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Instability resulting from stratification in thermal conductivity
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There are many instances of hydrodynamic instability induced by a variation, or stratification, in
either a fluid property or a flow property. In this article a new instability is presented. It is shown
that when there is a variation in thermal conductivity in the fluid, instability can occur in the

presence of a longitudinal gravitational field.

I. INTRODUCTION

In the majority of cases of hydrodynamic instability,
there is a stratification of either a fluid property or some
quantity of flow. The most obvious case of instability is that
of two superposed fluids, with the upper fluid heavier than
the lower one. A statically stratified fluid can be unstable if
the fluid is accelerated downward with an acceleration
greater than the gravitational acceleration g, as noted by
Taylor and as is well known now. The stratification in den-
sity of an incompressible fluid has its counterpart in the
stratification of entropy of a compressible fluid, as meteo-
rologists who invented the concept of potential density to
account for the effect of compressibility have long recog-
nized. Stratification in density in the presence of longitudi-
nal gravity can be unstable, as is now well known. Less well
known is the instability resulting from a stratification in elec-
tric conductivity, as shown by Taylor and McEwan' for a
steady vertical electric field and by Yih” for a vertical time-
periodic electric field. Instability resulting from viscosity
variation in shear flows (Yih?) is a subject that, after many
years, is now enjoying a period of revival of interest. In po-
rous media, a less viscous fluid pushing a more viscous one
can induce instability and produce fingers of penetration, as
Saffman and Taylor* showed.

But it does not necessarily need to be a fluid property
that, when stratified, can induce instability. If some quantity
of the flow of a fluid is stratified, it can be unstable too. A
prominent example is the Couette flow, which can be unsta-
ble if the square of the circulation decreases outwards, re-
sulting in the formation of Taylor vortices. The electromag-
netic counterpart (Yih®) of Taylor vortices is the result of a
radial stratification of a circular magnetic field. In two-di-
mensional flows the stratification of vorticity can induce in-
stability when there is a point of inflection in the velocity
profile, a famous and extreme case of which is the Helmholtz
instability, where the density stratification is stabilizing and
the instability results from the vortex sheet. Even when there
is no point of inflection in the velocity profile of a two-dimen-
sional flow of a viscous fluid, stratification of vorticity is still
important for instability, as indicated by the stability of
plane Couette flows, which has uniform vorticity. (For axi-
symmetric flows it is the stratification of the azimuthal vorti-
city divided by the radial distance that is important. When
this quantity is constant, as in Poiseuille flow, the flow is
stable against axisymmetric small disturbances.)

In this article, I shall show a new instability: the instabil-
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ity resulting from thermal-conductivity stratification. With
the other instances of how a fluid or a flow can be unstable
when a stratification is present, one could perhaps make the
point that hydrodynamic stability is a subject within the field
of stratified flows.

il. PRIMARY TEMPERATURE AND VELOCITY FIELDS

Consider two superposed fluids (Fig. 1), each of thick-
ness d, between two plane boundaries inclined at an angle 8
to the horizontal. To show that the instability to be revealed
results from conductivity variation alone, we shall assume
the two fluids to have the same viscosity and the same depen-
dence of density on temperature, but different thermal con-
ductivities: k, for the upper fluid and &, for the lower fluid.
That two such fluids are not easy to find is not necessarily an
objection to this study, since instabilities resulting from den-
sity and viscosity variations are known, as mentioned al-
ready in the Introduction, and the new cause of instability is
in addition to those other known causes of instability.

Let the origin of Cartesian coordinates be situated on
the interface of the fluids, and let x be measured along the
interface down the incline, and y be mizasured upward in a
direction normal to the interface. The temperatures at the
lower and upper boundaries will be denoted by T, — AT and
T, + AT, respectively.

We shall measure x and y in units of d, so that they are
dimensionless. The temperature in the lower and upper
fluids will be denoted by T, ( y) and 7,(y), respectively.
Defining #, and 4, by

R=DWW-T T - (1)
AT AT

one can readily solve the Laplace equation governing heat

conduction, with regards to the boundary and interfacial

conditions, and obtain

FIG. 1. Definition sketch.
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Bi=(A—1/Q+ 1D+ [24/(1+ )]y, (2)

hy=(A-1/A+ 1D+ [2/(1+ D)1y, (3)
where

A =ky/k,. (4)

The interfacial conditions for the temperature field are the
continuity of temperature and the continuity of heat flux
across the interface.

The variation of density with temperature is assumed
the same for both fluids only for the sake of simplicity. This
assumption is not at all necessary. We make it here only to
isolate the variation of thermal conductivity as the cause of
instability. The dependence of the density p on temperature
is

p=poll —a(T—-T,)], (3)
where p,, is the density at temperature T, and & is the coeffi-
cient of thermal expansivity. With # denoting the velocity

(in the x direction) of the primary flow and i denoting the
viscosity (assumed constant), we have

d%u .
p——+gpsinf— K=0, (6)
dy
where g is the gravitational acceleration, and
K= /2 . N
dx,

In (7), pis the pressure in the primary flow, and x, = xd, x
being measured in units of d.

The # for the lower and upper fiuids are, respectively,
denoted by #,( y) and 4,( y). The boundary conditions are

7,(—1)=0, #,(1)=0 (8)
and the interfacial conditions are

7,(0) =7,(0), T 4y, )
dy dy

Equation (6) gives two equations, one for %,, and one for @,.
When these are solved with conditions (9) and (10), one
obtains

Kd? 1

U, = 2% (1—y2)+—6—m[(1—1)(3y2~2)
— (A + Dy +24p°1Vsin B, (10)
az=§i2(1—y2)+gw—1+1—)[(/l—1)(3y2—2)
— (A+ Dy +2y°1Vsin g, (11)
where
V=agd?AT /v (v=pu/p,) (12)

has the dimension of a velocity, and will be used as the veloc-
ity scale.

For our purpose of demonstrating instability resulting
from conductivity variation, it is sufficient to take a special
K. We shall take

Kd*/u=1[(A—1)/(A+1)]VsingB, (13)
because it will give us the simplest forms of #, and i,. Using
V as the velocity scale, and adopting (13), we have
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U =u,/V=[1/6(A+1)]

X[(A—=1)— (A4 )y +24p°]sin B, (14)
U,=1/V=[1/6(1+1)]
X[(A—=1) = (A + Dy+2]sinB. (15)

{ll. FORMULATION OF THE STABILITY PROBLEM

Let the dimensionless temperature perturbations be ex-
pressed by
O,=T./AT, 6,=T;/AT, (16)

and let ¢,(x, y) be the stream function for the lower fluid
and ¥,(x, y) that for the upper fluid. Then the velocity per-
turbations for the two fluid layers are given by

up =), vi=— (¥,
ui = (), vi= —(¥),.
We shall assume
(01,05,91,%,)
= [A,(¥),h2(¥),0( ), y(y)lexplia(x —ct)], (18)

where the scale for the time ¢ is d /¥, the scale for the wave
number a isd ', and ¢ is the dimensionless wave velocity:

(19)

The flow is stable or unstable according to whether ¢, is
positive or negative.

The linearized heat equations are then, upon use of
(16)-(18),

(17

c=c, +ic;.

2Aa 1
ia(U, — c)h, —~ =——(h" —d*h), (20
ia(U, —c)h, A+1¢ ARP(I a‘h,) (20)
2a 1
(U, — ¢)h, — = =—_(h? —a*h,), 21
ia(U, —c)h, /1+1X RP( 5 —ahy) (21

where, for simplicity, we have assumed the thermal diffusivi-
ties of the fluid to have the ratio 4 also (in effect ignoring the
variation of specific heat, which can be accounted for with-
out difficulty), and

R=Vd/v, P=v/k, (22)

are the Reynolds number and the Prandtl number (for the
upper fluid), respectively. (The thermal diffusivity of the
upper fluid is denoted by «,.) The boundary conditions are,
assuming that the boundaries are thermally much more con-
ductive than the fluid,

hi(—1)=0=h,(1), (23)
and the interfacial conditions are
h1(0) =A4hr5(0), (24)
hy(0) — A (0) = [2(4 — 1)/(A + D][#0) /'],  (25)

with
¢'=c—U0).

The term on the rig_ht-han_d side of (25) arises from the dif-
ference in slope of 4, and 4, at y = 0, which contributes the
term when the interface is displaced from its mean position.
The ratio ¢(0)/c’ multiplied by the exponential factor ex-
plia(x — ct)] is indeed equal to the interfacial displace-
ment, as can be deduced from the kinematic condition at the
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interface. This term is crucial in the calculation for stability.
If p! denotes the pressure perturbation (i = 1,2), and if
we write

pi/pV?=f(y)explia(x —ct)], (26)

the linearized Navier-Stokes equations are, for the lower
fluid,

ia(U; —c)p —iaU, ¢
= —iaf, + (1/R)(¢" —a’¢’) — (sin B/R)h,, (27)

a(c—U)d=f/+ (ia/R)(¢" —a’d) — (cos B/R)h,.
(28)

The last term in (27) arises form the body force term
(d /Pon) (poga AT hy sin B),

the multiplier d /p,V ? is to make the entire equation dimen-
sionless [similarly for the last term in (28)]. For the upper
fluid, the linearized Navier—Stokes equations are

ia(U,—c)y' —iaUy y
= —iaf, + (1/R) (y" — a’y’) — (sin B/R)h,, (29)

a*(c— Uy =f5 + (ia/R)(xy" —a’y) — (cos B/R)h,.
(30)

Eliminating f, in (27) and (28), and £, in (29) and (30), we
obtain the augmented Orr-Sommerfeld equations

¢iu_202¢u +(14¢=i(1R [(Ul —C)(¢" _a2¢) _ U;’¢]
+ k| sinfB + iah, cos S, 31
Xiv__202¢n +a4x=iaR [(Uz_c)(,l/" —'GZX) _ U;IX]

+ h 5 sin B + iah, cos 3. (32)
The boundary conditions are
(-1 =0=¢'(—1), y(1)=0=x"(1), (33)

expressing the no-slip condition. The interfacial conditions
are

$(0) = x(0), ¢'(0) = x'(0), (34)

expressing the continuity of velocity, and

" (0) =x" (0},

(8" —3a%¢') — (y" — 3a°y’) = iaS¢/c’ aty=0, (35)
expressing the continuity of shear and normal stresses. In
formulating the second condition in (35), one needs to
evaluate f; and f, from (27) and (29), because the normal

stress involves the pressure (and another term involving the
viscosity). The S'in (35) is defined by
S=5/pV2d,
s being the surface tension.
The stability problem is thus governed by four simulta-
neous differential equations, two of which are of the second
order and the other two of the fourth order, and twelve

boundary or interfacial conditions. Given the parameters R,
P, A, a, B, and S, one seeks to determine c.

(36)

IV. SOLUTION

We consider long waves, and adopt the method of solu-
tion given by Yih.® First, we expand the unknowns in power
series of a:
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h,=H,+aH, +d*H, + -,
h, = Gy + aG, +a2G2+---,
¢ =do+ad, +d’¢, + -,
X=Xo+ayi+ax+ -,
c=co+ac, +a‘c, + .

Substituting these into the governing differential system,
and collecting terms of order a only, we obtain

H:=0, GZ=0, (37)
with the boundary conditions
Hy(—1)=0=Gy(1), H{(D):=AG,(0), (38)

and
Go(0) — Hy(0) =[2(4A — 1)/{4 + D] [¢o(0)/c{,].
39

Leaving (39) alone for the moment, one solves (37) and
(38) and obtains

Hy=1+4+y, Gy=1/A)(—1+yp). (40)

The equations (31) and (32) yield, upon use of (40),
o"=sinB, y&” =sinB/A, (41)

for which the boundary conditions are
Po(—1)=0=4¢5(—1), xoll) =0=y5(1), (42)
(PoB6:86:86 ) = (XoXo:Xoxs') aty =0 (43)
Solution of (41)—~(43) gives

$o =A + By + Cy* + Dy* + (sin 8/24)y", (44)

Yo =4 + By + Cy* + Dy* + (sin 8/244)y", (45)
in which
A=[(1+1)/484]sinp,
B= —[(A—1)/964]sin S, (46)

C= —[(A+1)/241)sinf8, D=[{A—1)/324]sinB.

With ¢, given by (44), one returns to (39) and obtains
¢, = —[(A—=1)/24(4A 4 1) ]sin 3,
or
c=[(A—-1)/8(4A+ 1)]sinp. 47)
We now proceed to the next approximation. Collecting
terms of order @ in (20) and (21), we have

H? =iARP{(U, — c))Hy — [24 /(A + 1)14}, (48)

Gy =iARP{(U, — ¢))Gy — [2/(2 + D1xo}.  (49)
The conditions (23) and (24) give
H(-1)=0=G,(—-1), H[(0)=A4G;(0), (50)

and (25) gives

G,(0) — H,(0) =24 =D (¢1<0) ~ ¢o(0)c,) .
A+1 ¢4 (c})?

(51)

Setting (51) aside for the moment and solving (48)-(50),
we have

Chia-Shun Yih 1771



__iARPsinf (154 — 39 22 SA+11 4 Equations (31) and (32) give
TBA+D N 60 VT T Y v P
y"=IR [(Ul — o)y — U} ¢o]
—1;1y4+13/;;'3y5+%y6). (52) + H{ sinB + iH, cos f3, (54)
The term of zeroth power in y is deliberately dropped to keep X7 =R [(Uy = o)x§ — Uz Yol
h,(0) = 1, since the amplitude of the disturbance is imma- + G{sinf + iG,cos 3. (55)
terial and already H,(0) = 1. The result for G, is The boundary conditions are
_ iRPsinp ( — 5424264 -5 + 1542 -394 y
L=
484(4 + 1) 20 60 $(—1)=0=4(—1), y,(H=0=yx{(), (56
114 +5 A+1
_u 2 3 _ 4 .
v 6 g 3 4 and the four interfacial conditions are obtained from the
3413 2 continuity of ¢, and y, and of their first three derivatives, at
—T}’ +~5* 6)- (53)  y=0. A straightforward solution gives
-
$=F +A4,+B,y+Cy’+D\y’, Fi=¢,+d,+d5 (57)
b = iR sin? B (_/12—121_23/12+34/1—25£ /12~4/1+3y_"__i(/l+1)y7+60/12y9) (58)
6 + 1) 48 4 192 8 6! 7 9 J’
b= ARPsin* 8 (15,1 -39y 4° (A+11)° 8(A+1)) L 8U3A+ 3y 288/ly9) (59)
PT84 + 1) 60 4 5 6! 7 8! 9 /)’
_; ’oy
$y3=1icosfB (4! + 5!), (60)
and
Yi=F+4,+By+Cy+Dy, Fr=xyu+xo+xn (61)
__ iRsin’B (_/{2—1)1_“ 25/12—34/1—23L5_ 3ﬂz~4i+1y_6_i+1£ 60y9) (62)
A=6a + 1) 481 4l 1922 51 84 o 1 7 9/’
_ iRPsin’ B ( 1542 —394 Zi_ 44y (114 +5)° _ 8(A + 1)y’ _ 6(34 + 13)y8 n 288y9) (63)
X2 =i+ ) 60 4 s 6! 7 8! 9 )
icosfB ﬁ_ﬁ) 64
A==y (4! 5! e
The coefficients 4,, B;, C,, and D, are determined from the boundary conditions (56), which demand
F(—1)+A,—B,+C,—D,=0, Fi(—1)+B, —2C,+3D, =0,
F,(—1)+A,+B,+C,+D,=0, Fj(1)+B,+2C,+3D, =0. (65)
In particular
A= —F (=D +FD]+i[Fi (1) -Fi(-D]. (66)

The value of ¢,(0) is 4,. When (66) is substituted into (51) together with the quantities determined in the first approxima-

tion, we have
(1= 4) {RPsinzﬁ
121 + 1) 80640

¢

V. DISCUSSION

One can proceed further with the systematic procedure
of approximation. But (67) is sufficient as a criterion for
instability against long waves. Examination of (67) shows
that the term containing P in the denominator in the bracket
and the term containing cos 3 are always stabilizing. The
term containing cos S arises from gravity normal to the
boundaries, and its stabilizing effect is well recognized. The
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(55/1 >+ 143747 — 12394 + 85 +

(67)

2 2
248A(A°—1) ) +7(/120— 1) COSB].

—

term containing P ~ ! in the bracket of (67) arises from the
convective terms in (54) and (55), so that these convective
terms are stabilizing. This isolates the longitudinal body-
force terms in (54) and (55) as the cause of instability. But
this instability would not have a chance to manifest itself
without the conductivity discontinuity at the interface,
which gives rise to the term on the right-hand side of (25).
That term is crucial, for without it the calculation could not
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be started, and long-wave instability would not exist.

Examination of (67) further reveals:

(a) For vertical boundaries the term containing cos /3
drops out, and if the Prandtl number Pis not extremely small
the flow is unstable for A small. In this case the “lower fluid”
is the colder fluid.

(b) For A <1 and 1 — A small, the flow is unstable, if P
and sin 3 are not very small.

(¢) For A > 1, the flow is stable.

(d) Thereis arange of A within 1 <4 < oo, for which the
flow is stable.

(e) For given values of P and 5, and a given A4 less than
one, if the multiplier of R in (67) is positive the critical R is
obtained by setting the quantity within the brackets in (67)
equal to zero.

Observations (b) and (c) show that for small |4 — 1]
the flow is unstable if the less conductive fluid is on top and
stable if it is at the bottom. This rather intriguing point, to-
gether with observations (a) and (d), indicates the rather
complex effect of conductivity variation on the stability of
the flow.

Finally, it may not be entirely irrelevant to mention that
convective stability of two superposed horizontal layers of
immiscible fluids has been studied by Yuriko Renardy,” who
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discussed the effects of thermal conductivities in her work.
But the stratification in thermal conductivities never causes
any instability in her problem, as it does here. The present
work brings to light an entirely new cause of hydrodynamic
instability.
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