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A procedure for investigating the strengthening of a shock which collides head-on with a
rarefaction wave is suggested and is carried through for the case in which the entropy jump
across the shock is small enough to be negligible.

I. INTRODUCTION

HE problem which is considered in the
present paper is the strengthening and
acceleration of a shock which moves in such a
way that it collides with a rarefaction which ap-
proaches the shock from the low pressure side.
Such a collision may be thought to take place in
a semi-infinite tube as shown in Fig. 1. The x axis
is taken to be the axis of the tube. A piston is
initially moving toward the left with a constant
velocity less than that of sound and the gas in the
tube moves with the same velocity. (The restric-
tion on the initial velocity of the piston is not
essential; it is merely convenient for the purpose
of describing the phenomenon.) When the piston
reaches the position x=0 at time (=0, it is
assumed that the piston accelerates in some
manner toward the left and thus produces a
simple rarefaction wave which moves toward the
right. At a large positive value of x a shock wave
whose low pressure side faces the origin is as-
sumed to exist. The shock wave will move toward
the origin with uniform speed and constant
strength until it meets the oncoming rarefaction
wave at a distance L from the origin. The shock
will then accelerate and be strengthened as it
meets the gas of decreasing density. Further-
more, the entropy jump across the shock, which
is constant as long as the shock moves through
the gas which has not yet been disturbed by the
rarefaction, will increase. Thus an entropy wave
which moves with the fluid will be formed on the
high pressure side of the shock so that the low on
the high pressure side of the shock is no longer
isentropic.
In reference 1 Courant and Friedrichs consider
the interaction discussed above and conclude
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that the final result of such an interaction will be
a shock wave moving towards the left and a
rarefaction wave moving toward the right, sepa-
rated by a zone of gas of varying entropy.! The
calculations in the present paper have been made
with these results kept in mind and will describe
in more detail than is given in reference 1 the
actual process of interaction between the shock
and rarefaction waves.

It might be pointed out that the collision be-
tween the shock wave and rarefaction wave as
discussed in the present paper is an idealization
of processes which occur in intermittent jet
engines and supersonic wind tunnels which oper-
ate by permitting air from the outside atmos-
phere to pass through the tunnel into a low
pressure reservoir,

II. PROCEDURE

Before discussing the interaction between the
rarefaction and shock, the properties of the
rarefaction and shock waves will be reviewed
brieflty. The terminology of reference 2 will be
used throughout.?

A simple wave in non-steady, one-dimensional
flow refers to a special isentropic flow in which
the fluid velocity, pressure, density, and speed of
sound assume constant values along each straight
line of a one-parameter family of straight lines in
the x—¢ plane. These values in general differ
from line to line of this family. For general non-
steady one-dimensional flows, two families of
curves in the x—¢ plane play particularly im-
portant roles. These curves are called the charac-
teristic curves and are defined by the differential
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equations dx/dt =u-tc, where u is the velocity of
the fluid and ¢ is the local velocity of sound.
When the flow is a simple wave, one family of
these characteristics is the family of straight lines
discussed above. A fundamental theorem on
simple waves says that flows adjacent to flows of
steady state are simple waves. Hence, the rare-
faction wave described above, produced by ac-
celeration of the piston, is a simple wave, since
the fluid is initially in a steady state. In the pres-
ent case the family of characteristics which are
straight lines is that one which has the plus sign.
In a simple wave the pressure p, the density p,
and the velocity of sound ¢ are related to the
velocity of the fluid by the following formulas:
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where subscript ¢ refers to the initial constant
state of the gas before the rarefaction has affected
the flow and v is the ratio of specific heats.

The properties of shock waves will now be dis-
cussed. Let the subscripts 0 and 1 refer, respec-
tively, to the low and high pressure sides of the
shock. There are three shock conditions which
arise from the conditions of conservation of mass,
momentum, and energy across the shock. These
relations can be written

P1—Do .

po%e® = popy = p1%+?, 4)

P1— Po
pottao+Po= p1ut1v1+P1, %)
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p1=po———. (6)
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In the above equations

Vo= 1uo— L1, (7N
v1=u1— I, : (8)

where x; indicates the position of the shock and
the dot indicates differentiation with respect to
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time, so that &, is the velocity of the shock. The
constant p? equals (yv—1)/(v+1).

It will be convenient to measure the shock
strength in terms of the excess pressure ratio
£=(p1—po)/(po). In terms of £ the shock condi-
tions may be written

vo=co(1+4v§)},
£=(yvo/co?) (uo—u1),
and from (9) and (10)
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The process of interaction will now be con-
sidered. The quantities on the low and high
pressure sides of the shock before the interaction
will be denoted by the subscripts A and B, re-
spectively. Thus, before the interaction of the
shock wave and rarefaction wave py=pgp, u1=ug,
p1=pp, C1=CB, Po=pPa, Uo=U4, Po=pa, Co=Ca.
Using this notation Egs. (1), (2), and (3) may be
rewritten as follows:
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Since in the wave #o<wua (#o and %, are negative
in our coordinates), it is seen that po<pa, po<pa,
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F1c. 1. Collision between shock and rarefaction wave.

co<c4. Furthermore, the head of the wave
travels with velocity u4-+ca.

Furthermore, if £ denotes the excess pressure
ratio of the shock before interaction, then

(12a)

The rarefaction wave is completely deter-
mined by the velocity with which the piston is
withdrawn from the tube. It will, therefore, be
assumed that u,, hence also po, po, ¢p are known
functions of x and ¢.

It is the problem of the present paper to find
X1, &1, #1, & as a function of time as the shock
wave moves along its path. If %, is known as a
function of u,, then the differential Eq. (11a) can
be solved to give x1(t) and #:(¢). Then also £(¢)
can be found from (10). Therefore, in addition to
Eq. (11), another relation between ve, %o, % is
needed so that vy, #; can be solved in terms of u,
alone. Having found #; as a function of #; the
procedures outlined above can be used to find the
desired quantities.

As explained previously, the fluid on the high
pressure side of the shock wave is not isentropic.
Consider the shock at a given time. The region on
the high pressure side can be divided into small
regions in which the pressure, density, velocity,
and entropy are considered constant. In par-
ticular consider the small region immediately
adjacent to the shock. The fluid particles which
have just passed through the shock will move
toward the left with a velocity greater (i.e., more
negative in the coordinate system chosen) than
the fluid in the small region being considered.
Hence the particles which have just passed
through the shock may be considered the front of
a rarefaction wave which will pass through the
small region. Inasmuch as the fluid is isentropic
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in the region considered, Eq. (1) describes the
relation between pressure and velocity.
In Eq. (1) we shall write

p=p1, u=wu, c=aq,
u;=u1+Au1, c¢;=c1+Ac, (14)
pi=p1+Aps,

passing to the limit, the following differential
equation is obtained:

dpr/duy=~p:1/cr. (15)

By means of Egs. (12), (13), and (1a), Eq. (15)
can be converted into a differential equation
with ¢ and u, as variables. By integrating this
differential equation, a new relation which gives ¢
as a function of u, is obtained. By substituting
for £ in (12), u1—u, is found as a function of #,
alone, and the procedure outlined above may be
used to find x:(t), £1(£), £(£), and finally u4(2).

A particularly simple and interesting case is
the one in which the shock is weak. As shown in
reference 2, the entropy jump across a sufh-
ciently weak shock is proportional to &. Thus if
the shock is so weak that all powers of & higher
than the second can be neglected the fluid on the
high pressure side of the shock can be considered
isentropic.

When the value of ¢; corresponding to isentropic
flow is substituted in (15), we obtain

7—1 U1 —upg 29[ (y—=1)
P1=PB[1+"—2— —] . (1b)

CB

This result was to be expected from the manner
of derivation of (15). It is also to be expected
from the fact that we have a non-uniform
isentropic state adjacent to the constant state
given by pg, #g, ps, therefore the wave on the
high pressure side of the shock must be a simple

wave and the simple wave relations must hold.
From (1b)
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Ca
and (13) méy be replaced by its isentropic
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counterpart
cofcr= (14 i,

From (17)
S

(17)

(17a)

For the special case of weak shocks, which is to
be treated, the general procedure outlined above
will be modified as follows: From the nature of
the problem it is expected that #, can be ex-
panded in powers of £;.

w1(£1, w0) =fo(uo) + Erfr(to) + Efa(ue) - - .

The functions f,, fi, --- etc. will be sought.
Using (18), (17a), and (12a) in (16), £ is obtained
as a power series in £; which involves the f;'s as
coefficients. This series is not valid beyond the
second power of £ because of the assumption of
isentropic flow. The expression for £ so obtained
is substituted in Eq. (9) to obtain v, in an ex-
pansion in £;, which again will not be wvalid
beyond the second power of £;. By substituting
u; as given by Eq. (18) into Eq. (11) an alter-
native expansion of ¥, in powers of £ is obtained.
Comparison of the coefficients of powers of £; of
both expansions yields the functions fy, f1, and fs.

Having found these functions, %, is known as a
function of #o; and x1, &1, £, u1, %o can be found as
functions of time as the shock moves along its
path, as explained previously.

(18)

III. RESULTS
A. Infinitesimal Shocks

For initially infinitesimal shocks £,=0. It is
easily verified that fo=u, and that £=0. There-
fore, an infinitesimal shock remains an infini-
tesimal shock when passing through a rarefaction
wave.

Furthermore, &, =u¢— ¢y, which is the equation
of a backward characteristic of the simple wave.
Hence, infinitesimal shocks move along the
characteristics of the simple wave. This result
was to have been expected from the role played
by characteristics as propagators of small
disturbances.

B. Weak Shocks

Weak shocks are defined as those shocks for
which the powers of £ higher than the first can be
neglected.
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It is found that f;= —c4/y. Furthermore, to
this approximation

(19)

which shows that for weak shocks the increase in
the velocity of the fluid behind the shock is equal
to the increase in velocity which occurs ahead of
the shock, or to put the result in different words,
the velocity of the fluid behind the shock differs
from the velocity ahead of the shock only by a
constant.

The differential equation for the position of the
shock is

Ur—UB=Uo— U4,

(20)

The path followed by a weak shock is, there-
fore, no longer a characteristic of the rarefaction
wave. Moreover, since up—u, is negative, the
shock wave will travel faster than the velocity of
an infinitesimal disturbance (i.e., a sound wave)
through the rarefaction region.

The strength of the shock as measured by its
excess pressure ratio increases as it passes through
the rarefaction region. The expression for £ is

£=Ei(ca/co). (21)

From (3a) it is clear that ¢y/c4 decreases so that ¢
increases. An initially weak shock may, therefore,
become strong when interacting with the rare-
faction.

In order to present a specific example of the
method of finding the velocity of shock and of the
fluid before and behind the shock, a special
rarefaction wave will be considered, namely, the
rarefaction wave which results when the piston
undergoes infinite acceleration in changing its
initial velocity #4 to some final constant velocity.
Such a rarefaction wave is called a centered rare-
faction wave. The velocity u, is given by

wo—tua=(1—p)[(x/t) ~ca~usl.  (22)

For simplicity, c4 will be taken equal to unity, %4
will be taken equal to zero, and the distance from
the origin to L at which the shock and rarefaction
interact will also be taken as unity. Likewise the
time interval required by the head of the rare-
faction wave to move from the origin to the
position x=L will be taken as unity. These
simplifications correspond merely to a choice of
units and a frame of reference from which the
phenomenon is viewed.

iil; = uo+ (V‘Y/Z) (uB— uA) —Cyp.
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Then for ¢>1
u?

4(1—u?) —up
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w1(t) =wuo(t) +us, (26)

and the various quantities which are desired are
completely solved for.

C. Moderately Strong Shocks

A moderately strong shock is one in which all
powers of higher than the second can be neglected.
For such shocks it is found that

fa=(v/2v)ca. 2n

Therefore, #1—up=uo—u4 as for weak shocks.
This result is somewhat surprising, inasmuch as
one might expect the relation between #; and %,
to be non-linear for moderately strong shocks. It
therefore appears from this point of view that
instead of using the excess pressure ratio as a

criterion of shock strength it would be more

satisfactory to use the non-dimensional velocity
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difference (u1~us)/co. Thus, weak disturbances
might better be defined as those such that all
powers of (u1—ue)/co beyond the first may be
neglected. However, we shall continue to use our
original definition.

For moderately strong shocks the excess pres-
sure ratio is given by

Ca v+1 feca
s=sl—-[1+ £, ——1)].
Co 4‘)’ Co

(28)

Since c4/co>1, the strength of the moderately
strong shock increases at a faster rate than that
of a weak shock in terms of ¢4/c,. Also the equa-
tion of motion of the shock is

o (s —10)?
T1=Uo ‘!""(“B “uA) —Cp— ™,
2 8co

(29)

which shows that the moderately strong shock
travels faster through the rarefaction region than
the weak shock.

As before, when u, is given as a function of x
and £, (29) may be integrated to give the position
and velocity of the shock as a function of the
time and then xi, &1, uo, #1, £ may be found as
functions of the time or position of the shock.
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