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Using a convergent expansion of the resolvent of the Hamiltonian H = H 0 ~ X. V. V = f d x 
X (x) : op4 : (x), g(x) ECO' , g(x);;' 0, we give a simple proof of (a) the self-adJomtness of the 

Hamiltonian and (b) the volume independent lower bound of the vacuum energy per unit volume. 
Also, we obtain some coupling constant analyticity properties of t.he Hamiltonian, and the limit 
(Ho +Xv-zrl -+(Ho:::zrl, zEp(Ho) in nonn as IX 1-+0 uniformly m tX: largXI <7Tf· 

1. INTRODUCTION 

The past few years have seen the birth of a new 
branch of quantum field theory whose purpose is to 
prove rigorously the existence of model field theories 
satisfying certain physical and mathematical require­
ments (axioms). Glimm and Jaffe1 have pushed the two 
space-time dimensional cp4-interaction [abbreviated 
(:cp4:)1+11 to almost a theory which is known to satisfy 
all the Haag-Kastler axioms and many of the Wightman 
axioms. A basic step in the construction of the field 
theory is to prove the boundedness below and the self­
adjointness of the Hamiltonian operator 

H(A) =Ho + AV(g) 

(1.1) 

where Ho is the free Hamiltonian, A the coupling con­
stant, and g(x) E C~(R) is real value. The first proof of 
the semiboundedness in a finite volume with periodiC 
boundary conditions was given in the pioneer work of 
Nelson. 2 His method was extended by Glimm3 who re­
placed the periodic box by a fixed g(.) space cut-off. 
Later, Glimm and Jaffe4 obtained a lower bound of the 
Hamiltonian proportional to the volume (i. e ., a volume 
independent bound of the vacuum energy per unit vol­
ume). The first proof of the self-adjointness of the 
Hamiltonian (1.1) was given by Glimm and Jaffe. 5 Segal6 

simplified the proof of self-adjointness and developed 
powerful techniques which were elaborated further and 
systematized by Simon and Hoegh-Krohn. 7 Recently, 
Federbush8 considered a convergent expansion of the re­
solvent for the Hamiltonian (1.1) and obtained easily the 
semiboundedness of the Hamiltonian. 

On the other hand, there has been another trend in the 
rigorous study of model field theories. The second trend 
involves the study of coupling constant analyticity of 
various objects associated with the theory. It also, ex­
amines the asymptoticity of the perturbation series of 
quantities such as the ground state, the ground state en­
ergy, and equal time vacuum expectation values. Often, 
the exact objects can be recovered from the asymptotic 
series by proper summability methods such as P ade 12, 13 

or Borel. 14, 15 

In this paper we use Federbush's expansion of the re­
solvent to give a simple proof of the self-adjointness of 
the HamiltOnian, and of the volume independent lower 
bound of the vacuum energy per unit volume. Also, we 
study the Hamiltonian (1.1) for complex values of the 
coupling constant A. We prove that Federbush's expan­
sion of the resolvent is uniformly convergent for A in 
{A : I arg A I < 1T}. This yields full cut plane analyticity of 
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the resolvent, and analyticity of the ground state energy 
and vacuum vector in a neighborhood of the positive real 
axis. In addition, it implies that if Z E p(Ho), p(Ho) the 
resolvent set of Ho' then 

(Ho + AV(g) - Z-l - (Ho - Z)-l (1. 2) 

in norm as I A I - 0 uniformly in I argA I < 1T. (1. 2) is im­
portant in the study of the asymptotic nature and the 
Borel summability of the Rayleigh-Schrodinger pertur­
bation series for the ground state and the ground state 
energy. A corollary of (1.2 is the uniqueness of the 
ground state for small values of the coupling constant 
(the uniqueness of the ground state for any values of the 
coupling constant is a more difficult problem4, 7). In a 
forthcoming paper, 16 using the methods of this paper, 
we give a simple proof of the self-adjointness of a local 
Lorentz generator formally given by 

M=Mo +M1{g) 

= ~ f :{~(x) + Vcp(X)2 + f.1.~cp2(x)}: xdx + V(xg). (1.3) 

The organization of this paper is as follows: In Sec. 
IT, we summarize the most important ingredients of 
Federbush's expansion and prove the self-adjointness of 
the Hamiltonian. In Sec. ill, we prove the volume inde­
pendent lower bound of the vacuum energy per unit 
volume, and in Sec. IV, we prove the uniform conver­
gence of Federbush's expansion for values of the cou­
pling constant in a certain complex domain. 

2. A CONVERGENT EXPANSION FOR THE 
RESOLVENT AND SElF-ADJOINTNESS OF 
THE HAMILTONIAN 

In this section we summarize the main points of 
Federbush's paper8 and prove the self-adjointness of the 
Hamiltonian. Following Ref. 8, we consider 

H. =Ho + V.(g) =H 0 + Af dxg(x): cp;: (x), (2.1) 

where gE C~(R), 0.,; g(x).,; 1, Ho is the free HamiltOnian, 
and cp. is the boson field with a momentum cut-off 1(. Let 
PI be the projection operator onto states with number of 
particles in the interval (21 ,2 1+2), i = -1,0,1,2, ... , and 
Pe and Pa the projection operators onto states with num­
ber of particles in the ranges 

U (2 1 -4.,; N.,; 2i +4), 
;=eV8n 

U (2 1 -4.,; N.,; 2i +4), 
I=odd 

respectively. We define 

Hi =PiH"Pi = Pi HoPI +Pi V.pi =HOoi + V •. I> 

He=.'0 HI =Ho + '0 V.,l' 
t=even i=even 
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(2.2a) 

(2.2b) 

(2.3) 

(2.4) 
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We= V - E V~," 
I( i=even 

W =V - E V . 
d " =odd ~,' 

Then 

H=He + We=Hd + Wd . 

Federbush considers the expansion 

R.(b ;H.) =R~(b; He) 

- R.(b;Hd) WeR~(b; He) 

+ R.(b;He)W ~.(b;Hd)WeR.(b;He) 

..... , 
=R.(b;He) 

-R.(b;Hd)Pe WePeR.(b;He) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9a) 

+ R.(b;He)Pd WdPdR,,(b;Hd)P. WePeR.(b;He) 

... , (2.9b) 

where b is a large positive number, and R(Z) = (Z + A)-l 
denotes the resolvent of operator A. The results of Ref. 
8 can be summarized in Theorem (2. 1). 

Theorem 2.1: There exists a finite constant a, inde­
pendent of K, such that for b > a, expansion (2.9) con­
verges in the uniform operator topology and is continu­
ous in I( for 0.; I( .; + "'! Roo (b) is the resolvent of an op­
erator H = Hoo (g) such that H> - a. 

The basic estimates which yield theorem (2.1) are 

Estimate 1: 

H,;;. 2l-lP" for large i; 

Estimate 2: 

IIPeP,R(b; H,)Pdll'; cl exp(- c22' /2) 

for large i, and for some Cl , c2 > O. 

(2.10) 

(2.11) 

To obtain Estimate 1, we choose an increasing se­
quence of momentum cut-offs and write 

H, =PiHoP, +Pi V.p, +P,(V. - V.,)P,. (2.12) 

Clearly, one has 

P,HoP, ;;'m2'P,. (2.13) 

By undoing the Wick ordering of V. , we obtain the mo­, 
mentum cut-off dependent bound 

V. ;;. - const(lnl(,)2. 
i 

By a standard NT estimatel,3 

II (N + I)-l(V. - V.,)(N + I)-III.; O(l(jl /2). 

(2.14) 

(2.15) 

Estimate 1 is obtained from (2.13-2.15) by choosing 

lei =exp[(M/C)I/22(i-l) /2], 

where C is the constant in (2.13). 

The proof of Estimate 2 is based on the following 
theorem: 

Theorem 2.2: Let A be a positive self-adjoint opera­
tor of norm less or equal to M, and I a) and I (3) two 
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vectors of unit length. Suppose 

(aINI{3)=O, forO.;k.;N. (2.16) 

Then, for any J.1. > 0 a real number, 

Federbush applies Theorem 2.2 to the operator 
Ai = b + P, (N + V.(g»Pj - 2/-1 which satisfies 

A,;;'O, 

lib +Pi(N+ V.(g»P,II.; d22
,. 

(2.18) 

(2.19) 

Estimate 2 is obtained by using N.; const Ho, and choos­
ing laj)=P,Pdla), 1(3) =P,P.I b) (la) and Ib) normal­
izedvectors), J.1.,=2l-l, M,=d2 2', and N, <[(2,+l_4) 
- (2' +4)]/4, and i large enough. 

Our main result in this section is Theorem 2.3. 

Theorem 2.3: The operator H defined in Theorem 2.1 
is self-adjoint. The proof of Theorem 2.3 follows from 
the following two lemmas. 

Lemm a 2 . 4: Let E > 0 be sufficiently small. Then 
there exists a constant C(E) such that 

IIR(b;H.)II, IIR(b;Hd)lI.; l/b, 

"WeP ~(b;Hd)Pell, IIW.PeR(biHe)Pdll < t, 
"R(biHd)W.R(b;H.)II.; c(E)/bl

+
E

, 

II WdR(b; Hd)WeR(b; He) II .; c(E)/b+l +E • 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

Proof: Inequality (2.20) is easily obtained from Esti­
mate 1. Let I a) and I b) be two normalized states in the 
Fock space. Then, to obtain Estimate (2.21), we 
consider 

<al WdPdR(b;Hd)P. +b) 

= L; (al WdPdR(b;Hd)P.P, +b) 
'=odd 

= E (al WdPdR(b;H,)Pel b) 
'=odd 

= L; <al (I-P,)V.PIPdPfR(biHf)P I b), 
'=odd e 

(2.24) 

In the last step above we have used Estimate 2 and a 
standard Nt estimate. Similar arguments establish in­
equalities (2.22) and (2.23). 

Remark: Estimates (2.20) through (2.23), without the 
b-independence of the bounds, were also used in Ref. 8. 

Lemma 2.5: For b large enough, the series (2.9) con­
verges in the uniform operator topology to an operator 
R.(b) which is a continuous in I( pseudoresolvent and 
satisfies 

norm-limbR.(b) =1, 
b _+<10 

R.(b): :JC-:JC is injective, 

where :JC is the Fock-Hilbert space. 

(2.25) 

(2.26) 

Proof: Estimates (2.20)-(2.23) imply that the nth 
term in the expansion (2.9) is bounded by c(e)nb-1

- ne . 
Therefore, the series (2.9) converges, in the uniform 
operator topology, for b>(e)I/E, for 0';1(';+00. The 
continuity in I( is obtained from the uniform in I( esti-
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mates (2.20)-(2.23). The bound c(e)'/b1+., of the nth 
order term yields 

limb{IIR(b;He)1I + IIR(b;Hd)WgR(b;He)1I + .•. } 
b-+CIO 

= limbllR(b;Hell +lim b{IIR(b;Hd)WeR(b;He)l1 + .•• }. 
b ~+oo b _+00 

(2.27) 

The second term above goes to zero as b - + 00 while the 
first term goes to one. It is easily shown that R.(b) is a 
pseudoresolvent, and satisfies (2.26). 

Proof of Theorem 2.3 and of Theorem 2.1: Let .Ar(b) 
be the null space of Roo (b), i. e. , 

(2.28) 

Since Roo(b) is a pseudoresolvent, .A (b) is independent of 
b, and, by (2.25), vr(b)={O}. We define 

H(b) =- b + Roo (b)-l (2.29) 

and domain 

D(H(b» =R.,(b)JC. (2.30) 

Let <I> EJC be orthogonal to R.,(b)JC. Then, 

(<I> ,R.,(b)w) = (Roo (b)<I> ,'11) (2.31) 

for all WEJC. Since .Ar(b)={O}, we get <I> =0, and, there­
fore, D(H(b» is dense in JC. The pseudoresolvent prop­
erty of Roo (b) implies that D(H(b» is independent of b. 
Therefore, for large b, H =H(b) is bounded below and 
independent of b. The self-adjointness of this operator 
follows from the following lemma. 17 

Lemma 2.6: If T is an operator on the Hilbert space 
JC, and if r 1 exists and has dense domain, then (T*)-1 
= (T-l)*. 

3. VACUUM ENERGY PER UNIT VOLUME 

The Hamiltonian H(g) =Ho + V(g) has a unique ground 
state n(g) with eigenvalue E(g). According to the pertur­
bation theory, E(g) is proportional to the volume of 
space in which the particles interact in each order of the 
Rayleigh-Schrodinger (= Fe ynm an ! ) perturbation series. 
However, the perturbation expansion for E(g) diverges. 18 
Thus, we cannot conclude from perturbation theory that 
E(g) is proportional to the volume. In this section we 
prove rigorously that the prediction of the perturbation 
theory is correct. Our main tool in the proof is the lo­
calization indices introduced by Glimm and Jaffe in a 
similar context. 19 We consider the Hamiltonian H(g) =N 
+ V(g). 

Theorem 3. d: Let g(x) E C~(R) have the following 
properties: 

(i) 0", g(x) '" 1 ; 

(ii) for some constant Ct > 0, 

(3.1) 

(3.2) 

Set m(g) = measure (supp. g). There exist constants a 
> 0 and c > 0, independent of g, such that 

0", c(H(g) + am (g)). (3.3) 
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Remark 1: Inequality (3.3) implies that there exists 
c 1 > 0 independent of g, such that 

- c1m(g) '" E(g) '" 0, (3.4) 

that E(g) '" 0 is trivial. 

Remark 2: Estimate (3.4) is the main technical step 
in proving the locally Fock property19 of the represen­
tation (of the algebra of local observables) associated 
with the Hilbert space of the physical states obtained in 
the limit g-1. 

Proof of Theorem 3.1: Let 'I)(x) E C~(R), 0", 'I)(x) '" 1, 
be such that the translates 

'l)J(x)=1J(x-j), jE Z 

define a partition of unity: 

I) 'I)/x) =1 for all XE R. 
JEZ 

(3.5) 

(3.6) 

Let I(g) ={j E Z:suppgn sUPP'l)j(x) *} and II(g) I denote the 
number of elements in I(g). We decompose g and V(g) 
into a sum of local parts 

(3.7) 

(3.8a) 

= I) fdk •.• dk t (4) b (k ••• k )a* .•• a* 
JEr(K) 1 4 a:O Ct f 1 4 kl kOl 

(3.8b) 

where 

~ 4 

b (k .•• k ) = [1/(2(21T»2]('I) g)(k + ... + k ) II wl/2 
j 1 4 j 1 4 / =1 k/ ' 

J.L! =k~ + J.L~. 
I 

(3.9) 

(3.10) 

Instead of using g, we use a simplified space cutoff g. 
defined by 

(3.11) 

Instead of (3.3), we will prove 

0", H(g.) +O(n) =N + V(g.) +0(1). (3.12) 

We prove (3.12) for each translate separately, i. e. , we 
prove 

(3.13) 

N loe is a local number operator to be defined below, and 
then summing over all translates we obtain (3.12) and 
hence (3.3). To prove (3. 13) we introduce localization 
indices in configuration space (localization indices in 
momentum space4 could be used as well). First, we in­
troduce local NT operators. 

Let J.Lk = (k2 + J.L~)1 /2 denote the one particle energy . 
Let a: and ak be creation and annihilation operators in 
momentum space, and A#(x) = (21T)-1 /2 f dk e±ikXA~ annihi­
lation and creation operators in configuration space. If 
J.L;E °rn(R) , 0", T",1, is considered as a multiplication 
operator on S(R1

), then the configuration space opera­
tion J.L; corresponding to J.L~ is convolution by a kernel 
kT(x) E O;"(R) (fqr notation see Ref. 20). kT(.) decreases 
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exponentially at infinity. Explicitly, 21 

2T/2+1 (Ilo) Hl/21~ 
kT(x) = r(- 'T/2) "'GI 0 exp(- Ilo I x I cosht) 

(
1 + 'T) xcosht -2- dt. 

For 'T?3 -1 

I d~ kT(x) \ '" O[exp(- /lol xD]' as I xl - + 00, 

(3.14) 

n = 0,1 ,2, .. '. (3 .15) 

For 'T < - 1, (3 .15) holds if /lo is replaced by /lo - E, for 
any E > O. For 15 > 0 

(3.16) 

For tE °M(R) , nonnegative real, we define the local 
number operator 

NT, e = J dxdyA* (X) t(x)kT(x - y)t(y)A(y) , (3.17a) 

Strictly speaking, NT, e is the Friedrichs extension of the 
positive operator defined by the right hand side of (3.17) 
on Do, the set of vectors in Fock space with a finite 
number of particles and wave functions in t. If 'T= 1, 
then N1, e provides a local energy operator H&oe. For 
0'" 'T < t, one can replace t by the characteristic func­
tion EB(x) of an interval B, to obtain a sharply localized 
operator NT. B' N loc in (3.13) is of this type. Using tech­
niques of Fourier analysis, Glimm and Jaffe19 proved 
that 

(3.18) 

if 'T < t, and if t(x) == 1 on a neighborhood of B-. Further­
more, if t, (x) = t(x - j), then 

(3.19) 

These inequalities on the single particle space sym 
L 2 (R) lead to the estimate 

'0 NT B+J '" constNT '" constHo 
JEZ ' 

(3.20) 

of the sum of local number operators by (global) NT op­
erators. Estimate (3.20) holds as an inequality between 
positive self-adjoint operators in Fock space. It shows 
that in order to prove (3.12) [or (3.3)] it is enough to 
prove (3.13), or equivalently 

(3.21 ) 

where N loe is a localized number operator, and g is sup­
ported in a fixed interval B. 

We prove (3.21) by the method of Sec. n. Our discus­
sion in that section shows that we only need to prove 
(2.15), i.e., 

(3.22) 

Of course, one has to check also (2.25), but this is not 
hard. To prove (3.22), we note that V~ = V. - V. is a 
sum of five monomials in creation and iannihilatibn 
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operators 4 

V~ (g) = j dk1 ... dkiJ.' (ki •·· k4 ) '0 4 a*··· a* 
j j a=O 0/ k1 ka 

x a_
ka

+
1 
••• a-

k4
, (3.23) 

4 4 
=jdx ···dxb' (x "'x)'0 A*(x)···A*(x) I 4 "j i 4 a:O 0/ 1 a 

where 

'b:;:(ku ••• ,k4 )' = b.(k1 .•• k4) - 'b'
i 
(k1 •.• k 4) 

and b; (Xl' ... ,x4 ) is the Fourier transform of _ ( i 
b~ k p "" k4 ). 

j 

(3.24) 

(3.25) 

Without loss of generality, we consider the case 
where B is an open interval whose closure is contained 
in (0, 1). Let 

X,=(j,j+1) (3.26) 

and Nx, the corresponding local number operators, j=O, 
± 1, ± 2, ... , which are commuting self-adjoint opera­
tors. We define Nloe by 

+~ 

N loe = "ENx exp[- /l0(ljl/2)) (3.27) 
J=-~ J 

and localize the operator V; (g) as follows. Define 
I 4 

bUl' .. j4(Xl> ... ,x4 ) = b~. (Xl' .• x4 ) n E, (x,), (3.28) 
1 • 1.1 I 

where EJ,(x) is the characteristic function of XJ" Equa­
tion (3.28) localizes each coordinate X, in the interval 
XJ" USing (3.28) we will prove that b;j (Xl> ... ,x4 ) is ex­
ponentially small at infinity in each of the variables X" 
We prove 

Lemma 3.1: b~i;h ... J4 (Xl>'" x4) is a bounded opera­
tor on L 2 (R4 ) satisfying 

Ilb;.;j .•. j 112'" lib;. 112 exp(- /loljJ··- /l0Ij41), (3.29a) 
,1 4 , 

'" O(Kjl
/

2 )exp(_ /loljr!·· - /l0Ij41). (3.29b) 

Proof: The transition from (3. 29a) to (3. 29b) has been 
established by Glimm3 (see also Ref. 1). Thus, we need 
only prove (3. 29a). The crux of the proof is a represen­
tation of b~i;J ""4(Xp •.. ,x4 ) developed by Glimm and 
Jaffe (Ref. H~, pp. 84-95). Let t(x) be a C~(R) with 
support in Xo and which equals one on a neighborhood of 
B. We define operators 

K - -1/2~( )/11/2 l-1 4 I - /lxl b x, "'xi -, ..• , , (3.30) 

where kernels k(x,z , ) are tempered distributions. Esti­
mate (3.15) of kT implies that k(xl'z,) is a C~ function of 
x, and zr such that 

Ik(xpz,)I'" O[exp(- /lolx,l- /lolz,I)). 

We now define localized operators K'd
l 

by 

K ,•J, =EJI(XI)/l;~/2t(xr)/l;:2, 1=1, ... ,4, 

whose kernels k i I (xI' Z I) satiSfy 

k. (x Z )={k(XI'ZI)'X~EXlz. 
11 I' 1 0, otherwIse 

(3.31) 

(3.32) 

(3.33) 

USing (3.31), one can prove that for j, *" 0 the operator 
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norm of K" i, is bounded by 

IIK"J,II.,;O[exp(-/lolj,I)]. (3.34) 

It is not hard to show that (3.34) remains true for j" 
even for j, =0. The representation of b~j;h'''J4 that we 
are after is 

(3.35) 

Representation (3.35) together with estimate (3.34) 
proves Lemma 3.1. 

We now return to the proof of (3.22). From (3.24) we 
get for 4> E Do' 

IIV~/g)lI.,; I) II V~j;JI"'J44>1I 
!rOO'J4 

(3.36a) 

~ const I) IIb~'J ... J 11211 IT (NXi + 1)1/24>11 (3. 36b) 
h"'i4 f' I 4 1=1 I 

~0(Kil/2) I) exp{- /loljll'" /lolj41) 
il' "J4 

4 

xII n (Nx . +1)1/24>11 
1=1 J , 

(3.36c) 

xexp~o~ + ... + /lol~) X II (N1oc +1)24>11 (3.36d) 

~ 0(Kjl/2)II(N
loc 

+1)24>11. (3.36e) 

Inequality (3. 36b) is an elementary local NT estimate. In 
(3.36c) we used (3.29b). In (3.36d-e) we used the esti­
mate II(Nx . + I)1/2(NIOC + 1)-1/211"; exp(/lo Ij/21 ). , 

Estimate (3.36) implies (3.22). QED 

4. COUPLING CONSTANT ANALYTICITY 

In this section we study H~ =Ho + AV{g) for A in the 
complex A plane cut along the negative real axis. We 
prove that Federbush's expansion for the resolvent is 
valid for values of A in the domain 

(4.1) 

where E > O. The basic theorem used in the proof is a 
generalization of Theorem 2.2 for bounded sectorial op­
erators22. 

Theorem 4.1: Let A be a bounded sectorial operator 
of norm less or equal to M, i. e., the numerical range 
e (A) of A is the subset of the sector 

larg(z-Y)I~e, 0~e<lT/2, yreal (4.2) 

lying in a circle with center y and radius M. Let I a) and 
I i3) be two vectors of unit length. Suppose 

(a IAkIi3) =0, forO~k~N, (4.3) 

then for any JJ. > 0 a real number: 

1 < a I R(+ IliA) I /3> I.,; O[exp(- N..J2 JJ./M)], 

N and M large. (4.4) 

The proof of this theorem is similar to the proof of 
Theorem 2.2, see Ref. 8. It is based on a theorem by 
Bernstein (Ref. 23, p. 84, and Ref. 24, pp. 130-31 and 
pp. 280-81) in the theory of the best approximation of 
analytic functions, stating that if j{z) is defined in 
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{Z:I argz I < IT/2, I z I.,; 1} =D and it is analytic in an el­
lipse with foci at -1 and 1 and with sum of its semiaxes 
equal to r> 1, then f(z) may be approximated on D by a 
Fourier-Chebyshev polynomial series of degree n 
within 

(2jm",,/r-1)(1/r n) (4.5) 

in the uniform norm. fm"" is the supremum of the abso­
lute value of f{z) in the ellipse. 

Let 

A~ =b +Hj(A) _2 i -1 

=b+PjHOP i +APiVPi _2 i -1 

=b +HO,i + AVj _2i-l. (4.6) 

By realizing V as a multiplication operator on the prob­
ability space L 2(Q, dq), we can write V = V+ - V- with 
V·V"=O (Refs. 1,7). Using (2.24) and 

v- .,; const N + const (4.7) 

implied by Theorem (2.1), we see that A~ is a sectorial 
operator, i.e., there exists a y such that 

1 1m (4) ,A~4» I ~ tan(argA/2){Re(4> , (A~ - Y)4>} (4.8) 

for A such that I avgA I.,; 1T - E ,E > O. Furthermore, if A~ 
= b + PjNPi + APi VPi - 21-1, then IIA~II.,; e22i. Therefore, 
Theorem 4.1 is applicable to the operator A~. We make 
the transition from A~ to A~ by using N.,; const Ho' Thus, 
as in the case of real A, we obtain the convergence of 
Federbush's expansion (2.9) for A in (4.1). This con­
vergence implies that H(A) is a family of analytic oper­
ators of type (B) in the sense of Kato (Ref. 22, pp. 345-
397). From the general theory of analytic perturbations, 
there follows 

Theorem 4.2: (1) Let H~ be the self-adjoint operator 
defined in Sec. II for A> O. Then H A has a resolvent 
analytic continuation to the cut A-plane. 

(2) The ground state n~, normalized by IInAIl = 1, n~ 
'" 0 and the ground state energy EA have an analytic con­
tinuation to a neighborhood of the real axis. 

Another property implied by the uniform convergence 
of (2.9) in the domain (4.1) is 

Theorem 4.3: Let p(Ho) the resolvent set of Ho' For 
- bE p(Ho) 

R~ (b) = (Ho + AV + b)-I - Ro(b) + (Ho + b)-1 (4.9) 

in norm as I A I - 0 in I argA I < 1T. 

Proof: Let R(n)(b;H) be the nth term in the expansion 
(2 .9). Then, one easily sees that for n .,; 1 

R(n)(b;H) .....!!WII.,.O 

as IAI-O, AE{A:largAI~1T-E};andforn=O 

R(O)(b;H) norm Ro(b) = (b +HO)-I 

limits (4. 10) and (4.11) imply (4.9) 

(4.10) 

(4.11) 

Using standard "stability theorems" (Ref. 22, pp. 
206-07, and Theorem 1. 7, p. 368), we obtain 

Corollary 4.4: For E > 0, there is a A> 0 such that if 
z E p(Ho) , then Z E p(H) for AdA: I avgAI ~ 1T-€, I AI ~ A}. 
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Therefore, H~ has only one eigenvalue near zero. This 
eigenvalue is analytic in {~: I arg~1 .,; 7r -(3, I ~I.,; A}. 

Remark: Theorem (4.3) is useful in proving7, 15, 25 that 
the perturbation series for E(~), O(~), and W(~), the 
equal time vacuum expectation valves, are asymptotic 
series which are Borel summable to the exact solutions. 
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