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The flow field of a two-dimensional Bunsen flame is examined by approximating the zone of
combustion by a surface of discontinuity across which the density drops and normal velocity in-
creases. Even though the flow of unburned gases is potential, the flow of the burned gases is always
rotational and is therefore not amenable to complete analysis. Interaction of flame shape and flow
field is obtained analytically and experimentally. The entire flow field of unburned and burned gases
is mapped by taking stroboscopic photographs of small particles suspended in the combustible gases.
The measured flow field is considered in the light of the above analysis.

1. INTRODUCTION

HIS paper is concerned with the flow associated

with a flame propagating in a confined mixture
of combustible gases or when the flame is stabilized
at suitable boundaries and the combustible gases
stream through it. An example is the Bunsen flame
which is stabilized at the rim of a tube. We assume
that the atmosphere into which the burned gases
are discharged is inert so that there is no secondary
diffusion flame. All the combustion takes place in a
thin region which can be approximated by a surface
of diseontinuity separating the unburned from the
burned gases. As a first approximation we may
assume that the velocity of the unburned gases
normal and relative to the flame is constant, that is,
the flame speed is constant. The flame is a surface of
discontinuity across which the density drops from a
value p, in the unburned gases to p, in the burned
gases and correspondingly the velocity normal to
the flame at every point of the flame increases by
a factor p;/p,. It is assumed that the tangential
velocity is continuous across the flame and the flow
is incompressible on either side of the flame. We
shall show that the dynamics of the flow determines
to a large extent the structure and stability of the
flame and further progress in understanding the
behavior of flames will depend on our knowledge
of the flow field associated with flames. The flame
front will induce flow in burned and unburned gases.
The flow at large distances from the flame on either
side of it is parallel. In order to simplify matters we
assume that the flow is uniform as well as parallel
in the unburned gas at large distance from the flame.
This can be easily attained experimentally. We can
further assume that the effect of viscosity is small
and therefore the flow changes induced by the flame
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in the unburned region are potential. The flow in
the burned gases at large distance from the flame
will be parallel but not necessarily uniform since
the flame will generate vorticity in the burned gases.
It is necessary to calculate the vorticity generated
by the flame in order to define the problem of flow
associated with the flame. In the following we shall
consider two-dimensional flames. The equation of
motion neglecting viscosity is
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where v is the velocity, » the vorticity, p the pres-
sure, p the density, and the remaining symbols have
the usual meaning. Assume steady flow and multiply
Eq. (1) by a unit vector tangent to the eurve repre-

senting the flame, thus
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where u, and u, are the normal and tangential
velocity components respectively at the flame front
and s is the distance along the flame. We evaluate
Eq. (3) on either side of the flame, making use of
the momentum equation,

P + ooz, = pr + poun’, 4)
the continuity equation
PalUon = P1lUia, )]
and the fact that «,, = u,, = u, thus
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The subscripts 1 and 2 denote the conditions in
the unburned and burned gas respectively.' If we
assume that the flame speed u,, is independent of s
and the density is constant but different in the
burned and the unburned gases, we have

u’ .
Fre (7

prtia(ws = @) = 3(p1 — pg)
Even though «, = 0, w, will be zero only if
(3u,*/3s) = 0. In general u, is not constant along
the flame front so that the flow of the burned gases
will be rotational even though the flow of unburned
gases is potential. We are now in a position to
formulate the problem.

In the unburned gases we look for a potential
solution which gives uniform flow at z =
(see Fig. 1) zero normal velocity at the walls and a
constant normal velocity along s. After solving this
part we can find u, along s and calculate the vorticity
in the burned gases. In the burned gases we have
to solve for rotational flow which has parallel
velocity at + = -+ o, is bounded by free stream
lines and which takes preassigned velocity along s.
The curve s is not given and must be so chosen
that it satisfies the foregoing conditions. Finally, we
have to prove that the solution is unique.

Neglect of vorticity in downstream flow violates
the momentum equation. In fact the flow field far
downstream of the flame or the vorticity generated
is the main part of the problem and any analysis
which neglects it is not even an approximate treat-
ment of the flow. At the present time it does not
seem likely that a complete solution can be found.
It is worthwhile to investigate the general character
of the flow, both as an aid to analysis and as a help
in correlating the experimentally determined flow
field.

— Q0

2. EFFECT OF TANGENTIAL VELOCITY AT THE
FLAME FRONT

The velocity tangent to the flame front plays a
dominant role since it determines the vorticity or the
distribution of the irreversible loss in the total
(dynamie plus static) pressure of the burned gases.
In the burned gases at large distance from the flame

! The equations of motion show that in general the vor-
ticity of a fluid will change and it is conserved only under
special circumstances. One is apt to regard the generation of
vorticity as new, rather than classical, result since our
knowledge of fluid flows is almost entirely limited to the
potential or reversible case where the vorticity is zero every-
where. The generation of vorticity for the case of constant
flame speed has been discussed by H. S. Tsien, J. Appl.
Mech. 18, 188 (1951), and by R. A. Gross and R. Esch,
Jet Propulsion 24, 95 (1954).
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F1a. 1. Flow field of a Bunsen flame.

all streamlines are parallel and the magnitude of the
velocity along any streamline can be easily computed
in terms of the velocity tangent to the flame of the
same streamline. We have been considering the fluid
as incompressible on either side of the flame, there-
fore we can use Bernoulli’s equation separately on
either side of the flame. If p, and p, are the pressures
in the streamtube on the unburned and burned side,
respectively, p_. and p,. are the pressures in the
same streamtube at £ = — o and x = + o then
neglecting viscosity

P-w + %Plu—m2 =p, + %pl(ulnz + ulz) ®
and
Pia t+ %quarmz = p; + %Pz[(ﬂl/ﬂz)zumz + u:Z]- )]

The pressure drop across the flame is given by the
momentum equation

P2 =P — (Pl/Pz - I)Pluln2' (10)
From Eqgs. (8), (9), and (10) we have
oo = (Pow — Puw) + Lpu_s’
- %Plulnz(Pl/Pz -1 - %Plucz(l — p/p). (11)

In the above equation only u,. and u, vary from
streamline to streamline and it follows that u,.
takes the highest value for those streamlines which
are normal (u, = 0) to the flame front. u_., is finite
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for all flames and Eq. (11) shows that neither u,
nor %, can be infinite since this would make
(p_o — P.:w) infinite, that is, the velocity far down-
stream of the flame would become infinite for all
streamlines. Ordinarily, the velocity can become
infinite if the process is reversible. The restriction
that the velocity must be finite at the flame is due
to the fact that changes across the flame are irrever-
sible.

As the flow goes through the flame the normal
component of the velocity increases and the flow
is bent toward the normal to the flow through an
angle ¢ which is given in terms of «,.

_ -1 dUr _ P ﬂzu52 ;
§ = tan {uln (1 Pl)/(1 + P1u1n2)}' (2

3. EFFECT OF FLAME FRONT CURVATURE

The flame may introduce a discontinuous change
in the rate of divergence of the streamtubes. As an
example let us consider the tip of the Bunsen flame
which is concave towards the unburned gases.
Since the normal velocity increases after combustion,
the concave lame curvature produces a discontinuous
rate of expansion of the central streamtube, see
Fig. 2(a). Similarly, as shown in Fig. 2(b) the
convex flame produces a discontinuous rate of
contraction of the central streamtube. For flows
with constant density (p, = constant, p, = constant
but p, ¥ p,) we may take 9 |v|/3l where I is the
distance along the streamtube as a suitable definition
of the rate of contraction of a streamtube, which is
equal to (9u/dx) for the central streamtube. A
quantitative expression for the discontinuous rate
of expansion or contraction of the central streamtube
can be obtained In terms of the flame curvature by
making use of the fact that the normal velocity
increases by a factor p,/p. and the tangential
velocity is continuous across the flame front, that is

n
5=
1

(a)CONCAVE FLAME;n,-$1

1S NEGATIVE

(b)CONVEX FLAME ; n, 5%
IS POSITIVE

Fic. 2. Effect of lame front curvature on the rate of diver-
gence of streamtubes.
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vyt = vt (13)

where t is a unit vector tangent to the flame. Differ-
entiating Eq. (13) with respect to the distance
along the flame, we have

v av ot
t.<as)2 h t(88)1 - <vz B vl)'és
at

av
= t-(g;)l - Uyn{p1/ Pz — l}n:,%

At the tip of the flame t-(dv/ds) = (dv/dy). (15)

(14

Since p, and p; are both constants, we may apply
continuity equation [(du/dx) + (dv/dy) = 0] for
the incompressible flow separately on either side of
the flame. Making use of this fact, we have at the tip

00 du (16)

where u and v are Cartesian velocity components,
Substituting Eq. (16) in Eq. (14) we get

(gi;)z = <g—:)1 + win(p1/p2 ~ 1)11'%2' a7

Equation (17) gives the discontinuous change
across the flame in the rate of contraction du/dzx
of the central streamtube. When the flame curvature
n-(8t/ds) is positive, that is, the flame is convex
towards the unburned gases, the flow in the central
streamtube suffers a sudden rate of contraction as it
goes through the flame. If the curvature is large
enough then the convex flame can converge a
diverging streamtube, The concave flame, as in
the case of a Bunsen flame, has the opposite effect
on the central streamtube.

The flame not only bends the streamlines but also
changes their curvature. This change can be deter-
mined by considering the equilibrium of a fluid
element normal to a streamline, thus

dp/dm = pv’/R

dp | _{ DT
Lo 2] =[]
where m is the distance normal to the streamline
and R its radius of curvature. The curvature of the
streamline is m-(31/8) = —(1/R) where [ is the
distance along the streamline, 1 and m are unit
vectors along and normal to streamline respectively.
As defined above the sign of the curvature and the
radius of curvature depends on the convexity or the
concavity of the streamline. We evaluate Eq. (19)

(18)

or

(19)
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Fie. 3. Effect of flame speed variation on the curvature of central streamlines.

making use of the conservation of mass relations
p1 [Wi} dmy = p, v} dm, = pyu,, ds and the momentum
equation p, + pyui.’ = P + pyUs.’, thus

pelaero -Gl o
or
%:l - ll‘% - E‘lmg—s [(o*/p2 — pw’l.  (21)

We have assumed that [(p,*/p,) — p,] is constant
and if the flame speed does not change then the
radius of curvature of a streamline increases dis-
continuously as we go from the unburned to burned
side of the flame. The sign of the curvature can
change only if we allow the flame speed to change.
Consider a concave flame, as shown in Fig. 3(a),
the radius of curvature R, of the central streamlines
in the unburned gases is negative. The radius of
curvature will increase on the burned side if we
assume constant flame speed. However, if we assume
that flame speed is higher at the tip than at the
straight part of the flame then (d/ds)(u,”) is negative
and according to Eq. (21) the curvature can change
sign as shown in Fig. 3(b).

We now want to examine whether, consistent with
the equations of motion, it is possible for the stream-
lines to become parallel far downstream of the flame
after they have suffered a discontinuous change in
the rate of expansion or contraction across the
flame. Our discussion will be confined to the central
streamlines or the central streamtube. We know the
discontinuous change in its rate of expansion, its

asymptotic velocity on either side of the flame,
and we have to infer its behavior in between those
points. Since the total flame surface is larger than
the tube cross section «,, < u_., that is, the velocity
in the central streamtube decreases from w_. at
r = — o {0 u,, at the flame. According to Eq. (11)
the asymptotic velocity of the burned gases is
highest for those streamlines for which », = O.
Therefore the asymptotic velocity in the central
streamtube > o, %,,/p.

Let us first consider a convex flame as shown in
Fig. 3(c). According to the above argument the
central streamtube expands before reaching the
flame and suffers a sudden contraction at the flame,
The radius of curvature of the central streamlines
increases but its sign is preserved as the flow con-
tinues to accelerate until it reaches the asymptotic
velocity at © = 4 o,

For the concave flame, the central streamtube
expands before the flame and suffers a sudden
expansion at the flame. The central streamlines
continue to bend away from the burner centerline
since the sign of their curvature is preserved across
the flame. In view of the fact that the asymptotic
velocity of the central streamtube is higher at
z = -+ than at the flame, the streamtube must
converge some place in the burned gases. This is
shown in Fig. 4(a). Another possibility is that the
central streamtube overexpands in the unburned
gases [see Fig. 4(b)] and contracts before reaching
the flame where it suffers a sudden expansion which
nullifies some of its pre-flame contraction and it
finally reaches the asymptotic velocity which is,
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(a) (b}

Frc. 4. Two possible central streamtubes for concave flame
with constant flame speed.

of course, higher than its velocity at the flame. The
flow fields shown in Figs. 4(a) and 4(b) look very
odd and it is likely that their existence can be
disproved much more rigorously than has been
done here.

The above discussion has been limited to the case
of constant flame speed. If we allow the flame speed
to increase at the tip then the above mentioned odd
behavior of the flow disappears. For, if this increase
is large enough then Eq. (11) shows that the final
velocity of the central streamline is decreased and
may even become smaller than that of any other
streamline. Now, the only requirement is that after
going through the flame the central streamlines
should become parallel but they need not converge.
This behavior is possible if the sign of the curvature
-changes [see Fig. 3(b)]. Such a change is assured by
Eq. (21) if the flame speed increases sufficiently at
the tip.

Put in another way, the concave Bunsen flame
is realized because the flame speed increases at the
tip of the flame; that is, going through the flame the
central streamtubes experience more pressure drop
than the outer streamtubes. The pressure gradient
lateral to the streamlines is reversed. This pressure
gradient towards the center tends to make the
diverging burned gases parallel. The following
experiment confirms these considerations. A lean
propane-air flame was established on a £ in. X 1 in.
rectangular tube and the flow upstream of the flame
was made uniform by using a number of very fine
screens. As the volume flow was continuously
decreased at constant propane-air mixture ratio the
flame became fuzzy at the tip, the tip of the flame
changed from concave to convex and finally the
convex flame flashed back into the tube (Fig. 5)

KUETHE, AND MENKES

As the height of the flame decreases the curvature
decreases and the change in flame speed at the tip
is not large enough to support a concave flame. These
considerations apply quite generally but it is not
possible to demonstrate this for the usual Bunsen
burner which has a thick boundary layer at the wall,
(in the above experiment we decreased this effect
considerably by using very fine screens) and the
flame flashes back at the rim before the volume
flow is low enough for the flame curvature to change
at the tip. However, if the wall boundary layer is
reduced then exactly as for the rectangular burner,
the flame stabilized on a round tube becomes convex
as the volume flow is reduced.’ The above considera-
tions indicate that there exists no reasonable solution
for the flow in a Bunsen burner if we assume constant
flame speed. However, we must examine the detailed
flow field and show that it is radically different
from that obtained by assuming constant flame
speed.

4. THE OBSERVED FLOW FIELD

A two-dimensional lean propane-air flame was
stabilized on two electrically heated 1-mm o.d.
ceramic tubes placed along the long edge of 4 in. X 1
in. rectangular port. In this way the quenching effect
of the flame-holders on the flame was minimized
and the flame corresponds more closely to the
theoretical model with constant flame speed. There
were no variations in flame shape along its depth
since the burned gases were confined between two
quartz plates (Fig. 6). The flow upstream of the
flame was made uniform by using a number of fine
screens.

Five to ten micron titanium oxide particles were
introduced in the combustible gases through a slit in
a tube which bisected the burner port. The wake of
the tube is suppressed by screens placed immediately
downstream of it so that all the particles are confined
to a narrow sheet. The particle tracks were photo-
graphed on a high sensitivity film with an f 1.5 lens

F1e. 5. Change of flame shape with decreasing volume flow
(from left to right).

2 M. 8. Uberoi, J. Chem. Phys. 22, 1784 (1954).
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using flash bulb illumination and a rotating disk
with uniformly spaced openings as camera shutter.
Two of the pictures used to determine the flow field
of a lean propane-air flame are shown in Fig. 7.
These were taken with a red filter so as to minimize
the direct blue light from the flame. The length of
the particle track is proportional to the local velocity
except for an error of about 29, caused by the free
fall velocity of the particles. The over-all error in
the measurement is estimated to be =4%,. However,
the features of the flow field which we wish to discuss
are not dependent on measurement of flow velocity
with great accuracy.

Before discussing the present measurements we
might mention that Lewis and von Elbe® have
mapped the flow field of a flame stabilized on a
rectangular port, although no attempt was made to
correlate the asymptotic flow of burned gases with
the conditions at the flame front and that ahead of it.
The flame was not strictly two-dimensional and it
was not stabilized on externally heated flame holders
so that there was considerable variation of the
flame speed near the flame holders which could
have been avoided. Upstream of the flame the flow
was rotational, fully developed laminar flow in a

* B. Lewis and G. von Elbe, J. Chem. Phys. 11, 75 (1943).

Fic. 7. Photographs of the flow field.
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Fic. 6. Sketch of the burner assembly.

rectangular channel. It is best to make the upstream
flow uniform so that at least the changes due to the
flame in the unburned gas are potential.
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IDEAL FLAME
FRONT

IDEAL. STREAMLINE
ACTUAL STREAMLINE

ZONE OF
COMBUSTION

F1e. 8. Procedure for determining the position of the ideal
flame front.

The particle tracks show that the flow upstream
of the flame is not greatly changed as it approaches
the flame. The location of the surface of discon-
tinuity which in the analysis replaces the actual
region of combustion is determined in the following
way. Instead of following the actual particle path
we extend the particle tracks from either side into
the combustion zone as continuation of the paths
outside this zone, and the point at which the extended
tracks from the two sides intersect is taken as the
location of the ideal flame. This procedure is indi-
cated in Fig. 8. All velocities, densities, and distances
are normalized by dividing them by w_., p;, and
D/2, respectively, where D is the channel width.
The measured normal and tangential velocities at
the flame front in the unburned gases are shown in
Fig. 9 and are expressed as function of ¥, the mass
stream function which according to the above
normalization varies from 0 on the burner centerline
to =+1 at the flame edges. Since the vorticity is
conserved along a streamline it is more suitable to
express the conditions at the flame in terms of ¢
instead of the distance along the flame. The two
are proportional to one another for constant flame
speed since dy = (u,/u_.) [ds/(D/2)]. The ratios of

10 uit Ju.
e e
/
o8- Il
[ COMPUTED FROM ASYMPTQTIC
VELOCITY
06 |
‘\
n
04"’ \\ Uin Mg
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!
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0 02 04 ‘PO.G 08 1O

Fra. 9. Normal and tangential velocities at the flame front.

KUETHE, AND MENKES

normal and tangential velocity are given in Fig. 10.
The tangential velocity is, of course, continuous
across the flame and is given to show the internal
consistency of the measurements. For the purpose
of correlating the flow field the density ratio instead
of propane-air mixture ratio is the primary variable.
The average density ratio p,/p, determined from
the ratio of normal velocities across the flame front
is 5.8. The measured asymptotic velocity of the

Uon /Y
60 o . 2n / Uin

() —

S0

40

30F

Upp/upy

o Qo -

Fic. 10. Ratios of normal and tangential velocities across
the flame front.

burned gases as a function of y/(D/2) is shown in
Fig. 11. Knowing the density ratio and the velocity,
the mass stream function

( dy = Plea dy)
piU-o D/2

at x = 4+ can be computed’and is also shown in
Fig. 11. The measured asympgotlc velocity of the
burned gases can be expressed {a terms of the stream-
function using y versus ¢ curve of F1g 11. The
results are shown in Fig. 12. Assuming that the
density variation of the burned gases are negligible,
the vorticity is conserved when expressed in terms
of the streamfunction so that we may determine it
anywhere. The most convenient place to measure
the vorticity is z-= -+ = where the streamlines are
parallel and w, = (auw) /(dy). The vorticity was
measured as a function of y at ¢ = 4« and ex-
pressed in terms of ¢ using Fig. 11. The results are
shown in Fig. 12.

There are two extraneous effects which must be
taken into account when considering the accuracy
of the measurements. The first is the laminar mixing
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Fic. 11. Asymptotic velocity and streamfunction of burned
gases.

of the burned gases with the ambient atmosphere.
The asymptotic velocities were measured far away
from the flame so that the streamlines are nearly
parallel but not so far away that the laminar mixing
had become important. The curve of wu,. versus
y in Fig. 11 shows that the laminar mixing is con-
fined to the edges (¢ =~ 1) of the burned gases. Had
there been considerable mixing the velocity profile
would be like a bell-shaped curve. The second is
the effect of buoyancy. In the experiment the burned
gases were completely enclosed in a large chamber
(see Fig. 6) except for an opening at the top. A very
small amount of helium was continuously ejected
into the chamber through its bottom so that there
was no large density difference between the ambient
atmosphere and the burned gases. No appreciable
effect was noticed except for a small increase in the
laminar mixing of the burned gases with the helium
atmosphere. The use of helium was discontinued
and the burner was kept on for a few minutes before
taking the picture. The temperature of the ambient
atmosphere in the enclosure reached a value between
the room temperature and that of the burned gases
thus decreasing whatever effect the buoyancy had
on the flow field.

At the tip of the flame the deflection of the stream-
lines becomes very small so that it is difficult to fix
the position of the ideal flame front as was done for
the rest of the flame which was slightly curving or
straight. Furthermore, the photographs do not
show enough particle tracks in this region for the
accurate determination of the flame speed. At the
tip the radius of flame curvature is not appreciably
larger than the flame thickness and there may be

157

some divergence of the streamtubes within the
region of combustion which would require a refined
definition of the flame speed. The aim of this paper
is to discuss the over-all flow field and we have
virtually ignored the flow field within the zone of
combustion by approximating it by a surface of
discontinuity. The flow field within the zone of
combustion has been experimentally mapped by
Fristrom and the interested reader is referred to his
work.* Here we assume that even at the flame tip
it is possible to approximate the actual flame by a
surface of discontinuity and the problem is to find
the effective flame speed which gives the same over-
all flow field as that actually measured. At every
point on this ideal flame front (surface of discon-
tinuity) the streamlines suffer a pressure drop,
Ap = piur(pi/p, — 1) and the variations in the
flame speed can be determined by measuring the
variations in the pressure drop. Now, Eq. (11)
shows that the asymptotic velocity of the burned
gases is determined entirely by this pressure drop
and the tangential velocity at the flame. We com-
pare the asymptotic velocity of the central streamline
(u, = 0) with that of other streamlines for which
w1, and u, are known. Assuming that p./p, is the
same for all streamlines and using Eq. (11) we find
that the flame speed at the tip is about 1.9 times
(see Fig. 9) that for the straight section of the flame.

We can get an idea about the effect of flame speed
increase on the asymptotic velocity of the burned
gases in the following way. We compute the asymp-
totic velocity profile as function of ¥ by using Eq.

COMPUTED ON THE BASIS OF

30F  CONSTANT FLAME SPEED

0 ! | ! I }

0 02 04 06 08 1.0

4

F1c. 12. Variation of asymptotic velocity with streamfunction.

4 R. M. Fristrom, J. Chem. Phys, 24, 888 (1956).

The reviewer of this paper raised the question that, for
the burner size used, some of the conclusions might be
affected by the relatively large flame thickness. A few ob-
servations were made with a larger burner and for the %
inch burner with acetylene flame which is somewhat thinner
than the propane flame. The general character of the flow
field was the same for all these flames. The propane flame
was chosen because with the then available stroboscopic
camera the best data were obtained with a small burner and
a flame of low burning velocity.
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Fia. 13. Flame generated vorticity.

(11), the value of w, from Fig. 9 and assume that
the flame speed at the tip is close to its value for
straight flame. The velocity profile computed on this
basis is compared with the measured profile in Fig.
12.

The present measurements and those of all other
investigators show that the flame speed is constant
along a flame if the radius of curvature is large
compared with flame thickness. The present authors
had originally hoped to correlate the flow of burned
and unburned gases on the basis of constant flame
speed. However, the analytical consideration and
the experiments show that increase in the flame
speed at the tip strongly influences the over-all flow
field of a concave flame like that of a Bunsen burner.

The flame generated vorticity based on constant
flame speed can be computed from Eq. (7). The
vorticity thus computed is compared with measured
vorticity in Fig. 13. The measured vorticity is
negative while that predicted on the basis of constant
flame speed is positive. Equation (6) which was
derived without assuming constant flame speed can
be used to show that increase in the flame speed at
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the tip can reverse the sign of the flame generated
vorticity in the central region of the flame. The
combustible gases near the tip of the flame are
surrounded by burned gases and the heat conduction
increases the flame velocity in this region. Under
some circumstances the preferential diffusion may
also contribute to the change in the flame speed at
the tip. In any case the change in density of the
unburned gases at the tip is small compared with
the change in the flame speed, the latter can increase
considerably over its value for the straight flame.
Therefore, we are justified in neglecting the varia-
tions of p, and p, in Eq. (6). Further, if we take into
account small variations of p, and p, then the vor-
ticity is not conserved along a streamline, that is,
the vorticity is generated not only at the flame but
everywhere and the problem becomes hopelessly
complicated. From the geometry of the flame we
see that du,’/ds is positive at the tip, and since
the flame speed is higher at the tip than along the
straight flame, therefore 9u,’/ds is negative. The
flame generated vorticity can change sign if in Eq.
(6) the term involving du,’/ds is larger in absolute
magnitude than that involving du,’/ds.

5. CONCLUSIONS

The flow field of a flame affects its stability and
structure and the main difficulty in complete
solution lies in the fact that the flow of burned gases
is always rotational. There are no analytical methods
for solving rotational flows and we are forced to use
numerical methods which do not always lead to an
understanding of the mechanism of such flow. It
seems worthwhile to examine as many features of
the flow as possible without detailed numerical
calculations both as an aid to understanding of flow
associated with flames and to find consistent assump-
tions which may be used in numerical analysis. At
the present time it does not seem possible to develop
a theory of rotational flows; however, the study of a
few typical cases may guide us to some general
integral relations. The present work is an attempt
in this direction.



