SHOT NOISE IN PHOTOELECTRIC DETECTION

The quantity K can also be written as
K=exp[—B(h)/G(k)]

Xf“’ exp{[B (%) /G(t) J/[1+G(h)x]} exp(—ax)de
0 1+G(t0)76

(A4)

Next we utilize the well-known Taylor series expansion
for the first exponential under the integral. After a
straight forward change of variable one obtains

exp[—B(%) /G (k)] Z (EB(to)/G(fo) 1

K=
G () 1=

= exp{—[a/G () JU}
[t} @9

The integral which appears in (AS5) has been evaluated

4199

in Ref. 28, and this leads to

exp[—B (k) /G (%) ] EB(fo)/G(to)]l
Com]|

K=

—a )l-k_[a/Guo)Jl
G(t) I

XexP(G(to)> (G(%))] (46)

where Ei(z) =exponential integral function. :
Equation (3.7) is now obtained from (A6) and the
following series expansion for the Bessel function®:

5 {LBGID_ & (U CLB GG
"\ G) o 21(]1)2 '

X (1) E(k 1>v(

(A7)

2. S. Gradshteyn and I. M. Ryzhik, Ref. 18, (Eq. 3.353-2) on
p. 311.

®7, S. Gradshteyn and I. M. Ryzhik, Ref. 18 (Eq. 8.441-1),
p. 959.
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The trajectory differential equation governing the motion of relativistic electrons is derived in terms of
the scalar and vector potentials of the system using the principle of least action. The conservation of energy
and momentum are used to develop the paraxial-ray differential equation describing the beam radius of a
laminar-flow relativistic electron beam. The focusing of the electron beam in drift and accelerating regions
has been examined and the conditions for perfect balancing and nonspreading of a laminar-flow drifting beam
arealso derived. It is shown that the equilibrium condition for Brillouin flow is that 2w ;2 —w2[ 1 — (x./c)2]=0,
where wy, is the Larmor precession frequency and w, the electron-plasma frequency. #, and ¢ denote, re-
spectively, the axial beam velocity and the speed of light in vacuum. The variation of the normalized
ripple amplitude and the scallop wavelength of a drifting beam is discussed. The profile of a beam accelerated
in a uniform longitudinal electrostatic field is also illustrated.

I. INTRODUCTION

The subject of electron-beam focusing has been
investigated extensively by various workers™™ in-

* This work was supported by the National Aeronautics and
Space Administration.
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terested in their use, e.g., in microwave tubes and linear
electron accelerators. In the dynamic analysis of elec-
tron beams encountered in most microwave beam-type
devices'™ relativistic effects are usually negligible,
whereas, in the focusing of charged particles in a
linear electron accelerator, relativistic effects (self-
focusing and pinching) play a primary role. Recently the
focusing of a high-intensity electron beam in an ac-
celerating tube has been discussed theoretically by
Meshkov and Chirikov,” and previously the magnetic
self-focusing of partially neutralized relativistic elec-
tron beams drifting in the absence of any longitudinal
field has been analyzed theoretically for a variety of
idealized stream conditions®*® and observed experi-
mentally. »

It appears that little attention has been given to the
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study of the dynamics of a relativistic electron flow
under the influence of its own fields in the presence of
externally applied static electric and magnetic fields.
The purpose of the present study is to investigate the
focusing of a relativistic cylindrical electron beam in the
presence of applied static axial electric and magnetic
fields, assuming that the effects of radiation and
collisions are negligible, and further that the transverse
velocity is small in comparison with the axial velocity.
The principle of “least action” is used in deriving the
trajectory differential equation of the charged particle.?

II. TRAJECTORY DIFFERENTIAL EQUATIONS

The canonical momentum p of an electron moving at
a relativistic velocity u may be written as

p=mu--eA, (D

where m=mo/[1— (u/c)?]4* and my and e are, re-
spectively, the rest mass and charge (negative quantity)
of an electron, ¢ denotes the speed of light in vacuum,
A is the magnetic vector potential, and # denotes the
magnitude of the velocity vector u.

The principle of least action is conveniently written
as

5 f  pedl= / ! (muted)-dl=0,  (2)

where 1 is the position vector, x,, and x., denote the
coordinates of the end points of the line integral, and &
is the usual variational operator. By taking one of the
three spatial coordinates, e.g., 2z, as the independent
variable, and defining r'=dr/dz and 6¢'=df/dz in a
cylindrical coordinate system, Eq. (2) can be written
as follows:

) /22 {mu[r'* 4 (rg')24-1]12
+e(A,r+ A6+ 4,)}dz=0. (3)

The Eulerian equations for this system will yield the
differential equations for the electron orbit provided
that the magnitude of the velocity # is known as a
function of 2. Since, according to the principle of least
action, the varied path satisfies the law of conservation
of energy, » can be expressed in terms of the kinetic
energy T and the rest energy ¢ of the particle, ie.,

(w/c) /1= (u/c)* ] = (T*+2Te) /e, ()

since mc®= ¢+ T. Thus, after introducing Egs. (1) and
(4), the variational equation, Eq. (3), can be written
as follows:

5 / ' Pdz=0, (5)
21

12 W, Panofsky and M. Phillips, Classical Electricity and
Magnetism (Addison-Wesley Publishing Co., Inc., Cambridge,
Mass, 1955), Chap. 23.
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where  P= (v2427)V2(r' 2422024 1) 124 (ec/ep) (A 7"+
A+ A4,) with 7=(T/e¢) and e=my2. Then the
Eulerian equations for #(z) and 6(z) can be obtained
from

(d/dz) (0P/dr"y— (oP/ar) =0 (6a)
and

(d/dz) (8P/38") — (aP/38) =0. (6b)

For an axially symmetric system, 9P/30=0 and
Egs. (5) and (6) are combined to give

{(2+20)12(r20) /[ (r8) 2+ 112} (ec/e) Aor= Mo,
(7

where M, is a constant of integration, independent of z.
It is observed that Eq. (7) expresses the conservation
of the 8 component of the canonical momentum since

(r0') [ (r*+102+1) 2= (16) /u, (8)

where the dot denotes the time derivative. It is easily
shown that Eq. (7) is equivalent to the following
familiar relationship:

rpetedor= K, (9)

in which py=mqo(26) /[1— (u/c)?]"? and Ko=mocM,.
A differential equation for r(z) can be obtained by
combining Egs. (5), (6a), and (7):

7" — (R/2w) [ (dw/dr) — ¢ (3w/93) ]
= (—R¥2/w''?) (ec/e0) [ (04,/9z) — (94./0r) ],
where R= (14-7?), w=£(1—»?), #=(1427), and
n=E2L(Mo/r) — (ecAs/0) ]. (11)

In view of the fact that w is a function of £ and », and
£ depends in turn on 7, which is the ratio of the particle
kinetic energy T to the rest energy ¢, once T'(r, 2)
and A(r, 2) are known, then Eq. (10) can be solved
for r(z) for a properly specified set of input conditions;
6(z) then can be determined directly from Eq. (7).

It should be noted that 5 can be written as n=
(ug/u)=7r6/u, and ¢ as r'=u,/u,=7/2, where u?=
(w2t us+u.2). I the radial velocity #, is much
smaller than the axial velocity u., i.e., 72«1, then
R1.

(10)

III. PARAXIAL RAY EQUATIONS FOR AN AXIALLY
SYMMETRIC FLOW

Under the condition 2«1, Eq. (10) takes the follow-
ing form:

v’ =wH{ (r+1)[(87/3r) — 7' (87/02) JHn(§) V*(Mo/7*)
+n(8)2(ec/eo) - [(84s/3r) —1' (344/92) ]}
—w2(ec/e) [(8A,/82) — (8A4./dr)].

The law of conservation of the particle energy can be
expressed as

(12)

T+e¥ = constant, (13a)
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50 that
dr/or=(—e/e) (97 /ar)
and
dr/8z=(—e/e) (3V/93). (13b)
In addition, if v and B are defined as
y=(1—-4)"" and B=(u/c), (14a)

then from Eq. (4), £=(¥?8?) so that (++1)=
(14-£)¥2=+ and from Egs. (9) and (11)

()M =[(Mo/r) — (ecAo/e) = (us/c) (14b)

w=§(u,/u)2
As a result Eq. (12) can be written as
"= (1/vyus) { (~e/mo) [ (3%/0r) —r' (3¥/9z) ]
—ug(8/9r) [(Moc/r) — (e/mo) A1~ (e/mo) ugr’
X (9A46/02) } — (yu) ™ (e/mo) [(84,/32) — (04./dr) ],
(15)

where ¥ (7, z) and A(r, z) are, respectively, the scalar
and vector potentials of the system under consider-
ation. The potentials, in general, consist of two parts
(one part due to an external source and the other due
to the electron stream space charge and current). Fur-
thermore, these potentials must satisfy the following
partial differential equations:

VW =—p/e and V x(VxA)=gupu,

and

(16)

where p is the space-charge density and u, and e denote
the permeability and permittivity of vacuum, re-
spectively.

For an axially symmetric system Poisson’s equation
becomes

r=(0/9r) [r(0%/9r) 1+ (8*¥ /02" = — pyv/e  (17a)

and for a steady-state static condition V-A can be
taken as zero so that Egs. (16) give, in component
form,

(3/8r)[r'(/0r) (rA,) 1+ (8°4./02%) = — poowyn,, (17b)
(8/0r)[r=(3/0r) (rde) 1+ (9245/32%) = — papoys  (17c)
and

r1(a/0r)[r(04./02) 1+ (8°4./82%) = — popoyu., (17d)

where po is the rest charge density which is a negative
quantity for electrons and is assumed to be constant in
the present investigation. It should be noted that,
relativistically, charge density and current density are
simply different aspects of the same thing. If gy is a
“proper” charge density in a frame where charges are
at rest, then p=vpy gives the transformation from a
charge density at rest to a charge density in a non-
proper frame, ensuring the invariance of the total
charge. This can be seen as follows: A spatial volume
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element dv is related to a proper spatial volume du,
by dv=dw/v, since only one dimension (e.g., the
z direction if #, is comparable to ¢) suffers a Lorentz
contraction and hence pdv= pydv and the charge within
a given boundary remains invariant. The law of con-
servation of energy [Eq. (13)] can be written as

(18a)

and the concept of the conservation of canonical
momentum is expressed as

myy P+ el = mygc?

myy,+ed,=0, (18b)
moyus+edo= Ko/r (18c)
and
myyusted =0, (18d)
Combining Eqs. (17) and (18) yields
r1(3/3r)[r(8v/3r) 14 (8%/82%) = B>y, (19a)
(8/0r)[r1(3/0r) (+U) ]+ (82U /32%) =BV, (19b)

(8/0r)Lr(8/0r) (rV) 14 (8*V/02%) =BV (19¢)

and
r2(38/3r)[r(8W /3r) 1+ (0°W /8z2) = B2 W,

where

(19d)

U= (vyu,), W= (yu.),
Bet= (w2/c?) and wy= (epo/me).

V= (yus),

Equations (19) are linear partial differential equa-
tions and can be solved by the standard technique of
separation of variables. For example, it is easily ob-
served that the general solution of Eqgs. (19) can be
written in product form [R(r)Z(z)], where R(r)
denotes a linear combination of the #th-order modified
Bessel functions of the first kind, I,(ar), the second
kind, K.(ar), where o= (k*+B)2, with %k being
the separation constant. For 270, Z(z) is a periodic
sinusoidal function of z, whereas for 2=0 it is a linear
function of z. The solutions of Egs. (19a) and (19d)
involve the zero-order modified Bessel function, while

“that of Eqs. (19b) and (19¢) involve the first-order

modified Bessel function.

When a solid electron beam is considered, the quan-
tities v, U, V, and W all must remain finite along the
axis =0, and consequently the modified Bessel func-
tion of the second kind is not permissible in the solution
of Eqs. (19). Thus,

v(r, §) =Mily(ar) cosk, (20a)
Ur,§) = Ma(k/a) Ii(cr) sinks,  (20b)
V(r, §) =M.l (ar) cosk; (20c)
and
W(T, g-) = M3IU (ar) COSkg—) (ZOd)

in which V-A=0 has been used, and {=(z—2). M,
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M, M;, and z are the constants of integration which
are yet to be determined.

From Eqs. (18) and (20), the potential in the beam
region, allowing for the presence of applied static
fields, can be expressed as follows:

Y(r, §) = — Eot+ (moc?/— &) MiIy (ar) coski+ (mec/e),
Ar(r, §) = (mo/—e) (k/a) M3l (ar) sinkg,

Ag(r, §) = (mo/ —€) Myl (ar) coski+(Ko/er)
and
Au(r, §) = (mo/— €) Mslo(ar) cosks, (21)

in which ¢=0, i.e., =2 denotes the entry into the
interaction region under consideration.

It should be noted that any longitudinal inhomo-
geneity, which may exist in the system, is represented
by the constant 4. For example, in an infinitely long
homogeneous beam % can be taken as zero. For a
constant velocity drifting beam, Ep vanishes. In this
case, u,= (M3/M,), which is independent of z. For an
accelerating beam, K70 and it can easily be ob-
served from Egs. (18), (20), and (21) that %, does
depend upon z. For a laminar flow, i.e., nonintersecting
electron trajectories that are sufficiently well confined
in the transverse direction, only the motion of the
boundary electron need be considered. Thus, Eq. (15)
can be used for the investigation of the variation of the
radius of the beam boundary as a function of axial
distance.

Let y be the beam radius under consideration, and
suppose that the quantity (ay) satisfies the following
inequality:

(ay)1. ‘
Then the Bessel functions may be expanded as follows:

Ii(ay)=1+1(ay)?
and

Ii(ay) 3 (ay) +75(ay)® (22)

Thus upon substituting Egs. (20) and (21) into Eq.
(15), with the approximation (22), the following
differential equation is obtained:

¥4y ((Go/ cosks) [1—1 (a®y?) JH{GPy[1—1 ()]
— 382}k tankt)+y[Gi2+3 (B — o) ]

+15 () (a®—Bi?) =0, (23)

where

Ge=[(eEo/my) (My/MP)],  Gi=(aMs/2M}3),

So= (cMy/Ms3).

w, is the electron-beam plasma angular frequency for a
beam with infinite lateral extent. When the beam cross
section is finite, such as is frequently the case, the
plasma angular frequency is much smaller than that
for an infinite beam due to the effect of the conducting
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boundary surrounding the beam. The effect of the
finiteness of the beam size on the plasma frequency
can be taken into account by replacing w, by w,=
Rywp, with R, denoting the plasma reduction factor.
Formulas are available 'for the determination of R,
in the case of a solid cylindrical beam passing through
a metal tube.”® The constants M;, M,, and M; can be
determined in terms of the physical and geometrical
parameters specified at the input plane {=0. It is
obvious from Eqgs. (20) and (21) that Mi=vype=
(14 (—e¥g,0/myc?) ], where ¥, 4 denotes the axial beam
voltage at the input plane {=0. From Eq. (20d),
Ms=y,0u.(0, 0) =Mu,,. If the axial beam current at
the entrance plane is denoted by Iy, then

_ o
Iy=py / W2rnrdr
0

= (7y0) peM3[ 211 (exyo) /ey ], (24)

where yp denotes the injection beam radius. In view of
the fact that vyoo=1/[1— (#,.0/c)%]"?, specification of
Wy, determines #.0 and vy as well as M; and Ms.
I, and y, must also be specified in order to determine
wp. On the other hand, M, can be expressed in terms of
the input 6-component velocity, from Eq. (20c) as
follows:

M,I 1‘(Otyo) =v (yo, 0) 4 (3’0, 0) =M1 0(“}’0) 7] (3’0: 0).

It is convenient to introduce a pitch angle parameter
for the boundary electron at the input plane which is
defined as

tango=1us (30, 0) /% (30, 0) (25)
so that G, can be expressed as
Gr=1y5™! tanyy,. (26)

Thus specification of the velocity ratio (ws/u.) at
r=14, and {=0 determines the parameter G; Y is small
since ug is assumed to be much smaller than #..

1t should be noted that the solution of Eq. (23)
provides information on the profile of the electron beam
in the accelerating region. Suppose that the normalized
perturbation in beam radius, ¥, and the normalized
axial distance x are respectively defined as

Y=(y—w)/y and zx= (Bo)s (27

where y, denotes the injection beam radius. Then Eq.
(23) becomes

(B2 /dx?) + (dY /dx) { (go/cosvx) [1—%a2(14- V) %]
+» tanx[ p2 (14 ¥)2—2a2p? (14 V)1 — 521}
+ 1+ V) [(p?/62) +ga]— (14 ¥)? 30’g:=0,

where

ge=ao(do/u) (8*— 1),

(28)

02=ﬂ2(1+"2) ’
g=3[1— (1++*)é?]

B G. M. Branch and T. G. Mihran, IRE Trans. Electron Devices
ED-2, 3 (1955).
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Fig. 1.(a) Velocity dependence of electron-beam profile when Y21, (u=1.0, po=0.1, v=a,=0). (b) Effect of transverse velocities
on electron-beam profile when ¥Y2<1. (8,=1.015, u=1.0, »=g,=0).

and
v=(k/0), po=tanyy,

ao= (eEyyo/mc?).

H= (60}’0) )

Before discussing the numerical solution of Eq. (28),
it is instructive to consider an interesting special case
in which the electron beam is longitudinally uniform,
so that v=0, and the perturbatlon in the beam radius is
small, i.e., V2K1.

Case I. Constant Velocity

In the drift region, where there is no longitudinal
electrostatic field g,=0, under the conditions »=0
and V%<1, Eq. (28) reduces to

(@Y /dx®) +mY+h=0, (29)
where
= (po*/p*) —5(8°—1) (1—3u?)
and
bo= (po*/1*) —3(8°—1) (1—§2).

The complete solution of Eq. (29) consists of two
parts—a complementary solution and a constant term
representing the particular integral. The form of the
complementary solution depends upon-the algebraic
sign of .. When #;<0, the complementary solution of
Eq. (29) takes the form of a nonperiodic exponential
function of x, which implies that the beam radius y
grows exponentially with the axial distance {, so that
the beam is continually spreading. However, when
#>0, the complementary solution of Eq. (29) takes
the form of a periodic (sinusoidal) function of x, so
that the beam is rippling. For #,=0, the solution of
Eq. (29) has a quadratic dependence on x. Conse-
quently the condition %>0 can be regarded as the
condition for nonspreading of the drifting beam. The
general solution of Eq. (29) for the case /,>0 is given
by

Y (x) =[¥0'/ (In) 2] sin (k) V22

+L Vot (o/h) ] cos () 2x— (ho/l), (30)

where Y, and V' are, respectively, the normalized
deviation in beam radius and the slope of the beam
boundary at the entry to the drift region. When a
parallel flow beam is launched into the drift region,
i.e.,, Yo=0and ¥y'=0, Eq. (30) yields

Y (x) = (ho/hy) [cos () V2x— 1], (31

In this case, the beam profile is characterized by two
factors: (1) the amplitude of the beam ripple, and
(2) the ripple wavelength (scalloping wavelength).
Equation (31) indicates that ¥ (x) varies between 0
and —2(ky/H). Since a laminar flow is being con-
sidered and y=0, (2ky/k) must be less than unity.
The conditions #;>0 and 24,<#; can be combined to
give

Ba(a2—1) (1— ) < <3 (3= 1) (1.

Thus, when the beam parameters p, 8, and p, are so
chosen that condition (32) is satisfied, a rippling beam
results. The profile given by Eq. (31) is illustrated in
Figs. 1 for a conveniently chosen set of parameters.
The normalized amplitude of the beam ripple denoted
by V. and the characteristic wavelength \ are re-
spectively given by

Ym= (hO/ hl)
=[2p—

(32)

-1 (1-3) 1/ [2p0

_“2 (502_..

D=3 ]

and

A=2/Bo(ln)
=2myo/[p— 3 (82— 1) (1—3u) 2. (33)

It should be observed that when 4,=0, ¥(x) =0, so
that the beam radius remains constant in the drift
region (balanced flow). The condition for balanced
flow, therefore, is written as

po=hu (82— 1) (1—3u2). (34)

Note that d= (¢/#.,0) and u=(Byy) can be expressed
in terms of the input axial beam voltage ¥y, and the
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Fi6. 2. General dependence of beam profiie
on velocity, (u=1.0, $=0.1, r=a,=0).

axial beam current I; as

b= {1-[1/(14+Q)7]}

and _
w=4({14+To/2D)[(62—1) ]2} 12—1), (35)
where
, Q= (—e¥y,0/moc?)
and

D= (wc*mpe/e) = —4.26 X 10° A.

When I, and § are given in such a way that u<1,
then Eqgs. (34) and (35) become, respectively,

po*=3u* (82— 1)

2= (I/D) (s— 1)1, (36b)

It is of interest to note that for most electron-beam
devices the condition u<1 is satisfied so that Eq.
(36a) is applicable. In the case of Brillouin flow,
Busch’s theorem gives the angular velocity 6 at the
entry to the drift region as the Larmor precession fre-
quency, wr=/{(|e|Bo/2m,), with B, denoting the
uniform applied static axial magnetic flux density
in the region under consideration. Consequently
up(y0, 0)=yowz, and (po/y0) =Gi=wr/u.e. Since &=
(¢/ts0) and u= (Boyo), Eq. (36a) can be written as

wrt— 3w 1— (#.,0/c)¥]=0. (37
It is observed that the last term of the left-hand side
of Eq. (37) represents the relativistic focusing effect
due to the 6 component of magnetic field. When
(#20/¢)2K1, Eq. (37) reduces to 2w;*=w,?, which is
the familiar equilibrium expression for nonrelativistic
Brillouin flow.

(36a)
and

Case II. Accelerating Beam

For the case in which a longitudinally uniform beam
is accelerated by a uniform longitudinal static field,
(Ey##0 and »=0), Eq. (28) reduces under the con-
dition ¥*<1 to

where
o= (964 —3(3¢—1).

The complementary solution of Eq. (38a) has the
form e, where s satisfies the following algebraic
equation:

2+ gos+ /2 =0. (38b)

In the accelerating region, E, must be negative and
since ¢ is negative, go>0. Thus, Eq. (38b) has a pair of
complex conjugate roots with a negative real part
when 4/,> g?. In this case, the complementary solu-
tion of Eq. (382) is in the form of a damped oscillation
such that the fluctuation in the beam radius is stable.
On the other hand, when a longitudinal nonuniformity
is permitted, » must be different from zero. As an
illustration, Eq. (28) is solved numerically for the
input conditions ¥y=¥,'=0 and the results are shown
in Figs. 2-4.

IV. DISCUSSION OF RESULTS

The profiles of a uniform drifting electron beam,
under the restriction ¥*<1, are illustrated in Fig. 1(a)
for different values of axial beam velocity, = (¢/#.),
and in Fig. 1(b) for various values of the input azi-
muthal to axial velocity ratio po= (uo/u.). It is ob-
served in Fig. 1(a) that if ¥, and I, are adjusted so
that u is kept constant then the characteristic wave-
length of the beam M\ increases as & increases. This
fact is also evident from Eq. (33). The normalized
amplitude of the beam ripple | ¥, | has its minimum
value of zero when /=0, and for /<0, | ¥, | increases
as 8 increqses. The plots of Fig. 1(b) indicate that for
given values of ¥y, and Iy, \ decreases as py increases,
and thus the pinch effect increases as p, increases. The
variation of ¥,, and X\ with the system parameters for
a drifting beam can be easily studied by inspecting
Eqgs. (33).

The profile of a uniform beam in a drift region
without the restriction of ¥%X1 is shown for various

(2V)da?) + g2 (dY /dx) + Y+ =0,  (38a)
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F1c. 3. Effect of a longitudinal accelerat-
ing static electric field. (8,=1.013, x=1.0,
po=0.1, »=0).
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Fic. 4. Effect of a longitudinal inhomo-
geneity., (8, =1.013, x=1.0, p=0.1, a=
0.1).
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values of velocity & in Fig. 2. It is observed that the
maximum beam radius is an almost periodic function
of the axial distance and the amplitude of oscillation
in the beam boundary decreases as §, decreases, i.e.,
as the axial beam velocity approaches the velocity of
light. The remarks made above in regard to Fig. 1(a)
are also applicable to Fig. 2. The effect of a longi-
tudinally uniform static accelerating electric field F,
on the profile of a uniform beam is shown in Fig. 3.
It is noteworthy that the fluctuation in beam radius is
damped as E, is introduced since ag= (eEqyo/mc?) #0.
The maximum normalized deviation in beam radius
decreases as E, increases and the amplitude of oscil-
lation in beam radius decreases as x increases. This is
consistent with the observation made in Fig. 2 since,
as the beam is accelerated and at large value of x, the
axial beam velocity is increased so that § is decreased,
thus reducing the amplitude of oscillation of the beam
boundary. Finally, the profile of a beam with a small
nonuniformity in the accelerating region is illustrated
in Fig. 4. The nonuniformity has the effect of increasing
the amplitude of oscillation of the beam boundary.

V. CONCLUSIONS

In the present paper the analysis of relativistic
electron flows has been generalized to account for
radial variations in the electron velocity. The condition
for nonspreading of a laminar-flow drifting electron
beam is given by inequality (32), which is expressed in
terms of the beam parameters p,, u, and 8, which are
related to the ratio of transverse to longitudinal velocity
at the input, the beam current, and the axial beam
voltage. It is shown that for the case u?<1, which is
rather common in many experimental systems, the
equilibrium condition for Brillouin flow with the
relativistic correction is given by Eq. (37). The
derived condition (37) implies that for a fixed w, the
higher the axial velocity of the beam the less applied
axial magnetic field that is needed to obtain a per-
fectly balanced flow. In the present investigation, since
it is assumed that the transverse velocity is much
smaller than the axial velocity, the axial component of
self-induced magnetic field would be much smaller
than the 6 component of self-induced magnetic field
and consequently the dominant self-focusing effect is
due to the Lorentz force from the # component of self-
magnetic field and the axial beam velocity.
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If a linear beam is launched at the entry of the drift
region, in which case p, is zero, then from Eq. (34) it is
necessary that either §=1 or u?=8 for the beam to be
perfectly balanced. However, for normal laboratory
operating conditions, the latter condition, i.e., u?=38,
is rarely satisfied. Consequently, a perfectly balanced
flow would not likely be obtained unless the axial beam
velocity is nearly equal to the speed of light in vacuum.

Nonzero values of y= (k/B,) indicate the existence of
a nonuniformity along the beam. The cause of the
nonuniformity may be due to various factors, e.g., for
short beams the beam termination will effect the over-
all beam configuration due to reflections. Also when a
static spatially periodic electric field is used in the
focusing of the beam, % can be determined from the
spatial periodicity of the applied static electric field.

The system parameters used for Figs. 1-4 are con-
veniently chosen to illustrate the method of analysis
and generally correspond to the physical conditions
existing in accelerator devices rather than those of
microwave beam devices. However, it is not difficult to
make similar calculations for the parameters which
represent closely the physical condition encountered
in any experimental system.

The method of analysis developed here can be ex-
tended to include the effects of positive ions which may
be present when a partially neutralized beam is con-
sidered, provided that the potentials ¥ and A in the
system are properly modified.

LIST OF SYMBOLS

T =the particle kinetic energy,
¢=the particle rest energy,
My=the integration constant [see text following Eq.
N
M, =the integration constant [see text following Eq.
(23) ],
M,=the integration constant [see text following Eq.
(24) ],
M;=the integration constant [see text following Eq.
(23)],
Ky=the equivalent angular momentum of a particle,
A=the vector potential,
wr,=the Larmor angular precession frequency,
w,=the electron radian plasma frequency,
p= the particle linear momentum,
Y= the scalar potential.



