behooves
one to investigate the problems associated with the design of a high flux solenoid.

In order to obtain field strengths of the order of 5000-10, 000 gauss which are fair-
ly uniform over volumes as large as 3000 cm3 one must resort to rather high coil
currents. Of course, only the total number of ampere-turns is of importance so
high field strengths can be obtained by winding many turns around the volume of
interest and passing only a small current through them. If the conductor is of a
reasonable size, however, a large number of turns will require a power supply
with an unreasonable open circuit voltage and, if to offset this, the conductor cross-
section is increased the coil becomes unreasonably large. It is of interest, then,
to examine the characteristics of a water cooled coil since one can then pass rather
large currents through quite a small cross-section of copper with no undue heating.
In fact, the coil which surrounds the present AC arc heater pressure vessel car-
ries over 1200 amperes through a conductor cross-section of about 0. 60 cmz.

The temperature rise of the coil is at most about 5OF.

To be sure, the use of water cooled coils is nothing new but when one con-
sults the literature one finds that the heat conduction problem which such a coil
design presents is only imperfectly solved. Specifically it is assumed that at every
point in the coil the coolant and the conductor are at the same temperature which is
equivalent to assuming that the heat transfer coefficient of the coolant film is
infinite. Herein is presented an analysis which shows that the effects of a finite
heat transfer coefficient can indeed be significant. Since conservative coil design
for research purposes is wasteful these differences were considered to be

important.
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As an analytical model consider a length of conductor in which Joule heat is
being dissipated and through the middle of which exists a well defined passage to
permit the flow of a coolant. The thin cross-section assumption is invoked;
namely that there is no temperature gradient across either the conductor or
coolant cross-sections. Then axial gradients are the only ones of importance.
Furthermore the outside of the conductor is insulated so that all the Joule heat
must be partially stored in the conductor and partially transmitted to the coolant.
Finally, it is noted that since transient effects are unimportant in this case only
the steady state is considered. The features of the model described above, are

exhibited in Figure 25.
The following notation is used in the ensuing analysis:

h  Film coefficient of heat transfer
p Perimeter of coolant passage

w  Cross-sectional area of conductor
k  Thermal conductivity of copper

p Resistivity of the conductor

I  Current carried by the conductor

Weight flow of coolant

s-

¢ Specific heat of coolant
U Conductor temperature; function of x

U0 Coolant temperature; function of x

The appropriate equations which govern the physics of the mathematical

model described above are easily found to be:

dx kw
(6-1)
L.
T e - Uy)=0



Electrical conductor

7/ %
_Coolont . Coolant
in out
> - - - —
<> — (Coolant flow

I

Insulated outside

FIGURE 25. MODEL FOR WATER COOLED COIL .

93



The system of Equations (6-1) simply states that all heat generated by the passage
of current through the conductor is either conducted away from the element in
which it was produced or transferred to the coolant. Of course the coolant temper-
ature must rise in response to the heat which is added to it which in turn serves

to limit the amount of heat which the film can pass.

Now the two equations in (6-1) can be combined to yield

dz 2 hp d
Cw-v)-B w-v)+L+EL(w-u)=0
dx kw
Putting this equation in operator notation
o2, o o hp 1 -
*5e D go) U-Ug)=-—4 (6-2)

as.

m - - ’
[

The particular integral of Equation (6-2) is found by inspection and the complete

solution may be written as:

+C, ey Izp/hpw

(U-Uo)=C1e 9
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In order to determine C1 and C2 certain boundary conditions must now be invoked.
It seems reasonable to specify that at x = 0 there is no difference in the tempera-
ture of coolant and conductor and at x = £, where the coolant leaves the conductor,
there is no gradient in their temperature difference. Mathematically this is

expressed as

(U—U0)=O at x=0
i(U-U)=O at x=4{
dx 0]

Applying these boundary conditions one arrives at the following expression for
(U-U o):

(U - UO) b eb!Z o 3%

-al bx
=1 - +ae e
-al b¢
e +be

 — (6-4)
I"p/hpw a
One wishes to know, however, what the individual temperatures U and U0 are;

not merely their difference. Recall

dU
0

_hp oo
dx = Wwce v Uo)

which upon being integrated yields

U -U, [ ?‘e-aﬁ(ebx-l)——b-ebﬂ(e_ax—l)J
_o i_|,_P a

2 . -

I'p/wew ae 2 ,pe™

where Ui is the common initial temperature of coolant and conductor. Now since
the temperature of both coolant and conductor will be a maximum at x = ¢ and
since it is this temperature which determines the design of the coil one sets x = {

and obtains
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U -U 2gmal Pl ) Dbl oy
_o i _|4_b a
lzpl/ivcw at e~ 2 4 pg ™
(6-5)
U-U, _ 1-(a+b)e-(a—b)£
Izp/hpw ae 3, pet

where one notices
(U - Ui) = (U - Uo) + (UO - Ui)
For arbitrary values of al and bf the equations have quite a complicated behavior

but if one allows both of these quantities to become rather large much simpler

relations are obtained and the following asymptotic formulae are easily obtained:

- U,
2 Len el , @), ) ~o
Izpﬁ/\‘v'vcw
U-U
—% =1+ aﬂ) ) (at), (bt) - o0
Izp/hpw

From the above expressions it is seen that as h becomes very large (which need
not be implied by large af and b{) the difference between conductor and coolant
temperatures goes to zero in which case the relations widely found in the litera-

ture apply. Specifically one then has

U, =U= Izpﬂ/\'vcw

As was mentioned earlier, however, it will often be the case that (U - UO) #0
and the more exact expression will have to be considered. This is of importance
since a knowledge of the coolant temperature alone is not sufficient for many coil

designs. To be sure, one wishes to avoid coolant boiling but since the resistance
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of the coil (and hence the coil current when connected to a constant potential power
supply) is significantly affected by the conductor temperature it is this latter value
which is of prime importance. It should be mentioned that the temperature effect
upon resistivity could easily have been included in the initial set of equations (1)
but the resulting characteristic equation is a cubic and not readily solvable in

general,

The foregoing analysis has been used with considerable success in the design
of the large solenoid surrounding the low-pressure arc heater and in several other
less critical applications such as water cooled ballast resistors. Of course, there
is more to the problem of final coil design such as that of determining the coolant
flow rate, w, when a certain pressure head is imposed on a selected length of
conductor and determining the field strength which would result from a coil with
a given number of ampere-turns and a given geometry. All of these considera-
tions must be taken simultaneously in order to arrive at a suitable solenoid design

but only the coil heating problem presents any unconventional aspects.
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VIL. HIGH PRESSURE ARC-HEATER DESIGN

As previously discussed in Reference (12), the design of the high pressure
arc heater will follow along the lines of the low pressure arc heater suggested
in Section VIIL

Reiterating, its design will be approximately the same size as the above-
mentioned unit, again using a Helmoltz pair for the DC magnetic field with the
electrodes entering the arc-chamber between the field coils. The arc chamber
will be flanged on the front to accept a nozzle and on the back to support an air

inlet and baffling system.

As this unit will be the main tool for studies in high pressure arc-heater
phenomenon, consideration is being given to the possibility of incorporating into
its design, supporting devices for a radiation shield. Also the feasibility of

placing a viewing port in the front or aft flange is being studied.

Because the new arc-heater will be subjected to both high temperature and
high pressure, structural materials other than copper are being investigated.
To date, it appears that the only material with the necessary thermal conduc-
tivity plus strength at elevated temperatures is a copper alloy. Both a copper-
zirconium alloy and a copper-chromium alloy meet these specifications. Both
are available in the billet form. However, it is anticipated that finding a com-
pany to fabricate the size chamber which is required, out of either of these
materials, will be difficult. Therefore two concurrent structural and thermal
analysis are being made. One, assuming that standard OFHC copper will be the
structural material, the other assuming that copper-zirconium will be the
structural material. Also, difficulties are anticipated in finding an electrode gland

to withstand these pressures and temperatures,

98



Associated with the electrode gland problem is the effect on chamber stress
concentrations created by having the six gland openings in the side of the cham-
ber, This, of course, will be the weakest part of the chamber from the stand-
point of both pressure stress and thermal stress. To help alleviate this problem,
the possibility of supporting and supplying each electrode from only one gland is
being studied. This will cut the openings into the side of the chamber down to
three, spaced 120° apart. This will require that each electrode leg will have to
serve as both the water inlet and outlet. Figure 26 shows a sketch of one possible

method for achieving this.

With the desirability of higher magnetic fields at high pressure arc-heater
operations, it is quite apparent that the length of the chamber will be strongly
governed by the DC field strength, i. e., the physical size of the field coils needed
to produce the desired field. This is especially true of the front coil of the
Helmoltz pair which governs the length between the front arc chamber flange and
the location of the electrode glands, The aft closure on the chamber can be made
anywhere along the axis of the back DC field coil, This could, however, locate
the aft closure flange closer to the electrodes than the front closure, thereby
increasing the thermal protection for the aft closure. This again may indicate
a need for a baffle or injector system which would also serve to shield the aft
closure, Also, if copper-zirconium is used as the structural material the maxi-
mum length of the chamber will be dictated by the length of billet of copper alloy
available from the manufacturer, which is in the vicinity of thirty inches. There-
fore, there will be a trade off between desired field strength, structural material,

chamber size and chamber cooling,

The above should indicate that any one of a number of desired parameters
could dictate the overall design of the remaining parameters. Therefore the in-
fluence of a number of these parameters on what can be called the desired high
pressure arc-heater operation is being studied. It is felt that the final design
and fabrication of the high pressure arc-heater should not be expedited until a

number of the pertinent design parameters has been thoroughly investigated.
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VIII. GENERAL DESIGN CONSIDERATIONS

In this section the design of a typical, low pressure, three phase, AC arc
heater is presented. Since the design study was originally performed for a

rather specific purpose, this section is quite self-contained.

A. ARC-HEATER DESIGN

The arc-heater will consist of three major items; the arc-heater body,
electrodes and magnetic field coils. Each of these items will be treated as a
single unit and recommendations as to their design and operating characteristics
will be given in the following paragraphs. Two possible starting techniques are

presented.

Arc-Heater Body

The arc-heater body will require; a main cylindrical body enclosing and

supporting the electrodes, a converging nozzle to duct the hot air flow to the
three inch inlet in the pebble bed heater, and an aft closure flange, housing the

air inlet and supporting an air baffle. See Figure 27.

For ease in arc-heater construction and monitoring of cooling water temper-
ature it is felt that each of these units should have its own cooling water inlet and
exit, It is quite conceivable however that the inlets could have a common supply

and a common drain,

The arc heater main body consists of a copper inner shell, cooling passage
and outer copper shell. A typical cross section of the chamber body is shown
in Figure 28, The arc-heater body shown is to be properly flanged top and bottom
to accept the aft closure flange and the converging nozzle. By necking the arc-
heater body into the aft closure flange, the removal or replacement of the mag-

netic field coils will be greatly simplified.
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FIGURE 27. ATMOSPHERIC PRESSURE ARC-HEATER.
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FIGURE 28. CROSS SECTION VIEW OF ARC-HEATER BODY.
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By using a Helmholtz pair for field coils it (as well as producing a more
uniform magnetic field) will leave an open area directly over the electrodes.
This area will be used for installation of electrode glands. These glands will
support and position the electrodes and starting system. As each electrode has
two supporting legs, through which cooling water and AC power pass, there will
be a need for three pairs of electrode glands. Each pair should be spaced 120°
around the circumference of the arc-heater body, with the starting gland located
half way between the aft most pairs (600), Spacing of the electrode and starter
glands axially between the field coils is shown in Figures 30 through 33. It is
felt an electrode gland similar to that made by the Conax Corporation in Buffalo,
New York, could be adapted to this configuration, Sufficient room will be needed
between the lower field coil and the lower arc-heater flange to allow for a cooling

water inlet and its necessary connections.,

Adequate chamber cooling can be realized by supplying the cooling passage
with the "house' water supply through a one inch inlet. The cooling configura-
tion recommended is a spiraling rectangular passage beginning at the water inlet

above the lower flange and ending at the water outlet below the aft closure flange.

The type of arc-heater construction used in our three phase arc-heater facil-
ity could also be used in this design. This would be to (1) centrifugally cast the
inner shell with the cooling passages as an integral part of it, (2) centrifugally
cast the outer shell with sufficient tolerance to be able to slide the outer shell
over the inner shell forming the body and cooling passages in two pieces. Join-
ing would be at the upper and lower flanges. A pressure tap into the arc-heater

chamber should also be provided.

Nozzle
Because the only means of introducing the arc-heated gases into the pebble

bed will be through the existing inlet, a converging nozzle is required on the arc
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heater. The nozzle recommended is conically shaped with a half angle of 2000
It will reduce the L D, of the arc heater from 7 1/2 inches to the required

3 inches; Figure 27,

The converging nozzle, as in the case of the arc heater body would consist
of a copper inner shell with cooling passages and a copper outer shell, The noz-
zle body cross-sectional dimensions will be the same as those for the arc heater

body; Figure 28,

Nozzle cooling will be identical to that used in the main arc heater body with

the same type and size of cooling water inlets, passages and outlets.

Centrifugal castings can also be used for the nozzle components, Again the
cooling passages and inner shell can be made as one casting. In the construction
of the nozzle body, provisions should be made, for a pressure tap and thermo-

couple tap near the nozzle exit.

Aft Closure Flange
Although it was first suggested that the arc heater be open in the back, with

the pressure vessel and arc heater sharing one air source, this arrangement will
create serious flow and control problems. Therefore, an aft closure flange is
needed. The aft closure flange will create a unit with its flow control completely
separate from the one used by the pressure vessel. This flange would also be
made of copper. It would house the arc heater air inlet and provide the means
for supporting the baffle system. Provision for cooling the flange should also

be incorporated.

Air Baffle System

The air baffling system should be designed to destroy most of the axial veloc-
ity component of the incoming air. The one shown is dish shaped; allowing the
air to pass through an annular opening between the baffle and the inner chamber
wall, It is suggested that it be supported by the aft closure flange and constructed
of either Boron Nitride or copper. If made of copper it must be water cooled.

It could get its cooling water from the aft closure flange with the baffle supporting
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legs serving as water inlets and outlets. The axial location of the baffle will
depend on the final baffle design, material used, and the arc stability at high

mass flows.

Electrode Design

The electrode configuration for the arc heater is shown in Figures 29 through
33. It consists of three circular hollow copper rings so arranged in the axial
plane to form an equilateral triangle. This gives the best arc current to magnetic

field orientation. The electrode spacing is 3/4 inch.

Each electrode consists of a hollow ring and two supporting legs made of
5/8 inch O, D, general purpose temper copper tubing with approximately . 1 inch
walil thickness, These legs will support each electrode as well as provide the
means for cooling the electrode and supplying it with AC power. The electrode
is closed off internally between the supporting legs to give a cooling water flow
in one direction, thereby making one of the legs a water inlet and the other the
outlet, All electrode configurations to date, used in our three phase arc heater

facility, have had the AC power connections on the cooling water inlets,

To date, the most successful method of fabricating the electrodes has been
to make each supporting leg and electrode ring a continuous series of bends, free
of any intermediary joints or corners. The only joints would be where the legs
join the electrode ring and where the electrode ring closes on itself. It is recom-
mended that this closure be between the points where the clectrode legs fasten
to the ring, The internal closure, previously mentioned should be made in this
area also, The only successful method of making the leg to ring joints has been
to use heli-arc welding. This method leaves the joint free of leaks and internal
flaws. All joint surfaces should be smooth and free of protuberances or indenta-

tions,

As the consistancy of the electrode spacing is somewhat critical the electrodes

should be held circumferentially to within . 050 inches.
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Approximately 50 gpm at 300 psig should adequately cool all three electrodes.
Seeing that the water inlet and AC power connection are one in the same, it would
be desirable to have a type of cable which would bring in both power and water
in the same unit. Such a unit is commercially available, Although the name of
the supplier is not known, the Plasmadyne Corporation does use this type of

power-cooling water cabling on their Plasmatron units,

Magnetic Field Coils

The recommended field coil configuration is that type normally referred to
as a Helmholtz pair, Strictly speaking, a Helmholtz coil is a pair of identical
solenoids separated by a distance equal to their mean radius. The advantage of
this arrangement is that a very homogeneous magnetic field is produced in the
space between the solenoids., In addition, this intervening space can be used to
facilitate the insertion and withdrawal of water and power leads to the arc-heater

electrodes,

The proposed coils are made from standard wall 1/4 inch copper tubing which
has a nominal conductivity of 85% of IACS, Naturally, the tubing chosen must
have some type of insulation to prevent a turn-to-turn short circuit, There are

three alternative ways of providing this insulation.

The first way would be to buy the bare copper tubing and insulate it by 50 foot
lengths with a product known as "'Scotchtite' heat reactive tubing made by 3-M.,
This is a vinyl tubing which is shipped in diameters substantially larger than that
attained after shrinking by the application of heat, It has a dielectric strength
of 950 volts per mil and can operate at temperatures up to 105°C. ‘This method
of insulation, however, is rather clumsy and time consuming. The closest repre-

sentative is in Cincinnati at 4835 Para Drive.

Another method would be to buy the bare copper tubing and have it coated with
"Formvar" or "Nyclad. " The advantage of this coating is that it is extremely

abrasion resistant and can be applied in thin layers; about . 003 inch.
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Finally, there is available a copper tubing which is already covered by about
. 020 inch of polyvinlychloride. This is sold by the Crescent Insulated Wire and
Cable Company, Trenton, New Jersey. Use of this product would probably afford

the simplest means of winding the coils,

It is suggested that the coil be fabricated by forming 50 foot lengths of the
insulated tubing into co-planar spiral "pancakes.' The inside diameter of 'each
"pancake' will be slightly larger than the O, D, of the copper liner and will have
about an 18 inch outside diameter. Each half of the Helmholtz pair will consist
of 20 such ""pancakes' placed side by side and connected electrically in series.
The coils should be cooled from a common manifold which supplies fresh cooling
water for every 100 feet of tubing length, That is, while all 20 pancakes are con-
nected electrically in series, only two pancakes may be series connected for water
flow. The computations supporting this statement may be found in Appendix A.
The multiple pancake method of coil fabrication offers many advantages over con-
ventional solenoid construction. In the event that an accidental overload should
occur in the coil circuit only that portion of the coil (perhaps one or two pancakes)
which has been damaged need be replaced rather than rewinding a whole coil
Various series-parallel electrical hook-ups can be devised to vary the coil im-
pedance and the magnetic field geometry and strength. Finally, the coil can

easily be added to should higher field strengths become necessary.

As shown in Figure 27, each half of the Helmholtz pair will have a rectangular
cross-section of about 4 x 5 inches, For a coil current of 540 amperes the mag-
netic field strength at the electrode location will be somewhat greater than 4800

gauss.,

Magnetic Field Strength
To determine the field strength that will result from the coil design, one can
consult the NASA report of Callaghan and Maslen (Reference 13), Knowing the

total number of ampere-turns in the coil, the field due to each solenoid is added
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to obtain the total field at the electrode location, Each pancake will contain
about 15 turns so that each half of the Helmholtz pair will provide about
81,000 ampere turns at the lower current and 162,000 ampere turns at the
higher level (see Appendix A). The corresponding field strengths at the elec-
trode location are about 2400 gauss and 4800 gauss respectively. Based upon
the experience gained at this laboratory, even the lower field strength should

insure a rather long electrode life,

Starting Techniques

Described herein will be two arc heater starting techniques, either of
which can be easily adapted to the starting gland, Both starters use the same
phenomena for initiating an arc across two electrodes, namely shorting across
them with a gaseous conductor. Only the means of creating the conductor is
different. Both methods will lend themselves to automatic control and

operation,

One method would be to create a plasma, by discharging a high energy
source in an enclosed chamber with a small nozzle at one end; Figure 34,
The heating of the gas and its associated expansion would drive the plasma
out the small nozzle., Upon striking two of the arc heater electrodes, it

would initiate the main arcs.

A starter using this method was designed, built and tested for use in our
three phase arc heater facility, The energy source was a bank of capacitors
with a storage capability of 2700 joules., The capacitors were charged to be-
tween 20 kv and 30 kv, This would, for the configuration shown, produce a
plasma column from 3 to 6 inches long. This device has successfully started
our small test arc. Due to the difficulties of physically in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>