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The critical radius of a strained quantum wire and the potential strain stabilization of 
quantum wire arrays has been investigated for the In,Gat -,As/GaAs system. The critical 
radius of the quantum wire was calculated using an energy balance approach. The wire 
was found to be more stable than the corresponding two-dimensional quantum well structure. 
The use of surface tension as a stabilization force during the growth of strained quantum 
wire arrays is expected to have beneficial effects for arrays with greater than 7% InAs. 

1. INTRODUCTION 

With improvements in lithography and crystal growth 
technology, it is now possible to fabricate one- and zero- 
dimensional semiconductor systems: quantum wires and 
quantum dots. Recent work has also focused on the fabri- 
cation of one- and two-dimensional arrays of quantum 
wires using in situ growth techniques such as molecular- 
beam epitaxy (MBE) or metalorganic chemical vapor dep- 
osition (MOCVD). Research on the growth of wire arrays 
presently exploits the relatively strain-free AlGaAs/GaAs 
material system and relies on the preferential bonding of 
Al atoms to surface step ledges. This may be attributed to 
the relative surface-free energies of the group III metals, Al 
and Ga.’ Recently, Berger et al.’ and Srolovitz3 have dem- 
onstrated that the presence of stress during strained semi- 
conductor film growth can lead to the destabilization of 
layer-by-layer growth in favor of island growth. It has also 
been shown that surface tension modifies the critical layer 
thickness of a single strained overlayer. In compressively 
strained overlayers, such as InGaAs on GaAs, the critical 
layer thickness is increased by the presence of surface ten- 
sion. In the present paper, we consider the role of surface- 
free energy (or surface tension) in promoting the growth 
of strained quantum wire arrays with wavelengths deter- 
mined by the competition between surface tension and 
stress relaxation. 

The best known method for the in situ growth of quan- 
tum wires begins with the preparation of a terraced sub- 
strate.5*6 Ideally, straight parallel monolayer steps bound 
flat terraces which run from one edge of the substrate to 
the other, as shown in Fig. 1. The terrace width determines 
the center-to-center wire spacing. Growth proceeds in a 
layer-by-layer fashion at the advancing step edges while 
maintaining the terrace structure of the substrate. Upon 
completion of a GaAs buffer layer, half-monolayers of 
AlAs and GaAs are alternately deposited. This builds up 
AlAs only on AlAs and GaAs only on GaAs. The se- 
quence is continued until the height of the AlAs pillars 
equals their width. Continuing the growth with only GaAs 
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results in the production of an array of AlAs wires with 
square cross sections, the edge dimension of which equals 
the interwire spacing and is one half of the terrace width. 
Alternatively, if the buffer and cap layers are AlAs, an 
array of GaAs wires in an AlAs matrix results. 

The above model for quantum wire array growth is 
based upon the energetics of atom bonding at terrace 
edges. However, since the dimensions involved in terrace 
growth are so small and the capillary (surface tension) 
driving force scales as the interfacial energy divided by the 
appropriate length scale (radius of curvature) we should 
expect that surface tension plays a major role in the for- 
mation of these structures. It has been observed that while 
terrace edges are not initially straight and parallel, the 
growth of vertical (Al,Ga)As superlattices tends to en- 
hance both properties. This result suggests that the line 
tension of the terrace edge is minimized when the edge is 
straight and that the Al-Ga interfacial energy is greater 
than the Ga surface energy. Therefore, these experimental 
results support the idea that interfacial/surface tension 
play a major role in determining growth modes. 

Since surface tension helps determine the growth mor- 
phology, in the present paper we investigate methods by 
which surface tension can be optimally utilized to enhance 
the growth of quantum wire arrays. In order to do this, we 
build on the suggestions of Berger ef al.’ and Srolovitz3 in 
order to exploit the competition between strain energy de- 
stabilization and surface energy stabilization of surfaces. 
This competition results in the periodic modulation of the 
surface morphology. This type of relaxation requires the 
presence of a stress in the overlayer and hence this ap- 
proach may only be utilized below the critical thickness for 
the formation of interfacial dislocations. The present paper 
focuses on the estimation of the critical dimensions for 
strained quantum wires and dots, and for the case of 
InGaAs/GaAs system, defining the conditions under 
which surface tension will enhance the growth of wire ar- 
rays. . 
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FIG. 1. An ordered terrace structure with monolayer step heights prior to 
the initiation of film growth. 

II. CRITICAL RADII 

In order to utilize surface tension to stabilize quantum 
wire and dot arrays, it is imperative that the strain in the 
wires or dots is not relieved by the formation of inter-facial 
dislocations. Although there is evidence that a force bal- 
ance method for determining critical dimensions is more 
accurate than energetic methods,7 utilization of energy 
methods are more easily applied since they require no as- 
sumptions regarding the dislocation mechanism. For this 
reason, we employ the simpler energy methods for the 
quantum wire and dot critical radius computations. 

In the energy balance method, the critical dimension 
for interfacial dislocation formation is determined by 
equating the strain energy of the unrelaxed system with the 
energy of the inter-facial dislocation network. If we assume 
that the elastic constants do not vary through the material, 
the elastic strain energy (per unit volume) of the strained 
phase in an infinite medium is independent of the shape of 
the strain phase and may be written as 

E,=2G( I+ v)/( 1 - Y)E~, (1) 
where G is the shear modulus, Y is the Poisson’s ratio, and 
E is the elastic misfit strain. It is important to note that 
since the elastic energy of the solid is proportional to 8 
rather than E, the same results are obtained for compres- 
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sion as for tension (i.e., linear elastic solids are harmonic). 
The elastic energy of the an interfacial dislocation array 
(per unit area) is8 

E,=${l +p-- (1 +$)“2-Pln[2P(1 +p2)1’2 

-w211, (2) 

where p = re/( 1 - Y) and b is the magnitude of the Bur- 
gers vector of the dislocations. 

The critical quantum well layer thickness is obtained 
by equating the strain energy per unit area [i.e., the prod- 
uct of the layer thickness h and Eq. (l)] with the interfa- 
cial dislocation network energy per unit area [i.e., twice 
Eq. (2) since the quantum well has two interfaces]. The 
critical quantum well layer half-thickness, hL*‘*’ = hJ2, is 
quoted since it will be compared with quantum wire and 
dot radii 

h”/*‘=& 
c (1 -Y)/(l +y)(l +P- (1 +P2Y2 

-filn[20(1 +$)“2-2P2]) (3) 

This result is identical to that obtained by Matthews.’ 
As for the quantum well case, the critical quantum 

wire radius, Rz, is determined by equating the strain energy 
per unit length of a cylinder [i.e., the product of Eq. ( 1) 
and rR2] and the interfacial dislocation network energy 
per unit length of a cylinder [i.e., the product of Eq. (2) 
and 25-R]: s; 

K=& :J: (-) Cl +B- (1 -tP2)li2 

-LJln[2B(l +/32)1’2-2p2]}. (4) 

The critical radius of the quantum wire is exactly twice the 
half-critical thickness of the quantum well. A similar cal- 
culation for the quantum dot (sphere) geometry yields 

Rf= Cl +P- (1 +$)“2 

-/3ln[2/3(1 +fi2)1’2-2fi2]}. (5) 

The critical radius of the quantum dot is exactly three 
times that of the half-critical thickness of the quantum well 
and 50% larger than that for the quantum wire. 

Figure 2 shows the critical half-thickness for a quan- 
tum well, the critical radius for a quantum wire, and the 
critical radius of a quantum dot made of In,Gat _ ,As in a 
GaAs matrix as a function of In mole fraction x. In the 
calqblation of these curves, a Burgers vector of a 60” dis- 
location with b = 0.4 nm was employed and Poisson’s ratio 
was chosen as 0.31. Clearly, as the dimensionality of the 
dtructure shifts from the quantum well (d = 2) to the 
quantum dot (d = 0) greater InAs concentrations can be 
accommodated at the same critical length. 

Also shown in Fig. 2 is the half-thickness for a quan- 
tum well as calculated from force balance considerations.7 
The half-thickness of the quantum well, as calculated from 
the force balance method is approximately 2.75 times 
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FIG. 2. Critical dimensions for a quantum well, quantum wire (cylinder), 
and quantum dot (sphere) calculated using the energy method. For the 
quantum wire and dot this dimension is the radius and for the well it is 
the half-thickness. For comparison, the critical dimension of the quantum 
well calculated using the force method is also shown. 

greater than the energy balance results over the entire InAs 
concentration range. We expect a similar factor to apply to 
the quantum wire and quantum dot results on going to a 
force balance approach. 

Ill. SURFACE TENSION AND ELASTIC INSTABILITY 

Now that the appropriate critical lengths for the 
strained quantum wire and quantum dot have been deter- 
mined, the potential use of surface tension and the elastic 
instability to enhance growth can be investigated. The basis 
of this study is the destabilization of flat, thin strained films 
and an evaluation of the wavelengths at which the desta- 
bilization occurs the fastest. 

A flat surface bounding a strained elastic body is un- 
stable and can develop ripples for all wavelengths longer 
than & = rrMy/a 2, where M is the elastic modulus along 
the surface, y is the surface tension, and a( = -ME) is 
the stress in the body. This result was derived by Asaro 
and Tiller,” in connection with their study of stress cor- 
rosion cracking, and independently by Srolovitz,3 in con- 
nection with a strained film growth study. The actual 
wavelength of the surface profile which develops depends 
on the kinetic mechanism which controls matter transport 
to/from/along the surface. For surface diffusion controlled 
growth, such as MBE or MOMBE, the wavelength of the 
fastest growing mode is $lo. For growth controlled by 
evaporation and condensation from the vapor, such as 
MOCVD, the maximally unstable mode occurs at 2/2,. 

In calculating the maximum stable wavelength, /zo, 
several assumptions are made. The seminal analysis as- 
sumes a flat surface, as opposed to a terraced surface, as in 
the present case. The effect of a nonplanar surface on the 
determination of the elastic stability of the film is consid- 
ered to be negligible as long as A0 is much greater than the 

step height at the terrace edge. The surface tension used 
throughout is calculated for a flat ( 100) GaAs surface. The 
variation in the surface tension with the addition of In is 
assumed to be negligible compared to the other errors in 
the calculation. It is further assumed that the line tension 
of the step edge, which is neglected in the present analysis, 
will stabilize a quantum wire array along the length of the 
wire as in the case of the AlAs/GaAs system (see Ref. 16 
for an analysis of the effect of step edge line tension in 
homoepitaxial growth). If this is not the case, then one 
should be able to engineer the growth of a two-dimensional 
quantum dot array using arguments similar to those pre- 
sented below for quantum wires. Finally, it is assumed that 
the elastic stability analysis is valid only up to the point at 
which the stress in the film is relieved by misfit dislocation 
formation. 

In order to calculate the maximally unstable wave- 
length as a function of InAs concentration, the surface 
elastic modulus and the surface tension of the film must 
first be determined. The surface elastic moduli of GaAs has 
been calculated by Brantley” for different surface orienta- 
tions. For the (100) GaAs surface, M is 1.24 X 10” 
dyne/cm2. 

Since no experimental data on the surface tension or 
surface energy per unit area y of GaAs is available, we 
estimate using the method of Mezey and Giber12: 

ahG* 
Y= 

4 ’ 
(6) 

where 

AG*=AG+ RTln(RT/PV(T)), 

a=( hi- &J/J% 
and where zb is the bulk coordination number, z, is the 
surface coordination number, 4 is the molar surface area, 
AG* is the molar free energy of atomization, V(T) is the 
volume of the evaporated surface, P is the vapor pressure, 
R is the gas constant, and T is the temperature. In deter- 
mining the constants necessary to calculate y, we assume 
that the surface tension is controlled by the arsenic atoms 
due to the higher vapor pressure. 

The variable a describes the bond cutting between sur- 
face atoms and bulk atoms. For a GaAs lattice, the bulk 
coordination number is 4. In the first approximation, a 
surface As atom will have two dangling bonds, with a co- 
ordination number of 2. However, surface reconstruction 
as observed by reflection high-energy electron diffraction 
(RHEED) leads to a surface coordination number of 
three.13 Using these numbers, a is found to be 0.13. During 
growth, the GaAs surface is assumed to be arsenic stabi- 
lized with a 2 x 4 reconstruction (2 arsenic surface atoms 
per unit cell) such that 4 z 9.6 X lo8 cm2/mole. How- 
ever, since the surface reconstruction varies with substrate 
temperature and incident arsenic flux during growth, both 
a and I$ may vary. Following Overbury et ~1.‘~ we deter- 
mine AG* as half the molar heat of sublimation15 
(GaAq,) -+Gq,) + As(,) ); AG* = 77.5 kcal/mole. With 
the above results, a surface tension of 0.45 J/m2 is obtained 
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FIG. 3. The critical wavelength (i.e. 4 X I?:) /2, and the shortest unstable 
wavelength & vs the InAs mole fraction in the quantum wires. 

FIG. 4. The estimated true critical wavelength (Le., 2.75 X A,) and the 
maximally unstable wavelengths for evaporation/condensation controlled 
kinetics (i.e., 21,) and surface diffusion controlled kinetics (i.e., &,) vs 
the InAs mole fraction in the quantum wires. 

for GaAs at room temperature. This is surprisingly close to 
the recently measured value of 0.46 J/m2 for molten GaAs 
at its melting point.” 

Employing the determined value of y, the minimum 
wavelength for unstable (nonflat) film growth ilo for a 
pseudomorphic In,Ga’ -XAs overlayer on GaAs can now 
be determined. For the case of equally spaced quantum 
wires with wire spacing equal to the wire diameter, the 
maximum period of the array is equal to four times the 
critical radius for dislocation relaxation. This period cor- 
responds to a critical wavelength, /2,. /2, and il, are com- 
pared in Fig. 3. For InAs mole fraction greater than 0.33, 
flat, pseudomorphic thin films are unstable with respect to 
elastic relaxation while a quantum wire array is thermody- 
namically stable. 

Extending the preceding arguments, a set of design 
constraints may be proposed for strained quantum wire 
arrays. The appropriate quantities to focus on in setting 
such constraints are the critical wavelength and the wave- 
length of the fastest growing unstable mode. In Fig. 4 we 
plot the 2.75 times the critical wavelength determined 
above (to account for the difference between the energy 
and more accurate force methods) and the wavelengths of 
the fastest growing modes 2& (evaporation-condensation) 
and :A0 (surface diffusion) versus InAs mole fraction. The 
maximally unstable wavelength for a thin film is proposed 
to be the maximum stable wavelength for a wire array. 
Assuming, as in the case of thin strained films, that the 
energy balance underestimates the critical radius of the 
wire by a factor of 2.75, surface tension is predicted to 
stabilize the wire arrays for InAs mole fractions greater 
than 0.07. These curves indicate that elastic relaxation ef- 
fects are important for wavelengths less than 430 nm. This 
raises the question of what are the limitations imposed by 
technologically practical terrace widths. The terrace width 
as a function of tilt (or miscut ) angle away from the (001) 
orientation in either a [lnO] or [l ln] direction is plotted in 

Fig. 5 for a step height of one monolayer. In the equal 
diameter/spacing geometry, a terrace width of 30 nm is 
obtained for tilt angles of 0.4-0.6 degrees. This approaches 
the tilt angular uncertainty typical of GaAs substrates. 
Hence for small InAs mole fractions or large interwire 
spacings, tilt angle control becomes a serious practical lim- 
itation. 

IV. CONCLUSIONS 

We have proposed guidelines for the surface tension 
and elastic strain enhancement of the growth of strained 
quantum wire arrays. In so doing, we have also estimated 
the surface tension of GaAs and the critical dimensions of 
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FIG. 5. Terrace width as a function of misorientation angle with the 
surface tilted away from the (001) plane in a [InO] or [l ln] direction. 
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strained quantum wire and quantum dot systems. En- 
hanced quantum wire array growth is predicted over prac- 
tically obtainable InAs mole fraction and wire spacing 
ranges. Although approximate, these calculations support 
the concept that surface tension is an important design 
parameter for the fabrication of strained low-dimensional 
systems. 
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