EFFECTIVE DIFFUSION COEFFiCIENT IN POROUS MEDIA

This form of the two-point correlation, since it is
derived for a specified (albeit artificial) random ge-
ometry, may be preferable to the simpler exponential
form discussed by Debye, Anderson, and Brumberger®;
it is not certain whether there is any three-dimensional
geometry which is consistent with the kind of random-
ness postulated by these authors.

The three-point correlation function G(r,x’) has also
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been used in previous calculations for porous medis.? 73
It is obtained by setting v in (A1) equal to Vg (r,t') as
defined in Ref. 8. The latter quantity represents the
volume enclosed by three spheres with centers at the
vertices of a triangle with sides r, ¥/, and r—r’; the
cumbersome expression for this volume, involving vari-
ous forms for various kinds of r, r’ configurations, is
not repeated here.
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The second-order effect of electromagnetic propagation on the essentially static-field distribution of the
magnetostatic modes of a ferromagnetic sample is obtained by an iteration-type technique. The magneto-
static potential constitutes the source in a mathematical sense for a second-order correct field distribution.
The internal sample fields are investigated for a ferrite cylinder enclosed between parallel conducting plates
and they are found to consist of resonant modes whose frequencies are determined from a characteristic
equation. These frequencies reduce to those of the magnetostatic modes in the limit of vanishingly small
wavenumbers. For a nonzero wavenumber the frequencies differ from the corresponding magnetostatic
limits by an amount which depends on the sample shape. These resonant frequencies are size-dependent as
contrasted to the size-independent magnetostatic modes. No resonant frequencies are possible above a
critical value that depends on the spacing between the plates. A sample mode, whose resonant frequency
is in a region forbidden to the magnetostatic modes, can exist if the sample size exceeds a critical value.

1. INTRODUCTION

FERROMAGNETIC sample exhibits a number

of energy storage resonances that are essentially
independent of size if the sample is small compared to
a wavelength. Such resonances occur in the microwave
spectrum and have been explained as resonant modes
of oscillation of the sample magnetization. For small
samples these modes have a static field distribution
which can be obtained from a scalar magnetic potential
and have, therefore, been called magnetostatic modes
(Ref. 1). However, the static fields correctly describe
the actual sample fields only for infinitesimal samples.
It is the purpose of the present paper to extend the
static solution to include the effect of electromagnetic
propagation by an iteration-type technique. Since the
internal sample wavelength is many orders-of-mag-
nitude greater than the lattice spacing, the effect of
exchange interaction may safely be ignored. It is also
assumed that the sample shape is such that the tensor
susceptibility components are independent of position
in the sample.

2. THE MAGNETIC POTENTIALS AND
THEIR APPROXIMATIONS

The electromagnetic fields associated with a ferro-
magnetic sample may be obtained from the scalar and
* This work was performed under U. S. Signal Corps Contract

No. DA-36-039 sc-89227.
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vector magnetic potentials:

H=v®—0A/0; (1a)

E=—(1/¢v xA. (1b)

If the Lorentz gauge condition is selected to relate
these two potentials then they must satisfy similar
inhomogeneous wave equations:

Vip+ke=—v-M
VIA+k2A = — poe(OM/32)

(2a)
(2b)

where k*=k2=w?ue inside sample= k¢*=wuqey outside
sample and where, of course, M=0 outside the sample.
For a sample situated in free space, the potentials may
be obtained formally in terms of the free-space Green’s
function e?*"/4xr, in the form

1 ik
¢=——/(V-M)-———dv’ (3a)
47 7

1 IM\ et
A= ———,u()é/<—>‘—d7)l
4r ot/ r

[z <xi~xg>zT.

=1

(3b)

where

The primed variables are the coordinates of the source
points and the unprimed variables are the coordinates
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of the field points. These potentials may be expanded
formally in a power series of (ik)

1 = (ik)"

b=—— 3 /r"“(v-M)dv’ (4a)
4 n=0 p!
1 w (1k)" oM

A= ——pupe 3 /r"‘l —dv’. (4b)
4 n=0 n! at

Then by substituting Eqs. (4a) and (4b) into Eq. (1a)
there results:

v-M
47H = —V[/
r
M
——(ik){/ —dv’+ik/Mdv’+' . } (5)
r

For all field points inside and on the sample the mag-
nitude of the nth term in the first bracket is less than
[(ka)*/n!]| S (v -M/r)dv’| where a is the largest sample
dimension. If the sample is sufficiently small compared
to a wavelength (i.e., ka<<1) then the contribution of
higher-order terms will be made negligible by suitable
choice of ka. A similar situation exists for the terms of
the second bracket. Its leading term can be made
negligible relative to the leading term of the first
bracket for (ka) sufficiently small.

The lowest-order term in Eq. (5) is the so-called
magnetostatic term. If &= /(v -M/4xr)dv’ then ® is
the magnetostatic potential. It was this term that was
used by Walker (Ref. 1) to describe the sample fields
in the quasistatic approximation, which is really valid
only for zero time dependence or infinitesimal samples.
The second term in the first bracket of Eq. (5) vanishes
since it is the gradient of a constant. One might con-
clude at this point that there is no first-order term
present. However the magnetization is also a function
of ik so it may be expanded in a series whose coefficients
are functions of position. The series for M and H may
be represented as:

M=Mo+<ik)M1+ T
H=Hy+ Gk)H,+- - -. (6)

dv’—l—ik/v-Mde—- . :|

If these expressions are substituted in Eq. (5) and the
first-order terms are collected there results:

v - (Mo+iMy)
Ho+ikH1=—v/-————~———dv’.

47y

(Ta)

Then let H®=Hy+ikH; and M®=My+ikM,; and
&0 = f(v-M®/4xr)dv’, where the superscript repre-
sents a truncated series correct to first order. It is seen
that HV=v®®, but v-B=u[v-(M+H)]=0, and
M is related to H by the susceptibility tensor [see Eq.
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(15)]: MO = (X)H® = (X)V®® so:
VpW = —y.[(X)vdD]=—KV2®D,  (7b)

where the subscript ¢ refers to transverse coordinates
and where K is the diagonal component of (X). The
above equation is the same as that used by Walker to
characterize the magnetostatic modes. Therefore, the
magnetostatic mode approximation can be used to de-
scribe the fields inside a ferromagnetic sample correct
to the first-order effects of electromagnetic propagation.

Second-Order Magnetic Field

If @ and H® represent, respectively, the scalar
potential and magnetic field correct to second order

then:
E r M,
H®=g®®+— [ —dv'. (8)
47 7

Tt is possible to know ®® correctly only if M is known
to second order. The magnetization is related to H
through the susceptibility tensor and because V-B
must vanish a pair of self-consistent equations (correct
to second order) can be solved simultaneously to de-
termine @ :

K M,
M® = (X)V¢(2)+A / d'U’, (9)
4w r

and

VO = — v .- M®, (10)

Combining these equations produces an expression for
d@:

20 (2)
(1+EK)VEp® 4 —— £ 2®
Z2
k2 M,
=——v-[(X)f —-——dv’], (11)
4 r

inside the sample and:

VD4 d@ =0 outside the sample. (12)

The boundary conditions are the continuity of potential
and the normal component of flux density.

The nonhomogeneous Eq. (11) can be solved by
use of the appropriate Green’s function. The source
for this equation p= (—k2/4m)Vv-[(X)A.] is derived
from the magnetostatic approximation which will be
presumed known. For the free-space situation A
= [ (My) (4nr)~'dv’ so the differential equation for Agis:

V2A0= "Mg.

This equation may be solved using the correct Green’s
function for the geometry in which A, must satisfy the
same homogeneous boundary conditions as H. By
Green’s identity the solution to Eq. (11) is

[OV,G—GV,3® da,

sur, of sample

o= [

sample
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where G is the Green’s function and where p,,
=4xp(1+K)7.. The potential at the sample surface is
known (i'e') q)in(2)]surf.=q)out(2)|surf.) but the normal
gradient of ®;» is not known there, so the Green’s
function is chosen to vanish on the surface. Thus the
Green’s function satisfies:

1
V2G+——(V 2G4k 2G)
14-K
=—8(r—r')8(p—¢")6(z—2'). (13a)
G=0 at sample surface. (13b)

One of the boundary conditions has already been
used so the remaining condition of continuity of normal
flux density must be applied. Neglecting the permea-
bility of free space which is a constant factor this
boundary condition may be written as follows:

aq:'out @
<—___~___+ kOZAO(nIt * n)

in

surf.

0®;,
=[(1+K)< +k¢2Ao;n-n)

on

(14)

i)
+iv(——q>in(2)+k1214 Oin* ‘t>]
ar

surf.

where # Is the coordinate normal to the surface, 7 is
the coordinate tangential to the surface and n and =
are unit vectors in the respective coordinate directions.
Equation (14) contains one undetermined constant.
This constant is the ratio of the magnitudes of the
scalar potentials outside to inside the sample. If pn
were an independent source (i.e., determined by ex-
ternal devices) then the above constant would be de-
termined by Eq. (14). However, p. depends on the
coefficient of $® so it is merely a source in the mathe-
matical sense that is derived from the magnetostatic
approximation. There is an additional condition to be
applied in this problem; namely, that the magneto-
static approximation must still be valid. In the limit
of vanishing % the external potential must be equal to
the internal magnetostatic potential at the sample sur-
face. Thus the limit:

=&y,

sample
surface

lim (®ous?)
k=0 sample (14b)
surface

determines the constant in Eq. (14). When this value
is substituted into Eq. (14) the latter becomes the
characteristic equation of the sample modes. Equation
(14) then has roots only for discrete values of the pa-
rameters K and » which depend on frequency and are
not independent.

For any given sample size, as & approaches zero,
Eq. (14) approaches the characteristic equation of the

Y
F1c. 1. A ferrite
cylinder is enclosed
between a  pair
of infinite parallel
perfectly conducting
plates. The sample
1s saturated axially
by H.

7

=

Y/

N
N

L———-—-Zc

magnetostatic modes, but letting £ — 0 for a fixed
sample size is equivalent to letting the wavelength get
arbitrarily large compared to the maximum sample
dimension. The magnetostatic approximation is valid
for this situation. Thus the effect of electromagnetic
propagation on the resonant frequencies of the mag-
netostatic modes may be demonstrated by independ-
ently varying the parameter %. In order to illustrate
the details of this effect a specific example is now
presented.

AN EXAMPLE

Consider the case of the circularly cylindrical ferrite
rod enclosed between a pair of infinite parallel con-
ducting plates with its axis normal to the plates (see
Fig. 1). This problem is particularly convenient be-
cause it is separable and because the boundary con-
ditions are easily applied. The sample is saturated
axially by a dc magnetic field. A circularly cylindrical
coordinate system is chosen with its axis along the
sample axis and with its origin on one of the plates.
The susceptibility is a tensor:

o, )

i

(15)

where K and » are as defined in Ref. 1 and independent
of position in the sample. In general this could not be
done for any sample shape which was not an ellipsoid
of revolution but by the method of Appendix II it can
be done for a cylinder. Because the sample is saturated
axially the boundary conditions at the plates are the
vanishing of the normal component of magnetic field.
The boundary conditions at the lateral surface are the
continuity of potential and normal flux density.
Because of the boundary conditions on the potential
the conditions on the Green’s function for the scalar
potential is: G=0 on the lateral surface (i.e., r=a) and
V.G=0 at the ends of the sample. In this case the
solution to Eq. (11) becomes by Green’s identity:

@i(”:/Gpmdr,—/éout(”vncda,:

sample lateral surface

(16)
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where pn=£k2(14+K)'V-[(X)+Ao]. The homogeneous
boundary condition on the metal plates means that
the scalar potentials inside and outside the sample
must vary as cosfn,z, where B,=mr/d and where d
=length of the sample and also the spacing between
the plates.

The external potential may be written down at once
from Eq. (12):

Byt P = BK , (ayr)ex"® cosfmz, 1
where o= (B.2—k)? and K, is the modified Bessel
function of the second kind.

The Green’s function for this physical arrangement is:

J a0 )C o (aar) e im0l 08,3 OSB3’
G=— —r=r'
asmdaC, (020)J »(aza)

J nlaar)Cr(asr)eti®14=¢"l c08B,,2 CoSBmz’
G=-— r<r’, (18)
agrdaC., (02a)J (020)

where C,(asr)=J (o) + TN (asr) and where C..{aza)
=0 determines I', and where ap="[(k2—8.2)/(1+K) ]}
and e=sample radius. Using this Green’s function in
the surface integral of Eq. (16) the latter becomes:

Kn (C! 10)]n(a27)
Jn(aza)

(19)

et"? cosB 3.

W= /Gpmdv’—{—B

To determine p, the equation V2A,=—M, must be
solved. This may be accomplished by means of another
Green’s function which satisfies V2Go= —&(r—7")6(¢p—¢’)
X-8(z—2"). It should be recalled that k24, is the second-
order contribution to the magnetic field due to the
vector potential. This quantity is used not only to
obtain p, but to write the boundary condition of the
normal flux density. Using Green’s identity :

Ay, = / GoM y,dv'+a surface integral (20)

all space

for each component of A,. The surface integral is taken
along the plates and across a lateral surface at infinity.
Because M, contains only transverse components A,
contains only transverse components. The normal
derivative of the transverse components of A, must
vanish at the plates so that if V,Go=0 at the plate
then the surface integral is identically zero. This
Green’s function Go then becomes:

KB M o (Bmr)eX 47"l cO8Bmz COSBmE’
" Bunda[ 1 (Bn0) K o (80)— 1 (Bn)K. (B (:21)
- Ko (B ) o (B )e=4%") OSB3 COSBm3’ yoy
Brwda[ I/ (Bna)K 1 (Bm) =1 . (Bna)K.. (Bma)]

’

The quantity M, is the magnetostatic approximation
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to the magnetization:

6<I>0 1:1/ 8‘1’0 6‘1)0 K 6¢0 .
— ‘>f+ <—iu44+— #> 6, (22)

M0=<K——+
dr r O¢ dr r 09

where &, is the magnetostatic potential which was
determined in a previous paper (Ref. 2):

®o=1 [ Bnr/ (14 K)¥Je=¢ cosBus.

Here, a unity coefficient has been arbitrarily selected
without loss of generality. Using the component values
of My, as obtained from Egs. (22) and (23), and using
the Green’s function Gy, the components of Ay may be
obtained:

(23)

A o=F(r,K,v)et'™® cosBn3,

Apo=1G(r,K v)e*"¢ cosfn3,
where F and G are real functions (see Appendix I).
Using these components of A, the source p, may be

obtained:
pm=H (r,K v)e="* cosB,3,

where H is also a real valued function of r, K, » and is
listed in Appendix I. Using this p, and the G from Eq.
(22) it is possible to write Eq. (19) as:
O =H,(r,K,»)

+ BLK (1) T () /T n(a2a) Jetim¢ cosBms,
where H, is a real function of r, K, v (see Appendix I).

If these quantities are substituted in Eq. (14) it be-
comes for this problem (neglecting common factors):

alBK,L' (ala)+k02F0(a,K,u)
= (1+K){k23/daH (a,K ,v)+a:BK ,(12)
X[ (2@) /T o(za) | H+E2F i(a,K v)}
—v{tn/a[k Hi(a,K,v)/(1+K)]+ BK .(10) ]
+kGi(0, K p)}, (24)
where Fy, F;, and G; are the functions F and G outside
and inside the sample surface, respectively. Fo, F;, G;

and H; are real and appear in Appendix I. The value
of B as determined from Eq. (14b) is:

B:K"[(.Bma> <1+K)-%]/Kn(l8ma>

Using this value for B the characteristic equation of
the sample modes may be written:
S (axa) nv
i_.
Jalaza) «a

Kn(Bma)HZ (G,K, V)
" Kol [Bna(1+K)]

where H, is defined in Appendix I.

The roots of the characteristic equation [Eq. (25)]
may be obtained graphically by defining
S K (o S (RS O]

2 W. B. Ribbens, Proc. IEEE 51, 394 (1963).

25)
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as the independent variable and plotting both sides of
Eq. (25) as a‘function of y for each #» and m. The two
resulting graphs for each #» and m will intersect in an
infinite number of points (y,..;) which are the roots of
Eq. (25). A similar technique was used (Ref. 2) to
obtain the roots for the magnetostatic approximation
by defining X=8na[ (14K)'}} and obtaining X ums.
From the form of Eq. (25) it can be seen that it reduces
to the characteristic equation of magnetostatic modes
(Ref. 2) for k;=0. The fact that y=1¢X for k;=0 is only
a consequence of the particular form in which the in-
ternal expansion modes were written and the significant
relation is that [y|=|X| for k;=0.

From the sets of roots X ,,u; and ¥, the normal ex-
pansion modes and hence internal fields are specified
for either the magnetostatic case or the more exact
solution. Thus a more careful investigation of these
roots constitutes a specification of the salient features
of the effect of propagation on the magnetostatic ap-
proximation. There are five such features:

(1) The roots specify a set of corresponding resonant
frequencies @ .,m;;

(2) There is a frequency above which the roots are
complex;

(3) The values of y.m are shifted from X,,; for
k;>0 by an amount which depends on the sample shape;

(4) The more exact values for w,m.; are size-dependent
whereas the magnetostatic values are size-independent;;

(5) Sample modes are possible in a frequency region
in which magnetostatic modes cannot exist.

Resonant Frequencies

Because %, K, and v are each functions of frequency
then y is also a function of frequency and discrete
values for y correspond to discrete frequencies (wumz)-
Physically the values of K and » are determined from
the frequency of oscillation of the assembly of magnetic
moments which produce the magnetization of the
sample. Therefore, the normal expansion modes each
correspond to an oscillation of the sample magnetiza-
tion. Energy can be coupled into the sample from
external microwave circuitry at each of these frequen-
cies so that they may be considered sample resonances.
In actual samples there are losses so that a measureable
Q exists at each sample resonance. These resonances
have been observed experimentally and their character-
istics noted (Ref. 3).

Effect of Imaginary Parameters

The resonant frequencies are real for all frequencies
such that o is real. However, when «; is imaginary the
characteristic equation will contain a ratio of Hankel
functions which is in general complex. The roots in this
case are complex and cannot correspond to resonant
sample frequencies. For all o <w,=B8,(uoeo0)* the pa-
rameter a; is real and resonant sample modes can exist.

It is interesting to note that for a; imaginary the ex-
ternal potential is proportional to H,®(|ay|7r) which
in the present convention represents an outgoing wave.
Thus the sample modes exist in a frequency region in
which the external fields are evanescent.

It is also possible for a; to have imaginary values but
the effect of this on the roots of Eq. (25) is much less
severe. The internal potential is proportional to J(asr)
and this function enters the characteristic equation as
asS ' (a)/J n(a:a) which is a real ratio whether oy is
real or imaginary. Therefore, Eq. (25) has real roots
independently of whether a; is real or imaginary.

Shift in Resonant Frequencies

It has been shown that y=¢X for =0 and that the
resonant frequencies derived from y reduce to those of
the magnetostatic modes for #=0. This corresponds to
an infinite wavelength which is physically incorrect for
a time dependent field. However, it has been demon-
strated for samples sufficiently small compared to a
wavelength that 2 may be neglected relative to terms
of the order of 1/a for a first-order approximation.
Letting £=0 in the more exact solution is a somewhat
artificial means of representing this situation. If % is
replaced by 7k in Eq. (25) and # varied from zero to
unity, the effect of propagation on the roots of the
characteristic equation can be demonstrated. This was
done and it was found that for the roots corresponding
to real a the roots shift by a larger amount for large
« than for small o where « is the aspect ratio of the
sample (a/d). This means that the magnetostatic ap-
proximation is better for long thin cylinders than for
flat thin disks, provided the maximum size is small
compared to a wavelength in both cases.

The latter phenomenon may be explained by com-
paring the nature of the magnetostatic solution with
the more exact solution. In both cases, the axial com-
ponents of the scalar potential consist of standing
waves, which is also true for the exact solution. The
approximation has been introduced in the radial com-
ponent so the approximate solution is better for small
radii (thin cylinders) than large radii (flat disks), since
(ka) is smaller for the former than for the latter. Thus
the magnetostatic approximation is better for thin
cylinders than flat disks. This situation is not funda-
mental to the magnetostatic approximation but may
be attributed to the artificiality of the homogeneous
boundary condition at the plates for the configuration
of the example (Ref. 2).

Size Dependence of Sample Modes

It was demonstrated in Ref. 2 that the resonant
frequencies of the magnetostatic modes are independent
of sample size but depend largely on sample shape.
This result was arrived at because the sample dimen-
sions enter the characteristic equation for the magneto-
static modes only in the sample aspect ratio. However,
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it is not possible to specify Eq. (25) entirely in terms
of this ratio. Rather it is necessary to know the actual
radius and length of the sample to compute ¥,m:. There-
fore, the resonant frequencies, which are specified by
Yami, depend on the actual sample size, a fact which is
consistent with experiment (Ref. 3).

Resonance Outside the Frequency Region of
the Magnetostatic Modes

From the literature (Ref. 4) it has been shown that
magnetostatic modes can be classified as volume modes
or surface modes depending upon whether 14X is
positive or negative. It has also been shown (Ref. 1)
that magnetostatic modes cannot exist in the frequency
region w<+vyH; where H,; is the internal biasing mag-
netic field and v is the gyromagnetic ratio. However,
the more exact solution shows that modes can exist in
this region provided the sample size exceeds a certain
minimum. This can be shown with reference to the
definition of ¥ and with the observation that K>0
when w<vH;:

la[ (k2 —8x2)/ (1+K) ]|

|A+K)H =a(k—Ba2)Y/ |y|>1 for w<yH;

ly] =
SO

then

a> Vomi/ (R2—Ba2)}  for wem<vH..

However, for samples of this size
(ak:)> yumi| [(1—Bu?/ k2 ]|

which is not necessarily small compared to unity and
so the predictions based on the second-order solution
are not valid. Nevertheless the exact solution would
involve the same Green’s function for the scalar po-
tential. Even though the latter is not sufficient by
itself for writing the boundary conditions it would
form a part of the final characteristic equation and
would, therefore, determine at least in part the reso-
nant frequencies of sample modes. The functional
form of the potential would still be proportional to
Jola[(k2—Bx2)(14+K) ' }¥] in the characteristic equa-
tion and so the definition of y could be used for a
graphical solution for the roots. Thus there would be a
set of values y,mi=a[ (k2—Bw?) (1+K)~']* which would
determine the sample resonant frequencies. Then the
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criterion that 14+K>1 for a frequency less than vH;
would again predict a minimum sample size for such
a result. There is nothing at all new in this fact since
for large samples a cavity-type resonance must be ob-
served in which the sample modes are intimately related
to the surrounding microwave structure.

I a.=ywn(k2—Bn2)~t is defined as the critical
sample size then resonance below the region of mag-
netostatic modes is possible for all samples exceeding
this size. This critical sample has a minimum for each
root of the characteristic equation as a function of
frequency. The frequency for the minimum sample
size is determined by \, the ratio of the saturation
magnetization to the internal biasing field and is wmin
=vyH,[(14N)— A+ )] It is not possible to com-
pute the actual critical size without first obtaining the
roots of the exact characteristic equation but the pre-
diction that resonances occur below vH,; was based
only on the form of the exact characteristic equation
and useful features of its roots.

CONCLUSIONS

The magnetostatic mode field distribution is the
zero-order approximation to the field in terms of ke
where @ is a maximum outside sample dimension. The
second-order solution has shown that:

(1) The field distribution consists of resonant modes
which reduce to the magnetostatic modes for k=0;

(2) The corrections to the resonant frequencies of
the magnetostatic modes depend on the sample shape;

(3) The resonant frequencies were found to be size
dependent as contrasted to the size independent mag-
netostatic resonances;

(4) Resonant frequencies are complex above a critical
frequency.

The form of the exact solution has shown that a sample
resonance can occur outside the region to which the
magnetostatic resonances are confined 1f the sample
exceeds a critical minimum.
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APPENDIX I
F d K K uz( (P dr'+ Kbn aI( I ( Bur’ d }
0= n\Pm Fv 2 \Pm ! n ! n\Pm ! n+1 r'dr’ 5
amwdn{ @ ’)[( )n/o Bur’) ((1—!—1()*) ’ (1+K)%/0 Bt Mot (I-I-K)*) r:I
d But’ KB, r Bmt’
Fi= {Kn(ﬂmr)[(K:F V)n‘/ I (617:7 )I ( )dr,:l+[ / In(ﬁmr/)ln+1< )7'(17,:]
amnd, 0 (14+K)* (A+K) J, (1+K)*
B 2! a 6 '
1,600 (KT / KoBur)1 (( K)%) [ &, ( (1—|—K)*)r |1,

3L. R. White and I. H. Solt, Phys. Rev. 104, 56 (1956).
4 R. I Joseph and E. Schiémann, J. Appl. Phys. 32, 1001 (1961).
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7

d T ﬂm’ Vﬁm r ﬂmr’
G;= {Kn(ﬂmr)I: (FK— v)n/ In(,B,,,r’)I”( )dr’— / In(ﬁmr’)I"H( >r’dr’]
amnd,, 0 (1+K)} 1+K) J, (1+K)*

¢ Bm’l VBm ¢ er/
+1n(6mr>[(¢1<—u)n / mﬁmr')a( )dr— / K,,(ﬁmr')lm( )r’dr']},
0 a+x)” atxn ), A+K)!

C,,(aga) @
Hi(a,K,v)= Jnlazr)pmrdr,
adasC ' (a20) T p(a2a) Jo

1
Hy(a,K,v)= (1+K)|:~—————

(1]7, a2

/ Julaar)pm(r)rdr+k32F i (a,K )]— vk3Gi(a,K)— kK n(mma)H (K),
0

where

k2 /90
pm= (—[mr,m—uG;-(r,K)Jﬂ:f[Fi(r,K)~kci<r,1<)]),
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APPENDIX II

The requirement that the susceptibility tensor components be independent of position in the sample effectively
demands that the internal dc magnetic field be uniform. Clearly this cannot be the case if the sample is placed
in the uniform field of a magnet. The demagnetizing field will be highly nonuniform for such an arrangement.
However it is possible to maintain a uniform internal field in the following physical arrangement (see Fig. 2) : from

Fic. 2. The section of the ferromagnetic
% cylinder between plates supports a very uniform
internal field.

MAGNET

a long cylinder of the material desired and of the diameter of interest, cut a right section of the length desired;
place this section in a strip line of spacing equal to the section length; obtain two more cuts from the original
cylinder which are each long compared with the spacing of the strip line and place them, one on either side of the
strip line coaxial with the section included in it; magnetize to saturation along the common axis. The dc field in
the section between the strip line plates is uniform since it is in the middle portion of a long ferromagnetic cylinder.
The microwave energy is contained in the strip line and so the section so included is the equivalent of that picture
in Fig. 1 in which the internal dc field is uniform.



