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the measured Ts is allowed. For additional infor-
mation, the reader is referred to Ref. 5.
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AN approximate method is developed to determine

the time-history of the bubble size, pressure
distribution and energy-dissipation rate in an
incompressible, non-Newtonian fluid having an
arbitrary stress—strain relationship.

Consider a spherical bubble growing or collapsing
in an infinite mass of homogeneous incompressible
liquid. In an absence of body forces, the equations
of continuity and motion in the liquid may be
expressed in spherical coordinates as
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respectively,’ where r is the distance from the
center of the bubble; u, the radial velocity at r; p,,
the density of liquid; p, the pressure; and 7,,, 74,
and r,, the viscous normal stresses in the directions
of r, 6, and ¢ respectively.

If the vapor density inside the bubble is assumed
very small compared with p,, and R and R represent
the instantaneous bubble radius and its expansion
rate then the integration of equation (1) yields

R°R/r’. 3)

For a Newtonian fluid with the normal stresses
given as r,, = —2rp = —2r, = 4uR’R/r°, the
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substitution of Eq. (3) into Eq. (2) followed by an
integration from r = r to r = « yields
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Similarly for the Bingham-plastic model with
Tor = —27g5 = —2144 = 49(R*R/"*) £+ (2/V3)1, as
its normal stresses, the integration form r = r to
r o= 1, gives

of1 1 _R* 2R 2R
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= p,(r) — p,(ro) F 24/37, lnE ,(5)

where the upper sign is for R > 0 and lower sign is
for B < 0. However, in many actual non-Newtonian
fluids, the expression for the stress—strain relation-
ship is either not available or too complicated. It is
the purpose of this note to demonstrate that the
solution of this problem may be obtained by the
piecewise fit of linear approximations to the shear-
stress—shear-strain diagram of any arbitrary form.
Let the actual curve be approximated by n + 1
linear combinations, 0, 1, 2, 3, ... , n as shown in
Fig. 1 (a). The slope of each is u, %1, 72, ... , 7.
Then the first line j = 0 represents the rheological
behavior of a Newtonian fluid with viscosity u and
the (Z + 1)th section j = ¢ represents that of a
Bingham plastic with the yield stress r; and the
coefficient of rigidity ;. Since the expressions for
the shear and normal stresses are respectively
oo = —u(du/dy) and 1, = —2u(du/dr) for a
Newtonian fluid; r,, = —gldu/dy) + , and ,, =
—2n(du/dy) =+ (2/V3)r, for a Bingham plastic ;a
plot of r,, vs (—du/dr) which is analogous to Fig. 1
(a) for r,, vs (—du/dy) is constructed as shown in
Fig. 1 (b). This step of converting the shear-stress—
shear-strain diagram to the normal-stress—shear-
strain diagram is necessary because the experimental
results are available for the former diagram, while
the present analysis utilizes the latter. The differ-
entiation of Eq. (3) gives

—du/dr = 2R*R/r*

an expression for the rate of shear at r. It signifies
that at any instant there is a location r; in the
fluid where its rate of shear is equal to C,/v3. The
locatipn is

= (2V/3R* |R|/C)! for

Based on this relationship, the fluid may be con-
sidered to consist of n + 2 regions between R and
infinity, that is, R < r < r,n < r < 7y, ...

o K17 < o, The rheologlcal behavior of the ﬁuld
in each region is represented by a line approximating

=0,1,2,...,n.
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the actual curve in Fig. 1 (a). For example, the
fluid in the region r, < r < « behaves as a New-
tonian fluid with the viscosity w, while that in the
region r,,; < r < r; behaves as a Bingham plastic
with the yield stress 7, and the coeflicient of rigidity
n.. The substitutions of r = r;,4, 7o = r; for7 = 0,
1,2, ..., m —2andr =r,r = r,, into Eq. (5)
yield

soof 11
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respectively. Equations (6) provide m equations for
the mregions r, < r < r,r <r<nr, ..., R <
r < 7,-1. In the last region 7, < r < =, Eq. (4)
with r replaced by 7, represents the equation of
motion. Now the m equations as described by
Eqgs. (6) are combined with Eq. (4) to eliminate the
m unknown quantities p,(r;). This yields

pl[RRZ + Rz<g:E - gg] = pi(n) — pu()
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which is the equation for the pressure distribution
in the immediate vicinity of the growing or col-
lapsing bubble. The balance of force at the bubble
wall requires that

P(R) + 20/R + 1., \(R) = p(R) — 7...,(R), (8

where p,(R) is the gas pressure inside the bubble at
the immediate vicinity of the bubble surface, o is the
surface tension, and r,,, and r,. . are the radial
normal stresses acting on the bubble surface due to
the liquid and gaseous-phase viscosities, respec-
tively. If the gas inside the bubble is assumed a
Newtonian fluid, then

TrroR) = —2p(0u/0n),x = 4uR/R. (9

The dynamic equation for the growth or collapse of
the bubble may then be obtained from equation (7)
by replacing r by R or in terms of p,(R) as

759

p(RR + 3R*/2) = py(R) — pi(=)
— 20/R — 4(1r + u)R/R

F 2x/§<%7m_1 + 3 TL> (10)
=0 =1

The appropriate initial conditions are R(0) = R,
and R(0) = 0 where R, is the initial size of the
bubble. The rate of energy dissipation in the liquid,
defined as — (= : VV) per unit volume, is
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where 7, corresponds to the bubble radius R, =,
and =y are the stress tensors for a Bingham-plastic
in the region r; > r > r,,, and a Newtonian fluid
in the region 7, < r < o, respectively, and v is a
velocity vector.
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The time-history of bubble size and its velocity
resulting from a disturbance p,(R) — p,(«) may be
obtained by the numerical reduction of Eq. (10)
with the appropriate initial conditions by means
of the Runge-Kutta method. Then R, R, and R are
substituted into Egs. (7) and (11) for the numerical
evaluation of the pressure distribution near the
bubble and the energy-dissipation rate in the liquid.
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THE effect of a compliant wall on the transition

from laminar to turbulent flow has been treated
by Kréimer,’ Benjamin® Landahl’? and Hains.*
Another case of instability which leads to the well-
known Kérmén vortex street occurs in the laminar
wake behind a cylinder. This note describes the
results of an experiment to determine the effect of
induced vibration of the cylinder on the intensity
of the velocity fluctuations in the street.

Roshko® has shown that the flow phenomena
behind the ecylinder can be described by three
different regimes of the Reynolds number based on
the cylinder diameter. For Re < 40 the wake is
steady and laminar; while for 40 < Re < 160 the
wake is unstable for small disturbances, and a vortex
street with a distinct frequency develops. As the
Reynolds number is increased beyond 160, the
wake becomes turbulent. Thus, for the range
40 < Re < 160, the influence of induced vibrations
of the cylinder in the laminar wake is of interest.
At the present time there exists no satisfactory
theory for the development of the Karman vortex
street. The shedding frequency f is only given by
an empirical law by Roshko®

fd* /v = 0.212(Ud/v) — 4.5, (1

where d is the diameter of the circular cylinder, U
the flow velocity, and » the kinematic viscosity.
This law was found to apply also in the case of an
obround cylinder used in the experiment, if d is
taken to be the width.
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In an experiment it is desired to satisfy the
following conditions: (1) The vibrations of the
cylinder should be induced by external means, and
the frequency should be adjustable without changing
the Reynolds number or size of the cylinder. (2) The
amplitude and the phase of the vibrations should be
adjustable with reference to the amplitude and
phase of the velocity fluctuations in the vortex
street. The first requirement is satisfied by making
the cylinder out of a piezoelectric material whose
shape depends on the applied voltage. The second
requirement is satisfied by the use of a special
electronic feedback system because measurements
with an independent source in the form of an ac
generator have shown that, in this case, no reduction
could be obtained because of the uncorrelated phase
relation between vibrations and velocity fluctuations.

The experimental arrangement is shown in Fig. 1.
The Clevite PZT Bimorph cylinder has an obround
shape—0.154 c¢m long and 0.0675 cm wide. By
applying an ac voltage to the cylinder, vibrations
with well-controlled amplitude in the frequency
range from 20 cps to 500 keps were obtained. It
should be mentioned that the cylinder vibrated by
changing its cross-sectional shape, so that the axis
of the cylinder was fixed.
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Fia. 1. The experimental arrangement.

The cylinder was placed in a low-turbulence
laminar jet with its longer side in the flow direction,
to produce a vortex street. Two constant temper-
ature hot-wire sets were used. The output of the
first hot-wire set was fed to an amplifier to drive
the cylinder with the shedding frequency of the
vortices. In this way, a feedback system was formed.
The phase of the cylinder vibrations with reference
to the traveling vortices was varied by changing the
position of the hot-wire along the vortex street, and
the amplitude was controlled by the degree of
amplification. The second hot-wire, whose position
could be varied, was used to measure the amplitude
of the fluctuations produced by the vortices. The
linearized signal was fed into a recorder for evalua-
tion. It was observed that the frequency was not
influenced, but a significant reduction in the ampli-
tude of the fluctuations could be obtained with the
proper selection of the phase and amplitude of the
feedback system.

The following results have been obtained for



