GENERATION OF SECONDARY MOTIONS

arising in shear layers also without the aid of these
devices.

These experimental results are presented as
evidence of the occurrence of peripherally periodic
concentration of vorticity derived from the core of
the parent vortex. Their occurrence could be re-
lated to radial divergence of the core region as
postulated by linearized theory.
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The velocity of a fluid mass imbedded in another fluid, which is of a different viscosity and a
different specific weight and flowing in a porous medium under a prevailing uniform pressure gradient,
is investigated. The fluid mass may take the form of a circular or elliptic ¢ylinder, a sphere, or an
ellipsoid, and the orientation of the fluid mass, if not spherical, is completely arbitrary with respect
to both the direction of the pressure gradient and that of gravity. Exact closed solutions are obtained.
The results for two-dimensional flows are applicable to Hele-Shaw cells.

1. INTRODUCTION

N this paper we deal with the velocity of a
fluid mass imbedded in another fluid flowing in
porous media. The fluid mass may take the form of
a circular or elliptic cylinder, a sphere, or an ellipsoid.
The viscosity and the specific weight of the fluid
mass may differ from those of the ambient fluid,
and the orientation of the cylinder, or of the ellipsoid,
may be entirely arbitrary with respect to the direc-
tion of the prevailing pressure gradient and to the
direction of gravity. Exact closed solutions for the
velocity of the fluid mass are obtained for the cases
of the elliptic cylinder and of the ellipsoid, and the
solutions for a circular cylinder and for a sphere
follow as special cases.

Polubarinova-Kochina and Falkovich® referred to
solutions for the velocity in porous media of a fluid
mass in the form of an ellipsoid of revolution. These
solutions were presented in a more general form
in the work of Taylor and Saffman,® who also con-
sidered the speed of a circular or elliptic bubble

* Permanent address.

1 P. Y. Polubarinova-Kochina and 8. B. Falkovich, Ad-
vances Appl. Mech. 2, 153, 1951.

2 8ir Geoffrey Taylor and P. G. Saffman, Quart. J. Mech.
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moving in a Hele-Shaw cell. Their solutions for
these two cases are for two-dimensional flows only,
because the velocity normal to the walls of the
Hele-Shaw cell is necessarily zero. These solutions
were obtained as limiting cases of a bubble moving
in a Hele-Shaw cell of finite width, as the width
approaches infinity, and not in the direct way used
in this paper. The solution of Taylor and Saffman
for the velocity of the elliptic bubble is further
specialized in that the motion of the bubble is
parallel to either one of its axes.

The main justification for writing this paper is
that the solution for the general ellipsoid and the
general solution for the elliptic cylinder are new, as
far as the writer is aware, and that they bring out

the very interesting behavior of ellipsoidal or ellip-

tic-cylindrical masses of fluid in porous media. A
minor justification is that the solutions for all the
cases, general or special, are presented in more
direct and explicit forms than hiterto. In principle,
the solution for the elliptic cylinder can be derived
from the one for the general ellipsoid. But in practice
this derivation is not simple. Therefore the solution
for the elliptic cylinder has been derived separately.

The problems studied bear on the problem of ex-
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Fra. 1. Definition sketch for the case of an elliptic cylinder,
The direction cosines of gravity is «, 8, and v. Those of U’
are o', ', and v'.

traction of oil from the ground in the presence of
water, and on the problem of water removal en-
countered in the paper industry. In the latter prob-
lem, air and water are exuded from a felt carrying a
wet paper sheet and passing through two rollers,
and it is important to find out how much faster the
air moves relative to the water through the porous
media of felt and paper sheet.

2. GOVERNING DIFFERENTIAL SYSTEM

Cartesian coordinates z, y, and z will be used:
The coordinate axes are fixed with respect to the
fluid mass under consideration. The orientation of
the axes will be specified in each case to be con-
sidered. The 2’ axis will be taken along the general
direction of flow of the ambient fluid. The direction
cosines of the &’ axis with respect to the z, y, and 2
coordinates will be denoted by o', 8/, and +’. The 2
axis will be taken in a direction opposite to that of
the gravitational acceleration. Its direction cosines
will be denoted by «, 8, and «.

Seepage flow of a fluid in porous media is governed
by Darcy’s law, which states that

I—]: (u, v, w) = -—-<:9—j; P 6—)(27 + p9Z), (1)
in which u is the viscosity of the fluid, p is its density,
k is the permeability of the porous medium, assumed
constant, p is the pressure, ¢ is the gravitational
acceleration, and u, v, and w are the velocity com-
ponents in the directions of increasing x, y, and ¢,
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respectively. The equation of continuity fs, if the
fluid is incompressible,

A= 0. @)

If u and & are constant, (1) and (2) can be combined
to form the single equation

9 9° 9’
(5}3-'_5?—‘—6_25)(1’ =0, 3)
in which
¢ =p -+ pgZ 4)

is a potential.

One remark needs to be made on the coordinates
used. Since the porous medium is at rest, application
of Darey’s law requires that the coordinates be fixed,
otherwise (1) would give, for example, no pressure
drop in uniform flow with a coordinate system mov-
ing with it. On the other hand, for the unsteady flows
caused by moving bodies, such as are treated here,
it is not convenient to use a coordinate system which
is fixed once and for all. The dilemma is resolved by
the use of fixed coordinates coinciding instantaneously
with the coordinates most natural and convenient
for the body. Since (3), the boundary conditions
(as will be seen), and hence the solution are entirely
independent of the history of the motion, the use
of instantaneous coordinates is justified. However,
these are, in concept, fized coordinates.

The most important fact about (3) is that it is
linear. One of the conditions at the boundary of
two fluids in contact is that p should be continuous.
From (4) 1t can be seen that this condition will be
linear in ¢, although not necessarily homogeneous
in ¢. The linearity of (3) and the boundary conditions
allow solutions to be superposed, provided any non-
homogeneity of the boundary conditions in ¢ is
properly taken into account. Since the interface of
the two fluids is not specified a priors, it is necessary
to have another boundary condition at the interface.
That condition is a kinematic one, and follows from
the fact that the velocity component normal to the
interface must be the same for both fluids. Since
the flow is governed by the Laplace equation, the
tangential velocities at the interface will not be
the same for the two fluids. In reality, the tangential
velocity changes from one value for one fluid to
another for the other fluid in a very short distance
comparable to the pore size of the medium. Hence the
slippage at the interface is an idealized situation
closely representing reality.
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3. VELOCITY OF A CYLINDRICAL MASS OF ELLIPTIC
CROSS SECTION
The z axis will be assumed to coincide with the
axis of the elliptic cylinder. The y axis coincides
with the major axis, and the 2z axis with the minor
axis of the ellipse

y'/a’ + 2/ =1, (5)
which describes the cross section of the elliptic
cylinder under consideration.

Consider now a flow of the ambient fluid with
velocity U’ in the 2’ direction at infinity. The com-
ponent of U’ in the x direction is U; = o’U’. Since

AZ/dx = «,
the first of equations (1) can be written

(u/kyu = —dp/dx — pge.
For the ambient fluid,

—dp/dz = (m/BU, + prga.
For the fluid mass,

—0p/dx = (po/k)U, + pagar.
Hence the continuity of p at the interface demands
that
Us = (m/u)Us + k(py — pa)ga/ps,. (6)
This 18 in fact true whatever the cross section of the
eylinder. For (p, — po)a = 0, (6) reduces to

U, = (Ml/#z) U, )

in agreement with the previous result of Yih.?
For the motion of the cylinder in the directions
of y and 2z, it is advantageous to introduce the

elliptic coordinates & and 7. They are connected
with y and z by
¥y + 72 = ¢ cosh (& 4 19),

or

y = ¢ cosh £ cos 7, z = ¢sinh ¢sin g, ®)
On the ellipse, £ = £, because (5) and (8) coincide
with

a = ¢ cosh &, b = ¢sinh &,

which defines ¢ and &, in terms of a and b. The flow
caused by a veloecity AV in the y direction relative
to the ambient fluid can be described by

¢+ iy = Ce 7,
in which ¢ is the stream function, and is conjugate
to ¢. If, as it will turn out to be the case, the fluid
cylinder moves as a solid body, the kinematic
boundary condition on the ellipse is
¥ = —AVz + constant,
3 O.-8. Yih, J. Fluid Mech. 10, 133, 1961.
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if AU, AV, and AW are the components of the
velocity of the fluid mass relative to the ambient
fluid. This condition follows from the requirement
that the velocity component normal to the surface
of the fluid mass must be the same for the mass
and for the ambient fluid. Since

¢ = —Ce*sin g,
this boundary condition is satisfied if
Ce ¥ = AVesinh &,.
Thus

AVbe
a—b

_ _ -a—{-b)*
Co AV ety
and

¢ = Ce™* cos 7.

On the ellipse
6 = Cet cosy = AV (fanh &)y = gAVy. ©)

Similarly, if the velocity in the z direction of the
cylinder relative to the ambient fluid is AW,
¢ + iy = iDe” 7,
with
D = A Wal(a + b)/(a — B,
and
é = (a/b)A Wz. (10)
The components of the velocity U’ in the coordinate
directions are o’U’, §'U’, and y'U’. These will be
denoted by U,, V,, and W,. Now, on the ellipse,

with AV = V, — V,, restoring the factor u/k,
¢ = (w/BH[=Vwy + (V. — Voyb/al, (11)
¢ = —(u/K)Vsy, (12)

if the elliptic cylinder is assumed to move as a solid
body with velocity components U, V., and W,.
Continuity of p then demands that

(/B -V + (V, — Viyb/al — pigBy

= —(w/B)Vay — p29By, (13)
which gives
_ mletb) ak(py — p)08 gy
Ve= wmb + pea ' b T+ wea (14)
Similarly,
- _ mie+b) bklpy = pl@Y (45
Ws = #la+M2bW1+ e + peb ( )

The expression for U, is still given by (6). From
(6), (14), and (15) it can be seen that the velocity
of the cylinder is independent of its size, although
it does depend on its shape.

If p, = po, then
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Fig, 2. Definition sketch for the case of an ellipsoid. The
direction cosines of gravity and of U’ remain the same as
in Fig. 1.

W wb ot wa W,
Vs ma + wb V,

_ (@ — b)(us — Hl):l m
B |:1 T wa + psb I'Vvl.

If u; <, then since a > b, we have
W/ Ve < Wi/ Vi

so that in the yz plane the cylinder will not move in
the same direction with the ambient fluid, but will
move more closely to the major axis of the ellipse.
The reverse is true if u, > p,. This is indeed a very
interesting situation.

If U’ = 0, then

Uy, : Vo i Wy = (b + wet)a : paB 1 usby,

so that the cylinder will not move in the direction
of gravity, but will have a velocity deviating from
that direction toward the y axis, and even more
toward the z axis. In other words, it will drift in
such a way as to favor the axes of the eylinder in
the order of their length: «, a, and b.

The solution for the special case of a circular
cylinder can be derived from (13) and (14). The
results are (6),

2w

- k(py — ps)
V, = — V ———"= g3, 16
; ,U1+N2 1+ I-l1+,u2 95 ()
and
- 2u, - k(p — P2)gY —
W, = - W, — 17
M1 + s + M1 + ue ( )

For ws = 0and (p — p)8 = 0, V = 2V, in agree-
“ment with the result of Taylor and Saffman.’

From (6), (16), and (17), it can be seen that the
velocity of the cylinder is entirely independent of its
size, and that, when the ambient fluid is at rest (i.e.,
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if U’ = 0), the velocity of the cylinder is simply
k(py — p2)g/(uy + w2), in the direction opposite to
that of gravity if p; > s, and k(p. — p1)g/(m1 + p2)
in the direction of gravity if p. > p,.
4, THE VELOCITY OF AN ELLIPSOIDAL MASS
Let the coordinate axes be taken along the axes
of the ellipsoid, and the origin be located at its

center. Then the fluid mass is an ellipsoid the surface
of which is deseribed by

2/’ + /0 + 2 =1, (18)
and the potentials for a velocity AU, AV, and AW

of the ellipsoidal mass relative to the ambient fluid
is, respectively,

abe b dA
e V(o )
__abc T dA y
and ,
abe I dA
o=y [ g @
in which
© d\ © d\
%"“ML<J+MA’m‘““ﬁ(V+MA’
® 112
wo=abe [ o Tns (22)

and

A = [@ + NG 4+ NEE + V]
The coordinate ) is the first of the so-called ellipsoidal
coordinates A, g, and », which are roots of the cubic
equation in 6,

2
2’ v P

a2+9+b2+o+c2+0‘
for every point (x, y, 2). For the ellipsoid given by
(18), A = 0 on the surface. On the assumption that
the ellipsoid moves as a solid body, the kinematical
boundary condition at the interface (that the normal
velocity must be the same) is satisfied by the solu-
tions (19), (20), and (21). On the ellipsoid,

Bo
2— 60
for the three modes of motion. For the motion
parallel to the x axis,

6= [—C}x + s (U, — Ul)“']
k 2 —ay

1,

[24]

AVYy, ¢ = 52— ATV,

AUz, ¢ = 5

¢=

2—010

for the ambient fluid and
¢ = — (,u2/k) U,z

for the ellipsoidal fluid mass, assumed in solid body
translation. Hence the continuity of pressure at the



FLUID MASS IN POROUS MEDIUM

surface of the ellipsoid demands that

a2 I:_le 4 %o

(U, — Ul)w] — gpiax

k 2 - Oy
= —~(u/kYUsx — gpsaz, (23)
so that
2u, U, + (2 — alkglpn — poa .
U, = . 24
: agu; + (2 - ao)#2 ( )
Similarly,
V2 — g#lvl + (2 — 60)kg(91 - Pz)ﬁ (25)

Bour + (2 - Bo)l-‘z '
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and
_ 2wWy + @ = vo)kglp —
Yo + (2 — volue
For the case p; = p,,
Uy, /U, > Vo V> Wy /W,y
if po < uy, and
Uy/U, < Vo/ Vi < Wy /W,
if py > py, since @y < Bo < v,. This is indeed a very

amusing situation. For the case U’ = 0, so that
U=V, =W, =0,

Pz)’Y.

w, (26)

B Y

Uy : V,: W, = «

/@ = an)ln + p2 " [Bo/@ — Bl + 12 o/ @ — Yo)ltr + o

Since ap < B, < 7, the direction of the velocity of
the ellipsoid will deviate from that of gravity to-
ward the directions of the longer axes, i.e., toward
the direction of y and even more toward the direction
of z, whether u, is greater or less than u,;. The inde-
pendence of the sign of p;, — p, is due to the fact
that the inequality of the three axes is not merely
a measure of the inequality of the resistance to flow,
as in the case p, = p., but is also a measure of the
inequality of the motive force in the three directions,
when p, # p,.

For the special case of a sphere, oy = 8, = v, = 4.
Hence (24)—(26) become

3#1

U, Vg, VVQ = rl) V]v I/Vl
(U, ) 2u + m (© )
2kg(p, — p2)
" (, B, 7). 27
+ e pd o 5. o)

If g = 0 and p, = p;, U, = 3U,, in agreement
with Taylor and Saffman’s result. If U’ = 0, the
sphere moves in the direction of gravity or in a
direction opposite to it, according as p, > p, or
- py < py1. In either case the speed is

ng |P1 - Pz[/(zliz + Ml)-
5. DISCUSSION

In Sees. 3 and 4, the fluid mass has been assumed
to move as a solid body, hence without change of
form, and a solution is possible because, in the case
of an elliptic cylinder, 3 can be cancelled in (13),
and, in the case of an ellipsoid, x can be cancelled
in (23). These are very special situations, and the
solutions obtained are very probably the only ones
corresponding to solid-body motion of the fluid
mass. For a mass of given volume (or given volume
per unit length), the solution is obviously not unique,

for the mass can take infinitely many shapes. The
stability of the fluid motion corresponding to these
solutions is another question. It is known that large
flat masses moving broadside on are not stable, but
circular masses in Hele—Shaw cells have been ob-
served to preserve their form and to move as a
solid body. Perhaps surface tension will make the
masses describe here stable, provided they are not
too large in any dimension.

6. APPLICATION TO HELE-SHAW CELLS

Since Hele—Shaw cells provide a means of experi-
mentation on flows in porous media, it may be
mentioned that the results of Sec. 3 can be verified
in the laboratory by the use of a Hele-Shaw cell.
The flow is necessarily two dimensional, since the
axis of the cylinder is necessarily perpendicular to
its direction of motion. The direction of gravity
may be related in any arbitrary fashion to the di-
rection of the general flow of the ambient fluid and
to the direction of the axis of the cylinder. How-
ever, gravity effects in the direction of the cylinder
must be ignored, since the walls of the cell prohibit
any flow in that direction. The error is a small since
the spacing of the walls of the cell is supposed to
be so small that any change of hydrostatic pressure
over the thickness is small compared with the change
of pressure from place to place in the cell, in a plane
parallel to the walls.
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