THE PHYSICS OF FLUIDS

VOLUME 16, NUMBER 5

MAY 1973

Theory of light scattering from dense plasmas

E. J. Linnebur and J. J. Duderstadt

Department of Nuclear Engineering, The University of Michigan, Ann Arbor, Michigan 48105
(Received 25 July 1972; final manuscript received 10 November 1972)

Projection operator techniques have been applied to derive a coupled set of exact kinetic equations
describing microscopic density fluctuations in an infinite, fully-ionized, classical plasma in thermal
equilibrium. The time dependence of the nonlocal collision terms in these equations is then approximated
in such a way as to yield the correct short and long time behavior of density fluctuations, while allowing
the explicit calculation of the dynamic structure factor §(k,w) characterizing electron density fluctuations
in classical plasmas of arbitrary density. This theory is then applied to analyze light scattering from dense,
collision-dominated plasmas, and the results of these calculations are found to compare favorably with both
experimental data as well as with earlier theories (at least in the regimes in which these earlier theories are

valid).

I. INTRODUCTION

The utility of photon or neutron scattering as a
diagnostic tool for probing the microscopic structure
and dynamics of matter has long been recognized. With
the development of the laser as an intense source of
coherent light, light scattering has emerged as an ex-
tremely useful tool for the diagnostics of laboratory
plasmas. Such scattering experiments have been used
to study plasmas over a very wide range of densities,
temperatures, and other conditions (turbulence, mag-
netic fields, etc.) An excellent summary of such experi-
ments can be found in the review article of Evans and
Katzenstein.!

The theory of such scattering experiments has also
been the subject of considerable attention. Since the
scattered light essentially measures electron density
fluctuations in the plasma, most theoretical studies have
used methods of plasma kinetic theory to calculate the
autocorrelation of electron density fluctuations, or
alternatively, its space-time Fourier transform, the
dynamic form factor S(k,w). The earliest investiga-
tions of Salpeter,? Fejer,® Dougherty and Farley,* and
Rostoker and Rosenbluth® used the linearized Vlasov
equations for the electrons and ions to study the role
of collective motions (ion and electron oscillations) in
light scattering. Subsequent investigations attempted
to include the effects of Coulomb collisions, first by
using models such as the Fokker-Planck® or BGK
collision models,” and later by using perturbation theory
calculations in the plasma parameter, A=#n)\p? to
truncate the BBGKY heirarchy® or sum appropriate
classes of diagrams in a Green’s function approach.?
These latter theories, while certainly valid for near-
collisionless plasmas (A>>1), are of doubtful validity
for very dense or very cold plasmas in which AZ1.
(The calculation of higher-order contributions in A~!
would be required.)

In this paper we will apply projection operator
methods to generate exact kinetic equations for the

phase space analog of the dynamic form factor S(%, )
characterizing electron density fluctuations in a classical
plasma. A similar theory has been applied, with remark-
able success, to study density fluctuations in single
species systems such as liquids and dense gases.!®:1.12
Particular success has been achieved in applying this
theory to study the large k¥ and w behavior of systems
which characterizes neutron scattering from liquids and
light scattering (Brillouin scattering) from liquids and
gases.

We will first generalize this formalism to two-species
systems, thereby generating exact kinetic equations
describing density fluctuations in an infinite, fully-
ionized plasma in thermal equilibrium. The relationship
of these exact equations to existing plasma kinetic
theory will be discussed. Approximations will then be
introduced which will allow the application of this
theory to the explicit calculation of the dynamic form
factor S(k,w) characterizing light scattering from
equilibrium plasmas of arbitrary density.

The projection operator formalism we will employ,
while certainly very popular in nonequilibrium statis-
tical mechanics, has seen only a very limited applica-
tion to plasma physics. Hence, we feel it is advisable to
begin with a very brief introduction to the general
formalism before applying it to derive the two-species
kinetic equations.

II. KINETIC EQUATIONS DESCRIBING DENSITY
FLUCTUATIONS IN TWO-SPECIES
SYSTEMS

The projection operator formalism developed by
Zwanzig® and Mori* for the study of irreversible
processes has been applied to a variety of physical
systems such as liquids, solids, and gases with con-
siderable success. The theory is based upon an exact
equation which can be shown to describe the time
evolution of an arbitrary vector a(f) whose com-
ponents ¢;(¢) are dynamical variables of the coordinates
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(xt, +++, %N, p', «++, p¥) of a many-body system:
t
a—iQ-a(f)+ f dre(r)-a(i-r)=£1). (1)
0

Here, the “frequency matrix” Q is defined by
iQ= (4a*)- (aa*)™, (2)

where a denotes a(0), (- - - } denotes an average over an
equilibrium stationary ensemble [usually the canonical
ensemble po= exp(—pBH)/Z, 8=1/kT], and a* is the
row vector adjoint to a. The ‘“damping matrix” o(r)
is given by

p(r)={f(r)£*(0) )- (aa*),
and the “random force” f(r) is given by
f(r) = exp[ir(1—P)L}i(1—P) La. (4)

Here, P is a projection operator defined by its action
on an arbitrary dynamical variable vector G as

PG=(Ga*) - (aa*)1.a, (5)

and L is the Liouville operator, L=4{H, }.

Equation (1) is known as the “generalized Langevin
equation”" because of its similarity to the more familiar
Langevin equation characterizing Brownian motion.
However, unlike the Langevin equation, Eq. (1) is an
exact equation for a(f), and hence is equivalent to the
equations of motion for the many-body system.

If one now notes' that

<f(t)a*>=0) 120, (6)

then by post-multiplying Eq. (1) by a*. (aa*)™%, one
can derive an exact equation for the correlation matrix

R(#)=(a(t)a*)- (aa*)™ (7
which takes the form

3

R—iQ-R()+ '[‘ dre(r) R(i—1) =0.

0

(8)

Of course, since this equation is still exact, it is only a
formal identity to the equations of motion, and one must
eventually resort to approximation in order to obtain
useful results. The frequency matrix Q can usually be
calculated explicitly in terms of static quantities.
However, the damping matrix ¢(r) requires the study
of the modified propagator, exp[it(1—P) L], which, in
turn, would involve solving the many-body problem
directly. The attractive feature of equations such as
(8) which are generated by projection operator tech-
niques is that the ‘“damping” terms are quite susceptible
to perturbation theory treatments or to modeling. That
is, the generalized Langevin equation (1) is of value
primarily because it re-expresses the quantities of
interest (e.g., time correlation functions) in forms in-
volving damping terms which can then easily be
approximated.
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We will now utilize the generalized Langevin equation
to obtain a kinetic equation description of an infinite,
fully-ionized plasma which will be assumed to be in
thermodynamic equilibrium. The dynamical variables
of most interest are the microscopic phase-space den-
sities for the electrons and the ions:

(s B, 0= X alx—xe() Bo— ()]
9)
g(x,p, )= %3 o[x—x*i(1) Jo[p—p=(1) .

agwal

To this end, we will choose a to be a column vector
whose components are indexed by a continuous param-
eter p and correspond to the spatial Fourier transforms
of the fluctuations of g(x,p,0) and g:(x, p,0) from
their equilibrium values

a= col[a.(p), a:(p)],
N,
a.(p) = Zl exp (ik-x*)8(p—p*) — 16 (k) M.(p)
_—__agﬂ(kv p7 0))

a(p)= 3° exp(ik-x=)5(p—p=) —n5(k) M (p)

Q=]
Eagl(k) P, 0) .

(The k dependence will frequently be suppressed for
convenience.) Here,

M, (p) = (B/2xm.)*? exp(—B,pY/ 2ms),
B:=1/kpT,, r=e,i. (11)

The extension of the generalized Langevin equation
to vectors with both discrete and continuous parameter
dependence®® is

da . 7 7
m —zfdap’ﬂ(p, p')-a(p’,t)

(10)

+/0¢ drfdap'P(P, p,7)-a(p,t—7)=1(p,8), (12)

where Q(p, p’) and o(p,p’,7) are 2X2 matrices of
“frequency kernels” and ‘“damping kernels.” To cal-
culate these matrices, we follow the earlier theory of a
single species system! to first calculate the static
correlation matrix

$(p, p') =(a(p)a*(p")), (13)
as
¢re(P, P') = M,(p)3(p—p') s
+nn M (p) M. (p) hre(k), r,s=¢,1 (14)

where k(%) is the Fourier transform of [g(r)—17, g(r)
being the static pair correlation function.
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The inverse of this matrix is defined by
J&p'¢(p, ) 670, p”") =8(p—p")I.  (15)
Substituting (14) into this equation and solving the

resulting system of linear integral equations for the
unknowns, ¢, 1(p, p'’) yields

& (P, ) =[nM.(p) 16(p—D")ér— Cru(k),

(16)
where
Cull) = hoe(B)[1+nikis(R) J—nihe2 (k)
R [1Fnhii(k) 14 nckes (k) J—ninohe® (k) ’
Calk) = Bii(R) [14-nohtoe(B) 1—nohei (k)
T [ nihis(B) T+ nohtes(k) 1—nimohei (k) °
(17)
_ hai(k)
Coi(k) = (142 (B) JT 1+ nches(k) ]~ nindhe (k)
=Ciu(k).
We can now calculate the frequency matrix
iQ(p, p') =/ &#p"a(p)a*(p") )¢ (p", "), (18)
by first noting
d¢(p) = (ik-p/me) ac(p) +ou(p),
N,

()= 3 explil-x)Foe- s o(p=p), (19
and similarly for &;(p). If we further note
(o:(P)a*(p")}

=—(ik-p/m,) M, (p)M.(p" ) nemahns(k), (20)
then a straightforward calculation yields
Q:s(p, p’) = (ik+p/m,)6(p—p')0rs
— (ik-p/me) M, (p)Crs (k).  (21)

The damping matrix is similarly given as

e(p, P, 1) =] &%" {£(p, Hf*(p", 0))-¢7(p", D),

(22)
or noting
] &p"(p", 0) =0,
ere(Py P, ) =[mM.(p") T fo(p, )f:*(9’, 0)). (23)
Here,
f(p,0)=(1-P)d,(p) = (1—P)ar(p), (24)

This is essentially as far as one can proceed without
introducing some approximate calculation of the
damping kernel.

As we will see in later applications of this formalism,
most interest will be in the electron density fluctuations.
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With this in mind, we define the time correlation func-
tions involving fluctuations in the electron density as
Geo(k, p, p”, ) = (0.(K, p, 1) 08,* (K, p”, 0))
= (a.(p, ) a.*(p") ),
Gie(k, p, 0", 1) = (3gi(k, p, 1)8g*(k, p”, 0) )  (25)
= (a:(p, 1) a.*(p") ).

Hence, by multiplying both of the components of the
matrix equation (12) by a,*(p’’), averaging over an
equilibrium ensemble, and noting

{fr(p, Ha*(p"))=0 (26)

[in analogy with Eq. (6) ], we find a coupled set of exact

kinetic equations for G..(k, p, p”/, £) and G..(k, p, p”, ©) :

3G
ot

1. .
— ug,,+ P 1M o(p)
m, Me
X (Cul®) [ #9/5uth, 0,87,
+Cai(k) f &p'Su(k, p', 07, t))
t
+ ‘/; dr f d3P'¢u(P, p,) 7)Ges(k, P/, P”, t—1)

¢
-+ f dr / dapl‘p“'(p) p’a T)giﬂ(ks p’: p", t_"") =0, (27)
0

ikp ik-p

i kP, , KP
” gu+ oy n:Mi(p)

ot

X (Cis(k) f Pp'Gee(k, 0, 9, 1)
+Cu(k)f dsplgio(k’ P'; p”: t))
+ /; ar f & 0ie(P, P, 7)Ges(k, 0, P, t—7)

¢
+_/ d‘r/dapi‘mi(p, p’; T)gio(k; P': P", t—T)=O'
0

Here, we have substituted in the explicit form of the
frequency matrix Q(p, p”’), but left the damping matrix
(D, p’, 7) unchanged since it is yet to be explicitly
determined.

These coupled equations for the general time correla
tion functions G,, and G, are still exact—and still quite
formal. It should be noted that they are nonlocal in
space and time, in contrast to more standard (and
approximate) kinetic equations such as the Boltzmann,
Fokker-Planck, or Vlasov equations. It should also
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be noted that these equations are still quite general
in that they describe any two species system (e.g.,
two-component liquids or gases) which are in thermal
equilibrium. We will now apply these equations to the
specific case of a fully ionized plasma.

III. APPLICATION TO FULLY IONIZED PLASMAS

We will now consider the two species of interest to be
electrons of mass m,, charge Z,=—1, and ions of mass
m;, charge Z;=Z. Since the plasma must be macro-
scopically neutral, we also demand that N,=ZN;
ne=Zn;=n. We will further assume that both species
are in thermal equilibrium at a common temperature
T.=T;=T (although this latter assumption can be
relaxed to allow T,#T5).

It is important to recognize that our general kinetic
equation description assumes a knowledge of static
equilibrium quantities such as the static pair correlation
function g(r). There are well-known prescriptions for
calculating g(r) for specified potentials V(r) using
techniques from equilibrium statistical mechanics'®:¢
Since an equilibrium plasma does not possess the short-
range order characterizing liquids or dense gases, it is
reasonable to assume that the equilibrium theory will
not be too sensitive to the specific form chosen for g(r).
For this reason, we will assume g(r) is given by a simple
Debye-Hiickel form

&s(?) =1—=Z,Zlr ' exp(—1/Mp), (28)

where I=¢¥/kT and Mp=[4nBre?(1+Z) T is the
Debye length. Hence, one finds

Tra(B) = — 4w Z,ZINpY/ (14 Ep). (29)

In this case, the coefficients C,,(k) reduce exactly to
the very simple forms

Cre(B) = —4nZ,Z 86/ k2 =BV o(k),

where V,.(%) is the Fourier transform of the Coulomb
interaction potential.

Hence, we can rewrite the coupled kinetic equations
(27) in the more transparent form

ik-p 4reS
()

(30)

X [ T2Gu(k ¥, 0, ) —Gull, B 1, D 1= Bt B0
(31)

6_{-1,-: _ 15_13 L ikep (47re26)
ot m; Sie Mo nM,( )

/ dap,[Zgl‘G(kJ p’y p") t) —Qae(k, p” p"; t) ]= B;— Qﬁ"
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where the damping terms have been formally denoted
by ®,,.

It should be noted that the left-hand-sides of these
equations are just the linearized Vlasov equations. The
effects of collisions are evidently contained in the
damping terms ®,. At this point, however, we should
stress once again that Egs. (31) are still exact.

To proceed further, we must now introduce approxi-
mations in order to calculate an explicit expression for
the damping matrix ¢(p, p’, 7). One could proceed by
using perturbation theory to calculate ¢(p,p’,r) to
lowest order in some suitable expansion parameter. For
example, if an expansion in the plasma parameter
e=1/A were utilized, then to lowest order, ¢ could be
set equal to zero and one would arrive at once at the
Vlasov description considered by Salpeter,? Fejer,?
Dougherty and Farley,* and Rostoker and Rosenbluth.?
Retaining higher-order terms would yield more com-
plicated kinetic descriptions such as the Balescu-
Lenard" equations.

Our immediate goal, however, is to develop a theory
of electron fluctuations in dense plasmas for which A
may be quite small (A<1). Hence, we will seek an
alternative approximation to the damping matrix by
guessing or modeling its time behavior. Such a modeling
approach has proven remarkably effective in describing
the large %, w behavior of dense systems such as simple
liquids. We will now develop a very similar model to
describe a dense plasma.

IV. MODELED KINETIC EQUATIONS

The damping matrix ¢(p, p/, ) is composed of four
damping kernels, ¢.(p, p’, ). A direct calculation of
these kernels is formidable (amounting to a solution of
the many-body problem), and hence approximations
will be necessary if we are to proceed further in our
analysis of density fluctuations.

Before we introduce these approximations, however,
it is important to note that the initial values of these
kernels can be calculated exactly and explicitly (see
Appendix A for details) as

901:(9: p,7 0) =¢’"‘(p1 P’, O) +‘Pred(P: p,’ 0): (32)
where
f d&*p’or?(p, P, 0) as(p")
——s. D022+ 22 Yo, 39
T \op ap | m. op ’
[ &' eé(p, P, 0)a.(p") =pM,(p)
Dy (k) dsP,P,av(P’); (34)
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and

D,(0) =} (F+-F*)
(35)

N, N,
Dna(k) = 2 2 (F=Fe exp(ik- (x*r—x=)).

tpmm] ot gua]

It is also demonstrated in Appendix B that for a
Coulomb potential, these coefficients reduce to

(Bo/ms) Dy(0) = (14-Z) wpe/3,
(8i/m:i) Di(0) = (14+Z) w,i¥/3,

%ﬂ (k) = kk("rna/ﬂrﬂa) hn(k) — Dy, (k) ’ (36)

Da(h) =8Da(0) =i !

az Vr.
dR;0R;

X / @*R h,.(R) (1— coskR)).

It should be noted that the damping kernels separate
very naturally into “self” and “distinct” parts which
essentially characterize test particle or collective
motions in the plasma, respectively.?

We now introduce our principal approximation by
modeling the time dependence of each of these kernels
such that

et (D, Py ) =0’ 4(p, P, 0) exp[—ar'2(R)E]. (37)
The exact form for ¢.(p, p’, 0) will be used, while the
k-dependent relaxation parameters e, (k) will be chosen
to satisfy various constraints demanded by the known
short- and long-time behavior of G. and Gi. Such an
exponential time dependence is motivated by the
recognition that such damping kernels can usually be
shown to be rapidly decaying functions of time,'® and
hence provided one has used an accurate description of
their initial values, the solutions to the corresponding
modeled kinetic equations should be relatively in-
sensitive to the choice of the ar, (k). And, as we will see
momentarily, such modeling has the additional ad-
vantage of yielding kinetic equations for G,, and G,
which can be solved exactly to obtain a closed form
expression for S(%, w) (a feature not characteristic of
most kinetic equations).

It should be noted here that we have introduced
different relaxation parameters not only for each of
the four damping kernels ¢.(p, p’, {), but also for their
self and distinct parts.? Furthermore, we have allowed
these parameters to be £ dependent. We will see later
that this generality is essential for an adequate descrip-
tion of electron and ion density fluctuations in a plasma.

If we substitute the modeled damping kernels (37)
into the exact kinetic equations (31) and then Laplace
transform in time, we find the coupled set of modeled
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kinetic equations:

(=) st St (57)

X [ #5T2Gu(k ¥, 8", )= Gulk, B, 0", )]

_ 7 _%)L
=Gu(k, p, 0", 0)+ stau (k)

39 B9 Y
X (ap.8p+;.31;.p) Ge(®, 9, 0", 5)

_ PM(p) - Due(k)
sta.l(k)

pMa(p) 'gei(k) ’ '
- -—sm—'fd“ﬁ P'Gulk, P, 0", 5), (38)

(s is the Laplace transform variable),

LS PR~ ey
(S m; )g“+ mq nM'(p) k?

'f &P’ p'Sus(k, P, 97, 8)

X / dap’[gu(k; p': p”: S) "'th'!(k: P,, p"7 S)]

_ 1 M
=Guw(k, p, 0", 0)+ s+ait (k)

8.9 ﬁi_) . ,
X (ap ap+miap P)Sulk, p,p",5)

_ pMi(p) - Die(k)
stai (k)

pM.-(p)-%,-;(k) . .
T staud(R) _/dsP P'Gie(k, ', 0",5).

Here, the initial values of the correlation functions are
Gee(k, D, D", 0) =2.M.(p)3(p—p")

+7M(p) Mo(D") hos(k),
Gis(ky B, D', 0) =0 M :(P) Mo(P") hrei (k) .

We are primarily interested in the electron density
correlation function

Geo(k, 5)=n"'[ @[ Pp"'Geo(k, B, P", 5),
since the dynamic form factor S(k, w) is given by
S(k, w) = (1/m) Re{lim G.o(, 5) }.

'f dapfp’g“(k, p,1 p"’ S)

(39)

(40)

(41)

The coupled kinetic equations (38) can be solved
exactly for G.(k,s) by using Fourier transforms in
the momentum variable p. Since the details of such a
solution have been discussed elsewhere for a single
species system,112 we will merely indicate the results of
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such a calculation
(14-8i:) Sii— 086
(14a:) (1+@o) — Goias,’
( 1+aaa) Sie—B:eSee
(14-8::) (14-Gos) — GeiGis

Geelk, 5) =

(42)

Gis(k, 5) = (43)

where
Go=[ (mBe5/k*) gos(k, $) I (k%) 2—1) —1]
X[nLoelk) — (mBss/ k) fee (k, 5) ],
o =[(mees/*) goo(k, $) I (2, 2.—1)—1]
X[7Coi(k) — (miBe/ k) foi(k, 5) ],
ai=[(miBs/k?) gis(k, ) I (k2 2:—1)—1]
X[#:Cii(k) — (miBis/ k) fii(k, 5) ],
die=[ (mBis/ k) gii(k, s)I (k2 2,—1)—1]
X[1:Cia(k) — (moBis/ k) fis(k, ) J;
Seo="1S0s (k) [ (1Bo/ k) goe(k, )T (k2 35~1)]
— [(meBes/k?) ges (&, $) I (ke2, 20— 1) —1]
X[#6See(k) (MeBe/ B2) fos (R, 5)
+ (miBo/ Ky ninchic(k)fui(k, 5) ],
Sc=nindhic(k) [ (mBi/k*) gis(k, $)I (k2 5:—1) ]
—L(miBs/ k) gii(k, )T (k2 2—1)—1]
X[ninehie(k) (miB:/ k) fii(k, s)
+ (maBi/ k) naSes(k) fis(k, 5)];  (46)
26=5/gee(k, 5), 2i=5/gii(k, 5); (47)
ke=k/ (maBe) sk, ),  ki==h/(mi:)gii(k, s);

(44)

(45)

(48)
&, e DE 0
(49)
s/ mi) D;(0
gii(k, )= (—%‘_/'ﬁ_).(—k()_) ;
feo(k, ) =[s+ael(k) I
X[(kvmaﬂs) n,C.,,(k) - (Be,/ma) Du(k) ];
fei(k, s) =[s+aed(k) I
XL(#/miBe) neCoi(k) — (Bi/m:) (ne/n:) Dai(k)], (50)

fiilk, s) =[staud(k) I
XL(BY/ mBo)nCii(k) — (B:/ms) Dis(k) ],

fiolk, 5)= [S+aied(k) I
XL (B mB:)nCis(k) — (Be/me) (ni/n) Dio(k) J;

(%, 2) = exp(?) c2eted f du exp(—w)urte. (51)
0
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The specification of the k-dependent relaxation
parameters ar, (k) is the only task remaining to complete
the model. To do this, one can utilize the known
behavior of S(k, w) for limiting values of % and w to
place constraints upon the ay,(k). Since our objective
here is merely to illustrate the modeling approach to
approximating the damping kernels, we will defer the
detailed choice of the a,,(%) to a future publication, and
only summarize the resulting constraints here:

(i) The large k behavior of S(k, ) requires a,(k) =
O(k?) as k— . We will therefore choose the simplest %
dependence consistent with this limiting behavior:

arr’(k) =aﬂ‘s(0) [1+ (k/k"s)z:],
are? (k) = e (0) (14 (k/ krs®) ). (52)

(ii) The £=0 behavior of the correlation functions
demands
ee™(0) = e (0)

a,-,-d(O) =¢x,~,~‘(0)Z (53)
(iii) Symmetry properties require
aei (k) = Lo (k) st (k) JP=cri8(k).  (54)

(iv) In analogy with the single species formalism,!?
ar*(0) can be identified as

o (0) = [(3’*/7”') D,(0) ][mrﬁrDrl (85)

where D, is the coefficient of self-diffusion for the
rth species. If we recall D,= (m.8,,,)71, then

8. D.(0)

an®(0) = —
Moy Vrr

; (56)
where v, is the collision frequency for the rth species.

(v) Earlier work on single-species systems!? has
identified k~* as characterizing the transition from
collective behavior for individual particle bebavior with
increasing k. For a plasma, this parameter is naturally
identified as the Debye wave-number

Bt =hp,=1/2p,. (57)

(vi) The only remaining parameter to be specified
is k9% A detailed analysis of the £=0 behavior of the
density fluctuations demands that we choose

ky?=1.08(vp/wp) kp,. (58)

It is interesting to note that although our model (37)
introduced six k-dependent relaxation parameters,
a,*?(k), various constraints have considerably re-
stricted our freedom in choosing these- parameters.
Indeed, the model has been completely specified in
terms of known plasma parameters.

At this juncture, it is of interest to compare our
modeled kinetic equations with some of the more
standard kinetic equations used in plasma physics.
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Of course, if we had set the damping kernels
ers(P, P, 1) =0,

we would have immediately arrived at the linearized
Vlasov equations. This feature can also be seen directly
from our solutions (42)-(51) if one notes that the
“collisionless” limit corresponds to g(k, s)—0, and also
that

lim [g(k, s)I(x 2—1)]

g{k,8)>0
ik )
= gy 2L /0 (Gme) 7, (59)
where Z(£) is the plasma dispersion function
z@=rin[ dmep(~at)/(6—8).  (60)

Another approximate kinetic equation can be ob-
tained if we ignore the distinct damping contributions
erd(D, P, £) and use only the ‘“Markovian limit,” k-0
and s—0, of g(%, s) in the self term, noting that

8:D:(0)
Mycirr (0)

lim g.(k,s)= (61)

0,0
The self term in this limit reduces to the Fokker-
Planck operator familiar from the theory of Brownian

motion.®®
B, 0 )
+ m, Op P

The resulting system of equations has been used by
Grewal® to analyze light scattering from electron density
fluctuations in a plasma. One can readily see the limita-
tions of such a Fokker—Planck description, since it
ignores the nonlocal behavior of the damping or collision
terms (as well as any collective bebavior present in
them), and, moreover, does not yield the correct short
time behavior as ¢—0.

One can obtain the collision-dominated behavior of
such a model by noting that this corresponds to

= Vrre

o 0

s e (2

— 62
a0 p (62)

S (k,w)
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wp,
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Fic. 1. A qualitative sketch of S(k, w) for a=(kAp)~1>1.
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S{kal (sec x10'%)

AMA)

Fic. 2. The ion feature of S(%, w) for n=3X10Y cm™3, T,=
Ti=4.5 eV. The dashed curve indicates the modeled kinetic
equation predictions, the solid curve corresponds to the Viasov
equation, while the data points are those of Rohr (Ref. 20).

g(k, s)> = in our solutions, while using

gk, s)
Lsg(%, s) (mg/k%)+1]"
(63)
More systematic approximations to the damping
matrix can be obtained by applying standard perturba-

tion theory methods directly to (23). This approach
will be discussed in a future publication,

lim [g(, $)I(x*2—1)]=

g(k,8)>

V. APPLICATION TO LIGHT SCATTERING
EXPERIMENTS

As an illustration of the utility of this theory of den-
sity fluctuations in plasmas, we will use the modeled
kinetic equations (38) to calculate the dynamic form
factor S(k,w) characterizing light scattering from
dense, low temperature (and hence collision dominated)
plasmas.

It should be recalled that the key parameter in
conventional Vlasov calculations of S(%,w) is the
scattering parameter o= (kAp)~*, where % is the wave-
vector change of the scattering light. For the large
values of a characteristic of 90° scattering from dense
plasmas (a>35), the dynamic form factor S(%, w) is
characterized by a large central peak with two small
side peaks corresponding to ion-acoustic oscillations,
and two very weak satellite peaks characterizing elec-
tron plasma oscillations (see Fig., 1). Our modeled
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F16. 3. The electron satellite peak of S(%, w) for n=>5X10"
cm™, T,=Ti=4.5 eV as predicted by several alternative kinetic
theories.

kinetic equations will clearly indicate the effects of
collisions upon each of these features.

At densities of 5X 107 cm—3, T,=T,=4.5 eV, the
Vlasov description of the ion feature seems adequate
(Fig. 2), even though An=»p*=>5. This was first noted
experimentally by Rohr.® By way of contrast, the
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Fic. 4. The ion feature of S(k, w) for n=1X10¥ cm=3, Ty=T;=
4.5eV.
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electron satellite lines are predicted to be broadened
significantly by collisions at this density (Fig. 3). For
comparison, we have also plotted the Fokker-Planck
model of Grewal® which agrees very favorably with our
more sophisticated model at these low densities.

At a higher density of 1X10%, T'=4.5 eV (correspond-
ing, incidently, to the critical density for reflection of
10.6  light), the various formalisms give quite different
results. Figure 4 shows the ion feature for this cold,
high-density plasma as predicted by several collision
models {(the Fokker—Planck,® BGK,* and our nonlocal
model). All of the collision models predict narrowing of
the jon feature (as first pointed out by Dubois and
Gilinsky® using a hydrodynamic analysis). The model
developed in our work predicts somewhat sharper
ion-acoustic peaks.
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F16. 5. The electron satellite peak of S(k, w) for n=1X10¥cm™?,
Te=Ti=45¢V.

The electron line at 1X 109, T'=4.5 eV is shown in
Fig. 5. The Vlasov description gives essentially a delta
function for the line at this high density. There is a
significant difference between our model and the
Fokker-Planck prediction, with the former yielding a
much sharper electron line. This difference can be
attributed to the significance of the non-Markovian
behavior of the collision term for large frequencies
w~wpe. For the lower frequencies characterizing the
ion peaks, w<ar.(k), and the model becomes essentially
Markovian.
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We should hasten to point out that the particular
model developed in this work depends upon the various
collision frequencies, ves, vei, and »;;, just as do the more
traditional Fokker—Planck or BGK models, as well as
the many body theory of Kivelson and Du Bois.”? We
have used the collision frequencies prescribed by them
in this particular calculation. A more detailed study of
which collision frequencies are most appropriate for this
model is certainly desirable.

VI. CONCLUSIONS

To summarize, we have applied projection operator
techniques to derive a coupled set of exact kinetic
equations describing microscopic density fluctuations
in a two-species system. When applied to a plasma in
thermal equilibrium, these equations reduce to the
coupled linearized Vlasov equations augmented by
additional (““damping”) terms which characterize short-
range collisions. To proceed further, one must introduce
approximations which allow the explicit calculation of
these terms.

Although perturbation theory could be utilized at
this point (and will be examined in future work), we
have chosen an alternative approach by modeling the
time dependence of the nonlocal damping terms. Such
modeling yields both the correct short- and long-time
behavior, while permitting the explicit calculation of
the damping terms and the analytical solution of the
resulting coupled kinetic equations for the dynamic
form factor S(k,w) characterizing electron density
fluctuations. Furthermore, such modeling is not limited
to low-density (near collisionless) plasmas.

To illustrate the utility of such modeling, we have
applied the theory to the analysis of light scattering
from dense, collision-dominated plasmas. Our results
agree with experiments, as well as with earlier theories
(in the regimes in which these theories are valid).

The particular model studied was presented only to
illustrate the potential of the more general theory for
analyzing density fluctuations in plasmas. More refined
models will be developed in a future publication which
will allow for unequal temperatures (7.#7,) and for
nonequilibrium static correlations (such as encountered
in laser heated plasmas). Such a theory can then be
applied more generally to analyze the interaction of
electromagnetic radiation with plasmas (including light
absorption and emission as well as scattering).

ACKNOWLEDGMENTS

This work has benefitted very substantially from
conversations with A. Z. Akcasu, D. R. Bach, and
R. K. Osborn. The authors would particularly like to
acknowledge not only frequent discussions with E. M.
Leonard, but as well as her assistance in supplying
preliminary data on the analysis of scattering experi-
ments using the BGK collision model.

673

This work was supported in part by the National
Science Foundation under Grant GK-19360X.

APPENDIX A

We wish to calculate the t=0 form of the damping
kernel.® First, note that

{fs(p, 0)f*(p’, 0) )= L(1=P)ou(p) L(1—P)o*(p") ]}
= (o:(p) (1= P)ar*(p")). (A1)

Using the definition of the projection operator P,

PG(p)=[ d*%'[ &"(G(p)a*(p"))-¢7(p’, p") -a(p”),

(A2)
we can calculate

p [00] {('Lk’p/me) neMo(p> [Ceo(k) Ps+ca1'(k)pi:]

(ikp/m)nMi(p)[Cii(k) pit+Cie(k) pe]
(A3)

03

and

(o+(p) Por*(p') Yy =n:M.(p") (k- p/ms) nM (D)
X (ke /M) [1.Crs (k) has () +1,Crr(B) her(R) ]. - (A4)

Furthermore,

{o:(P)or*(p") )= E E

as~1 8

d
exp(ik- x"")F“'-g §(p—p*0)
. d
X exp(—tk-xB')Fﬁ"-EB B(p'—pﬂf)>

a ’
- —— ! B Fa. a.
Ser apa :8(p— p)M(p)a§< F

+__

’

X 3 3 (FeFt explik- (x—x0)])  (AS)

ag=l Bl

But, if we note that

ZV.‘: (FesFae)=n,ID,(0),

o g=l

Ns N,
>, 2 (FeeFbrexp[ik- (x*e—
ag=l §pml

=®sr(k)

= kk(nanr/ﬂsﬂr) har(k) - naDsr(k) ’

where the prime denotes a,#f, if s=7, then it is a
straightforward calculation to combine (A4) and (AS5),

=) 1)

(A6)
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using (A6) to find

)= — 89 B3, ) —p
(0«(9,9;0)— Dc(O)(ap ap+m°ap P 6(p p)

1Cee ( k) ﬁez
_m_‘z_ -

+pM.(p)-(kk B D,.(k))-p' (A7)

and
ﬂccu' (k)

M

0o (D> B'> 0) =PM.(p) -(kk
_ B m D,,-(k>)-p' (A8)

M, 1

with similar expressions for ¢i; and ¢

APPENDIX B

In this appendix we will sketch the calculation of
D,(0). Recall

D)=} 35 (Feo-Fesy=IN,(Fu-Fio), (B1)
where

Flo=— .i_ [ gi Vu(l xle— xﬁu)
ox\ Bym2

+ ﬁil yor(| o—xbe )] (B2)

Making use of

)

Flo= (BPO) - axle’

(B3)
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If we now consider an electron-ion plasma, then
D,(0) = Des(0) + D.i(0) = (14Z) Des(0),
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