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We introduce a new class of spherically symmetric solutions of th¢2SU
Einstein—Yang/Mills equations. These solutions have a Reissner—Nordistpe
essential singularity at the origin, and are well behaved in the far field. These
solutions are needed to classify all spherically symmetric solutions which are
smooth, asymptotically flat in the far field, and have fif#dM) mass. ©1997
American Institute of Physic§S0022-24887)00312-5

I. INTRODUCTION

In this paper we study a new type of solution of the spherically symmetric Einstein—Yang/
Mills (EYM) equations with S(2) gauge group. These solutions are well behaved in the far field,
and have a Reissner—Nordstrdype (see Refs. 1 and)Zssential singularity at the origin=0.

These solutions display some novel features that are not present in particlelike or black-hole
solutions.

In order to describe these solutions and their properties, we recall that for the spherically
symmetric EYM equations, the Einstein metric is of the form

ds?=—AC? dt?+A 1 dr?+r?(d6?+sir? 6 d¢?), (1.1
and the SW) Yang—Mills curvature two-form is
F=w'7, drOdé+w’' 7, dri(sin 6 d¢p) — (1—w?) 75 d@0(sin 6 d¢). (1.2

HereA, C, andw are functions of, and,, 75,73 form a basis for the Lie algebra @). These
equations have been studied in many papers; see, e.g., Refs. 3-21.

Smooth solutions of the EYM equations, defined foraH0, are calledBartnik—McKinnon,
BM) particlelike solutions; such solutions satisfy>A(r)>0 for all r>0, andA(0)=1. The
EYM equations also admit black-hole solutions; i.e., solutions defined for=ap>0, where
A(p)=0. Here again, +A(r)>0 for all r >p. The classical Reissner—NordsttgRN) solutions
of the Einstein equations with zero electric chargé;)=1—c/r+1/r? (c=const) and AC?)
X(r)=(1—cl/r+1/r?), are also solutions to the EYM equations, wikr)=0. We note that for
this solution,A(r)>1 forr near 0. In this paper we prove the existence of solutions which have
this featurd A(r)>1 for r near ( of the classical RN solution, and we study their properties; we
call these Reissner—Nordstndike (RNL) solutions[We base the name RNL on the behavior of
such solutions near=0. For such solutions which are connecting orbits and have fiAIEM )
mass, the results in Ref. 2, p. 393, show thét)=1—c/r+0(1)/r?, asr—, and thus behave
differently atr =< from the RN solutions(The RN solutions that we consider have zero electric
charge and unit magnetic charge; c.f. Ref. 20. We thank P. Bizon for pointing this ouj}o us.

For these RNL solutions, we show thatAf(r,)=1 for somer,>0, then the solution is
defined for allr, 0<rs<r,, and lim ¢ A(r)=00=lim,\o(AC2)(r). However, the function
B(r)=r2A(r) is analytic, on Br=<r,, as is the functiow(r); moreover lim o w'(r)=0.

If we consider solutions that are defined in the far field, i.e.,réerl, then it was shown in
Ref. 12 that lim_..(A(r),w?(r),w’(r))=(1,1,0). Thus the projection of the solution in tvew’
plane for a particlelike solution starts at the “rest pointi* {,0) and goes to a “rest point”
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(+1,0). Black-hole solutions start at certain curves inthav’ plane!! and end at a rest point
(%£1,0). In both of these cases, there are an infinite number of solutions, distinguished by their
nodal clas$®For RNL solutions, there is a parameter-0 defined byA(o)=1. We prove that

for fixed o, there are an infinite number of RNL solutions distinguished by their integral nodal
class, which must start at=0 on the linew’=0 and end at a rest point=(1,0). The RNL
solutions corresponding to the special cag®)=0 are tangent to the line=0; these give rise

to half-integral nodal classes.

The proof of the existence of locally defined RNL solutions relies on a local existence theo-
rem atr =0, where we show that there is a three-parameter family of analytic solutions starting at
r=0 andw’(0)=0. The proof of the existence of these local analytic solutions is nontrivial
because the associated vector field is not even continuaus @t(see the last part of Sec. )il
Some of these solutions have been found numerically in Ref. 20. It is interesting to note that when
the first parametew(0)= 1, and the second parameter=0, we recover the BM solutions. If
b;>0, we get RNL solutions and ;<0 we get Schwarzschild-like solutions.

We also prove that for fixed> 3, the (ADM) masses of a sequence of our RNL solutions for
o fixed, and increasing nodal class, tend to.1Furthermore, the globally defined RNL solutions
which we obtain all have naked singularitiesrat0; there may well be other RNL solutions for
which the singularity at =0 is inside an event horizon. We prove that the singularity=a0 for
these solutions is always nonremovable. We note that since our RNL solutions have no horizons,
r is always monotonic. In fact, if we look onta= const. slice, ther”, the distance in the radial
direction on this slice, satisfied=\/g,, dr=A"Y2dr, sodr/d/=AY?>>0, andr is a mono-
tonic function of /. Hence our Schwarzschild coordinates cover the entire “physical” manifold.

In the last section, we show how the results which we have obtained enable us to classify all
spherically symmetric EYM solutions, with $2) gauge group, which are smooth and sati&fy
>0 in the far field.

II. THE EQUATIONS

As discussed elsewhete!® the static spherically symmetric EYM equations with gauge
group SU2) can be written in the form

rA’+(1+2w'?)A=1—u?/r?, (2.1
r2AW' +[r(1—A)—u?/rlw’ +wu=0, (2.2
c’'/IC=2w"?Ir, (2.3
where
u(r)=1-—w2(r). (2.9

Here w(r) is the connection coefficient which determines the Yang—Mills curvature two-form
(1.2, andA andC are the metric coefficientd.l) (see Refs. 4 and)7
If we define the functionb by

O(A,wW,r)=r(1—A)—u?r. (2.5

then(2.1) and(2.2) can be written in the compact form
rA’+2AwW' 2= d/r, (2.6)
r’Aw’ +dw’ +wu=0. (2.7

If (A(r),w(r)) is a specific solution of2.1) and(2.2), then we write
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D(r)=D(A(r),w(r),r).
We define the function(r) by

p(r)=r@—=A(r)).
Then, as shown in Ref. '>0. If

lim w(r)<o, (2.9

r—o

such solutions are said to have fin{®DM) mass(see Ref. 2
SinceA(r)—o asr\,0, for the solutions we consider in this paper, it is useful to rewrite the
equationg2.1) and(2.2) in terms ofw andB(r)=r2?A(r). They become

rB’+(2w'?—1)B=r?—u? (2.9
BW'+(r2—B—u?)(w'/r)+uw=0. (2.10

Ill. REISSNER—-NORDSTROM-LIKE SOLUTIONS

In this section we take initial conditions at= >0, and follow the solution backward for
r<o. We shall determine properties of such solutions #are<o.
Consider the initial-value problems defined {y1) and (1.2 with initial conditions

A(o)=1, 3.9
and

W(o),w'(0))=(a,B), 3.2

where >0 and (,8)#(*1,0). Such a solution is called a Reissner—Norastrike (RNL)
solution. We study RNL solutions on<0r <o¢. Note that for RNL solutionsgA’ (o) = —23?
—(1—a?)?/0?<0, so thatA(r)#1.

We remark in passing that if we repla¢@1) by the conditionA(o)=k>1, then we cannot
be assured that such solutions have positM@M) mass. Indeed, there are solutiong®fl) and
(2.2) which satisfyA(r)>1 for all r>0. For example, iim>0, then the Schwarzschild solution
A(r)=1+m/r, w(r)=1, is one such solution. Note, however, that ever(f)>1 for all r
>0, thenA(r)—1 asr—=. This holds because if we writd(r)=A(r)—1, then from(2.1),
(rA)'=rA’+A=<0. Thus integrating front;>0 to r>r, givesrA(r)=<rgyA(ry), and soA(r)
<(ro/r)A(rg). This shows thafA(r)—0 asr—ow, and yields the assertion.

Notice that solutions which satisf{8.1) form a three-parameter family, indexed ky,,0),
where (@,8) #(*1,0). Thus we see that the space of RNL solutions is in 1-1 correspondence to
the set

{(g,a,8)eR%0>0, (a,B)#(+1,0}.

which has the homotopy type of a figure eight. We impose the conditioB) (*1,0) because
if (A(r),w(r)) is a solution satisfying3.1) and («,8) =(=*=1,0), then, by uniqueness, the solution
of (2.1) and (2.2 must satisfyA(r)=1 andw?(r)=1, and thus is the flat Minkowski metric.
Our first goal is to prove the following result.
Proposition 3.1:If (A,w) is a local solution to the EYM equatiorig.6) and(2.7), with initial
conditions(A(o),w(o),w'(0))=(1,a,8), whereoc>0 and (,8) # (£ 1,0), then the following
hold:
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(i) A'(r)<0onr=<o,

(i)  w(r) andw’'(r) are defined and bounded o=0<go,

(iil)  the maximum domain of definition of the solution includes the intervak & o,
(iv) limp o A(r)=+c°,

(v)  w=lim, ow(r) exists.

Remark: This justifies our calling solutions which satisf3.1) and (3.2) RNL solutions
because the usual RN solutions

A(r)=1+c/r+1/k? w(r)=0,

satisfy these properties.
Proof: From (2.1), we have

rA’(r)=(1—A(r))—2w'2A(r)—u?/r?,

and soA’(r)<0 if A(r)>1. Also, if A(o)=1, then againA’(c)<0 unlessw?(g)=1, and
w’(a)=0, but this is explicitly ruled out by hypothesis. Thus sinkés)#0, it follows by
standard existence and uniqueness theorems that the solution is defined on an inrtervat O
<r=g, for somee>0. Settingd=o—¢, we have thaf\(r)>1 if 6<r<¢. Hence as long as the
solution existsA’(r)<0. The solution can fail to exist only [fv| or |[w’| or A tends to infinity.
In fact, in order to showi) and (ii), it suffices to show thatv’(r) is bounded on &r<§ [cf.
(2.9)].

To show thatw’ is bounded, we show that

H ! +\/€)1/2 1 — !’ "
if |w’(r)]>ma 5 m,é =7, then (w'w")(r)>0. (3.3

This implies thatjw’(r)|<max(r,w’(6)). Since if, e.g..w’(r)>r, thenw”’(r)>0 sow’ de-
creases as decreases. To prov@.3), we shall assume that'(r)>0; the case whera/'(r)
<0 is similar, and will be omitted. Thus we must show thé{r)>0. Using(2.2), this will hold
provided that

w'+uw<O0. (3.9

u2
[r(l—A(r))—T

To show(3.4), we consider two caseéa) |w|>1+ /5, and(b) |w|<1+ /5.
Thus supposéw|>1+/5; then from(3.3) w'(r)>&>r, so—w/'(r)/r<—1, and

2
u
r(l—A(r)w’ — - w’ +uw<r(1—A(r))w’ —u’+uw

<u(—u+w)=(1—-w?)[w?—1+w]<O0,

since|w|>1+ J5 implies 1-w?<0 andw?—1+w>0. Thus(3.4) holds in this case.
Suppose now that we are in cag®, |w|<1+ J5. Then
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u? u\?]l u
[r(l—A(r))—TW’-I-UW:I’ —W’[A(I’)—l-ﬁ-(r +FW
u\?] u
<r —W/(I’)[A(5)—l+ F) +FW]
u\? u
=ry{—w'(r) F) +W(F +W’(I‘)(1-A(5))}.

We consider the terrh} as a quadratic form inu/r). It is clearly negative whenu(r) =0, and its
determinant is

W2(r)+ 4w’ (1)2(L—A(0))<6+25+4w’ (r)2(L—A(5)),

which is negative if

/>3+\/§1/2 1
O et

Thus the term{ } is negative sd3.4) holds, and thusv’ andw are bounded on €r<r; this
proves(i) and(ii).

We next show tha#\(r) is finite if 0<r<o. Thus if 0<r<o and lim. , A(r)=c (the limit
exists sinceA’ (r)<0 for r<a, r being maximal with respect to this propéertthen as we have
shown thatw andw’ are bounded ofir ,o], we can find constante>0 andm>0 such that on
this interval(1+2w’2(r))<k andu?(r)<m. Then from(2.1), if r<r<o,

m
2

m
rA’(r)B—kA(r)—r—2 or rA’'(r)+kA(r)=- :

so that (“A)’=—(m/r?)r* 1, and integrating fromr>r to o gives
r*A(o)—r*A(r)=D,

for some constanD, and this shows that‘A(r) is bounded, which implies tha is bounded at
r. This is a contradiction. Heno&(r) is finite on(0,0], andw andw’ are bounded of0,0); this
proves(ii). To complete the proof of the proposition, we must only prévé To do this, we have
already seen thak'(r)<0 if 0<r<o¢ soA(r)>1 for suchr, and if 0<r<¢/2, we can find an
£>0 such that T A(r)<—e. Then from(2.2), if 0<r<o/2,

rA’(n)<-—e,

soA’(r)<—elr andA(o/2)—A(r)<—¢ In(2r/o), soA(r)—x asr\,0.
By (i) w(r) is uniformly continuous orf0,c] sow extends to a continuous function fiyo|.
This establishe$v), and this completes the proof of Proposition 3.1. |
We next show that the projection of a RNL solution into tee ') plane has finite rotation
on the interval &<r<g. In fact, we shall show that the rotation is “uniform” neas0. To this
end, for any RNL solution define

o=min 3,{r:A(r)=3}]. (3.5

Note that asA(o) =1 andA(o)=3, it follows thato <o ando=< 1
In what follows, we setu=1—w?.
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Proposition 3.2:Let 6(r) be defined by Tad(r)=w’(r)/w(r). Thenéd(a)— 6(0)>—  for
any RNL solution.

Remark:lt is easy to see that the set of pointsfifithat lie on a RNL solution is an open set;
in fact, if (A,w) is any RNL solution, then there exist andr, such thatA(r,) <1<A(r,) and
this characterizes RNL solutions. On the other hand, by “continuous dependence,” nearby solu-
tions have the same property. On this open set we have defined a continuous fundtjon
A(o)=1. Similarly, we can define a continuous functieron this open set b{3.5). The propo-
sition states tha#(o) — #(0)> — « for any RNL solution. It is in this sense that the rotation near
r=0 is uniform over all RNL solutions.

Proof: An easy calculation shows that

. u (O
' (r)=—sir? a—ﬁcos’- a—msm 6 cos 6
2

u
r—rA—T)sin 6 cos 6

1
= — — 2 i
=7y [r A sir? §+u cog 0+
Note thatg’ = —1 whené=x/2. We will show thaté’(r)>0 if §(r)==/4 andr <o, and thus

the orbit is trapped outside the wedg#d<< §<</2 for suchr.
Indeed, if 6= =/4, then

!

1
T2r2A

u2
r2A+u+r—rA—T . (3.6)

Now let[ ]=r?A+u+r—rA—u?/r. Then

2
[ ]=u+r—uT+A(r2—r).

However, sinca <o<3, r2—r<0, and asA(r)=3, we have

2
[]<u+r—uT+3(r2—r)ES. (3.7

We consider two cases:=r andu<r. If u=r, then
S<u-+r+3(r2—r)<2r+3(r?-r)=r(3r—2)<0,
because B<1. Thus[ ]<0, so§’'>0 at §= /4, if r<o. Now supposai<r. Then

S<2r+3r?—3r=r(3r—1)<0,

so the result holds in this case too. |
Lemma 3.31f w?#1, then®(r)— —o asr\,0.
Proof: d(r)=r—rA—u?/r<r—u?/r——o asr\,0. [ |

Lemma 3.41f w?#1, then lim. o rA(r) =e.
Proof: Write rA=A/r ~%. Then, in view of Proposition 3.1, we may apply L’pital’s rule to
obtain

A'(r
lim rA(r)=Ilim —()z=Iim[—rzA’(r)]=Iim[—d)(r)+2Aw’2r]>Iim[—d)(r)]:oo,
.0 o o .0 )

(3.9
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in view of the last lemma. ]
Lemma 3.51f w?#1, then lim. o w’(r) exists.
Proof: From Proposition 3.2y’ (r) is of one sign near=0. Assume that’(r)<0 nearr
=0. The proof in the case’(r)>0 nearr =0 is similar, and will be omitted.
Thus suppose for contradiction that

lim w’(r)>|imr
r\0 —

Lo W), (3.9

and choosep<0 between these two numbers. Thenwif(r)= » and Proposition 3.1, paff)
impliesA’'(r)<0 on 0<r <o, (2.7) implies

1
w”(r)=m[—77<I>(r)—(uw)(r)]<0, (3.10

if r is near 0O, in view of Lemma 3.3. Thwg"(r) <0, so thatw’ can crossy at most once for
near 0, and this contradict8.9). It follows that lim o w'(r) exists. ]
Proposition 3.6:1f w?# 1, then lim- o w'(r)=0.
Proof: From Lemma 3.5, lim o w'(r) exists. Assume

lim w'(r)?>2e, (3.11)
r\.0

wheree<1. Then forr near O,w’(r)>=¢. Setv=Aw’. Thenv satisfies the equatién

2w'%  uw
+ r—2=O, (312

v'+

and|lim. o v(r)|=c. From(3.12 we have

2rw'%v?—uwy  —2erv?—uwo

vv'= 2 2 . (3.13

But [ru(r)|=|rA(r)w’(r)|—c asr\,0, by Lemmas 3.4 and 3.5. Thus fomear 0,
—2erv?—uwv<-—rev? (3.149
so that this together witf3.14) gives
vv'<—gv?lr.

Then
—_=<—, (3.15

so|v(r)|<r~k, sor?|v(r)|<k, orr®A(r)|w’(r)|<k, and ass <1, this contradicts Lemma 3.4,
and completes the proof of the proposition. ]

Proposition 3.7:lim o w'(r)=0.

Proof: In view of the last result, we may assume thgt=1. We claim thaw’(r) is of one
sign near =0. To see this, suppose first that=1. If w(r,)>1 andw’(r;)<O0, then the orbit
stays in the regionv>1 andw’<0 for all r, 0<r<r,. Similarly, if w(r;)<1 andw’(r;)>0,
this persists for alt <r,. If w(r;)>1, andw’(r;)>0, orw(r;)<1 andw’(r,)<0, thenw’ can
change sign at most once ikQr <r,. Similarly, if w=—1, then agaiw’(r) is of one sign near
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W
\\ (a) 3\ (b)

w=-1 w=1
FIG. 1. Behavior of w,w').
r=0, and we shall assume’ (r)>0 for r near O[as usual, the case wheré(r)<0 nearr=0 is

treated similarly. This implies that either1<w(r)<0 orw(r)>1 forr near O(cf. Fig. 1).
Now from (2.2), we have

u? u
rAw” + 1_A_r_2 W'+FW=0. (3.19
Note that in both cases,
u(r)
- w(r)<O0. (3.17

Moreover, sinceA(r)— asr\,0 (Proposition 3.1, we see tha(l—A(r)—u?(r)/r) w'(r)
<0, forr near zero. This, together witt8.17) and (3.16), shows thaw”(r)>0 if r is near O;
hence

7=Ilim w'(r) exists and is finite. (3.18
r\.0

Now 7=0, so suppose>0. We shall show that this leads to a contradiction. Indeed, from

(3.16),

u? u
rAw’=Aw’ + r7—l w' — FW. (3.19

Now asw?=1, L’Hopital’s rule gives
. u . -
lim —=Ilim —2w(r)w'(r)=—-2wr
r\.0 r r\.0

so thatu(r)/r is bounded near=0. SinceA(r)—« asr\,0, it follows that forr near 0,

Aw'(r)+

u? 1) .o >1A’
2 w rw 5 w'(r).

Thus, for suchr, (3.19 gives
rAW”> AW,

SO
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w1
—_—>—
w’'2r

Integrating fromr <s to s, we find

W,(S) (S)UZ
W’(r)> r)

and hencev’ (r)<(r/s)¥a’(s), sow’(r)—0 asr\,0. This contradiction completes the prdiif.
We next consider the behavior Afnearr =0; the casesv?=1 orw?>1 are quite different.
We begin with the following result.
Proposition 3.8:lim,« o r?A(r) =u=(1-w?)?
Proof: Defineh by

h(r)=r2A(r)—u?(r).
We first show

lim h(r)=L exists. (3.20
r\0

To do this we need the following lemma.

Lemma 3.9Let e#0 be given. Then there exists ap>0 such that if G<r=<r, andh(r)
=g, then (h’')(r)>0. Thush can assume the valueat most once.

Proof: We will assume thah(r)>0. The proof in the cash(r)<O0 is similar, and will be
omitted.

Thus assumé(r)>e. Then, sincev’(r)—0 asr\,0, we have, for near 0,

A (1= 2w (D)= U1 > . (3.2
Then for suchr,
h'(r)= % [r2A(r) = 2A(r)wW'2(r)r2+r2—u(r)>=4u(r)w(r)w’(rr]
= % [r2A(r) (@ =2w'?(r))=u(r)?+(r?=4u(r)w(r)w’(r)r)]

1|e
= §+(r2—4u(r)w(r)w’(r)) >0,

sincer?—4uww’ (r)—0 asr\,0. [ ]
We can now prové3.20). Thus, if (3.20 were false, then

a=lim h(r)>lim h(r)=g,
0 .0

so we can find ar # 0, with a>¢> 8. Without loss of generality, let us assurae 0 (the case
<0 is treated similarly Then sincex>&> B, we can find a sequencg\,0 with h(r,)>¢ and
h’(r,) <0 for all n. This contradicts Lemma 3.9, so th& 20 holds.

Next, we show that is finite. Indeed sincel?)’ >0 if h?>¢ for smallr, this shows thak
is finite.
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We now showlL=0. To do this, we consider two cases?+1 andw?=1. First suppose
w?# 1. Then from Lemma 3.4, lim o rA(r)=c, so that we may use L'Haitals rule to obtain

; 2 L TA L 2 ; 2 ; 2
lim rA(r)=Ilim —=Ilim—-r<(rA)’ =lim —r“(A+rA’)=Ilim—r
r\.0 o U o r\.0 .0

A+ ?— 2AW’2)

2
u
=lim—r? A+1-A— ——2AW'? | =lim(—r2+u?+2(r2A)w’?)=1?,
.0 r .0

sincer?A(r)—L, andL is finite, and lim< o w'(r)=0. This proves Proposition 3.8 in the case
2
we# 1,
Now assumev?=1. Supposav=1 (the casav=—1 is treated similarly Then we see that
for larger (cf. Fig. 1),

(uww')(r)<0. (3.22
We shall need the following lemma:

Lemma 3.101f w?=1, then lim. o(AW'?)(r)=/"<co.
Proof: Let f=Aw’2. Then(cf. Ref. 9 f satisfies the equation

[
r2+r| 2+ — w2+ 2uww =0. (3.23
Also asr—0,
® u?
2f+ =W - DA+1- 5=, (3.24

becausav’ (r)—0 andA(r)—o. Then from(3.23 and(3.24), we see that’'(r)>0 if r is near
0. This implies thaff has a finite limit atr =0. |

Now let us return to the main argument of our proof; namely, to prove Proposition 3.8 if
w?=1. Thus, from(2.1),

(rA)'=—2w'2A+1—u?/r?,

and since limu/r=lim —2ww’ =0, andAw’? is bounded, we see thatA)’ is bounded near

r\.0 r\.0
=0. ThusrA(r) has a finite limit at =0. It follows that lim o r?A(r)=0=u?. This completes
the proof of Proposition 3.8. |

We have demonstrated above thatii 0, thenrA(r) has a finite limit atr =0. Thus, using
Lemma 3.4, we have the following.
Corollary 3.11:

lim rA(r)=

£ T
0 oo, if we#1l.

{b1<oo, if w2=1 and b;>0,
Proof: Clearly b;=0, sincerA(r)=0. We must only show tha,#0. Thus, supposé;
=0. Then using L'Hpital’s rule

2
O 1 oaw] o

lim A(r)=lim ——=lim| 1— ——2Aw’?
.0 no .0 r
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But lim,. o u/r=lim; o—2(ww’)(r)=0, and from Lemma 3.12, Iim\O(Aw’z)(r) exists and is
finite. Thus(3.29 gives the contradiction lip o A(r)<ce. |
Now if w?=1, and we defineA(r) to be equal td, atr=0, then we seeA is continuous
atr=0.
Corollary 3.12:

I_ (I) . _bl, if Wz:l,
m PO=] -, it w21,

whereb, is as in the last corollary.
Proof: We have

d(r)y=r—rA(r)—u?r.

If w?=1, L’Hopital’s rule shows that

u
lim —=Ilim—-2ww’' =0, (3.26
nol o
so thatu?/r—0 and hence
lim ®&(r)=—b;.
r\.0
If w?# 1, the result follows from Lemma 3.5. [ |
We will show thatw and
B=r?A (3.27

are analytic functions at=0. As a first step, we will show that they have derivatives of all orders
atr=0. To do this, note that, usin@.1), B satisfies the equation

rB’+(2w'?—1)B=r?—u>. (3.28

Next, we claim that B,w) e C%[0,6]XCY[0,], for somee>0. Indeed, from Proposition 3.8,
lim, o B(r) exists, so defining3(0) to be that limit, we see thd& is continuous at =0. Also
from Proposition 3.7, lim_o w’(r)=0, and, using L’'Heital’s rule,

. w(h)
w’(0)=Ilim " lim w’(h).
h\,0 h\,0

This shows thatv’ is continuous at =0.

The proof of the regularity ofv andB is broken up into two cases?=1 andw?# 1. We first
have the following.

Proposition 3.13:1f w?=1, thenw andB have derivatives of all orders at=0.

Proof: Since lim. o rA(r)=b,#0 (Corollary 3.11, to show that limp o w"(r) exists and is
finite, it suffices to show that

lim rA(r)w”(r) exists and is finite. (3.29
r\,0

To do this, we write(2.2) as
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u2
—rAW”=[1—A—r—z

u
w' + T W, (3.30

Then using(3.26), we see that3.29 will hold provided that

lim v(r)=Ilim(Aw’)(r) exists and is finite. (3.3)
r\.0 r\.0

Next we write(3.13 in the form

—eRuw
(%)’ = z (3.32

whereQ’ (r)=2w’'2/r=2Aw’?/rA. SincerA(r)—b,;#0 asr—0 andAw’? has a finite limit at
r=0 (Lemma 3.10, we see thaQ’(r), and hence&(r), has a finite limit at =0.

Sincew?=1, the (v,w’) orbit must lie in one of the following four regions, fornear 0;
namely, (i) w>1, w'>0; (i) 0O<w<1, w'<0; (iii) —1<w<0, w'>0; or (iv) w<—-1, w’
< 0. Suppose for definiteness that-1 andw’>0 nearr =0 (the proofs for the other cases are
similar, and will be omittel Then forr near 0,v(r)>0, so e (r)>0, and from(3.32,
(e%v)'>0. Thus lim-_o e%"v(r) exists and is finite. Sinc® has a finite limit at =0, it follows
that (3.31) holds. Thusw” has a finite limit atr =0.

Now as

(rA)'=—2w"?A+1-u?/r?, (3.33

we see thatrA)’ is continuous at =0 so thatrA is aC* function near =0 and hence the same
is true of fA) ! sinceb;+#0. It follows from (3.30 thatw e C2 nearr=0.

We next show thawv e C3 nearr =0. Using(3.30), this will follow, provided that the right-
hand side 013.30 is aC* function. But

u\’ u(r)/r—0 u(r —2(ww’)(r _
(_) (O)=I|m L:hm %:hm &:_WW"(O),
r r\.,0 r r\,0 r r\,0 2I‘
and forr #0,
u\’ —2rww’'—u —-2ww’' u .
Py r2 i 2= ~ww’(0), (3.39

asr—0. Henceu(r)/r e C1, and asAw’ =v is a C? function [cf. (3.13)], it follows thatw e C3
nearr =0. Using this in(3.34, we see thatrA)’ is a C! function, sorA e C2. Using this in
(3.30, we see thatve C*, and hence fron{3.34), rA e C3, and continuing in this way, we see
thatw andrA areC” atr=0. ThusB=r?A is alsoC” atr=0. This completes the proof of the
proposition. |

To do the regularity in the case+ 0, we first show thaive C?[0,¢) for somee > 0. For this
we need the following lemmécf. Lemma 3.10.

Lemma 3.141et f=Aw'2. Then ifu#0, f is bounded near=0.

Proof: Using (3.23, we see thaf satisfies the equation

r2f +w'[2rfw’+®)w’ +2uw] =0. (3.35

We shall show that if is near 0, and(r)>72w ™2, thenf’(r)>0. This will prove thatf is
bounded near=0.
To do this, letg be defined by
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g(ry=2rfw’+dw’ +2uw. (3.39
Sincew’(r) is of one sign near =0, (cf. the proof of Proposition 3)7 we shall assume that

w’(r)>0 forr near 0. The proof in the case whevé(r) <0 is similar, and will be omitted. Then
using (2.5, we have

+2uw

13 ’ ’
w w w
g(r)=(2r%A) - +rw’ —r2A - —uz(—r

!

w
=T[2r2AW’2+r2—r2A—u2]+2uw. (3.37

But asr’A—u?, w’(r)—0, and 2iw— 2uw, asr\,0, we see that we can find@&>0 such that
if 0<r<s, then

2r°Aw’ 2+ r2—r?A—u?< —u?/2,
2uw<3[uw|[, and r?A<2u?.

Thus, if 0<r< 4, then

1 1,2

W' u
g(r)<—T?+3|u_W[.

It follows that if 0<r<§, and

=t (3.39

theng(r)<0 and so(3.35 and(3.36 imply thatf’(r)>0; i.e., if (3.38 holds, thenf’(r)>0.
Now if 0<r<§, then

1\ 2 1\ 2
f(r)=r2A(V%) <2UZ(WT> ,
so if 0<r<é, and f(r)>72w?, then (3.39 holds, sof’(r)>0 and f is bounded on this
r-interval. |

We next prove thatv’(r) has a limit atr =0 namely, we have the following.

Proposition 3.15:f u#0, then lim. o w"(r) exists and is finite.

Proof: We shall estimatev”’(r) nearr =0, and show that it is integrable; this will imply the
desired result.

From (2.7), we find

r2AW" 4+ 2rAwW” + r’A'w” + dw’+ d'w’ + (1—3w?)w’ =0,
SO
PPAW” +[2rA+1(rA")+®Jw’+ (P’ +1—3w?)w’' =0,
and using(2.6), together withd’ =2u?/r?+ 2Aw’2+4uww'/r (cf. Ref. 9, we obtain

2(rw”—w')(U?/r’2+Aw'?)  2rw”

w’ [ 4uww
r2A r°A  r?A

"
W

+1-3w?|. (3.39
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Now let
h=rw"—w"'. (3.40
Then
h'=rw", (3.4)
and in these term&3.39 becomes
2d
h'— rE h=y (3.42
where
d= ol +w'2 3.4
_rZA w ( . 3
and
. —2r2w’  w’ A (1 3w
(ﬂ(r)—w ﬁ[ uww +r( W )]
r 4uww'?
=7 —2rw"— +(1-3w?)w'{. (3.49
But
, Trow —ruw  —(r’=r’A-u’)w’ —ruw
we= r’A - rA ’
SO
rw”(r)—0 as r\,0. (3.45
Also,
Wr2_ AW/Zr
r o reA

asr\,0, in view of Lemma 3.14. This, together wifB.45, shows that we may writé3.44) as

P(r)=ro(r), (3.46
where
o(r)= % —2rw"— Auww’? +(1-3wHw’
and
(0)=0. (3.47

Now observe thatl(r)—1 asr\,0, (cf. Proposition 3.}, so if
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0<e<i, (3.48
we can find a5>0 so that if 0<r <,
l-e<d(r)<l+e. (3.49
Then, if we let
-2d
q’=T, q(r;)=0, 0<r;<sé, (3.50
multiplying (3.41) by
P=egf, (3.50)
we obtain from(3.41)
(hP)'=Py. (3.52

From (3.49 and(3.50, if 0<r<r,

—2(1+e) | —2(1-e)
r 9= r

so that integrating fromm<r, to r, gives

r )2(1—5)

o o ro)2(1+e)
9 r

<q(r)s|og(TO

and thus

rO 2(1-¢) rO 2(1+eg)
(7) <P(r)<(7) . (3.53

Then integrating3.52 from r<rg to r gives

c—h(r>P<r>=frr°P<s>¢<s) ds, c=h(ro)P(ro),

and thus for &<r <6,

c

1 o
h(r)= P(r)_m fr P(s)y(s) ds. (3.59

Now asP(r)—« whenr\,0, we see
c/P(r)—0 as r\,0. (3.55

Also, from (3.46), we see thaty(r)—0 asr\,0, so that for smalt, |¢(r)|<1. Thus from(3.53),

F\2078) frofpg) 200+e)
<|— f — ds=constr21-#)[g~172¢| 0],
o s r

ifrop d
P J, (S)i(s) ds
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and as 4 <1, the last term tends to zero. This together WRIb5 shows thah(0)—0 asr™\0.
Defining h(0)=0, we see thah is continuous at 0. Then

__h(r)
h'(0)=Ilim —,
o T
and from(3.54) and(3.46

h(r) Cc 1 o
r =rP(r) rP(r) Jr sP(s)6(s) ds.

Now from (3.53), c/rP(r)—0 asr™,0, and for smalk, using(3.53, we have

1 o 1-2¢ o
mﬁ sP(s)d(s) ds SWL sP(s) ds

r1_28 o
2(1+te)a—1-2
s—z(l_s)f rg S ®ds
ro r

—2e
_de, 1-2¢ To
=rq°r s I,
4e

— r1_2£ 1 _ 1
2¢e r2e rjoz'

Thus, sinces <3, we see that

h’(0)=0. (3.56
Now, from (3.4,
h'(r
W///(r): . (357)
But, using(3.42 and(3.46),
O _ 90 g MO g "0 (3.59
r r r r
Now lim,. o 6(r)=0, and from(3.54
h(r) o 1

"o
r2 :rzP(r) 2P(r) fr sP(s)d(s)ds.

But lim, o [1/r?P(r)]=0, and forr near 0,

"o
sconstr‘zsf sP(s)ds

r

1 ro
r—zm fr SP(S) G(S)

o
sconstr‘z*’f s 172 (s
r

=0(r %) as r—0.

Thus, near =0, w”(r)<0(r ~*?), and hence, for near 0,
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W"(ro)_W"(r)=frrOW”’(s)ds<O(r1‘4€).

Sincee <%, this shows that lim o w"(r) exists, and is finite. |
Corollary 3.16:1f u#0, thenw is aC? function atr =0.
Proof:

, owi(r)y
w’(0)=Ilim ——=1lim w"(r),
no T r\.0

by L’'Hopital’s rule. Thusw” is continuous at =0. ]
We now prove the analog of Proposition 3.13 in the casewRat 1.
Proposition 3.17:1f w?# 1, thenw andB have derivatives of all orders at=0.
Proof: By induction; namely, from the last result, we know thatis C2 atr=0, andB is
continuous at =0. Now we need the following lemma.
Lemma 3.181f we C atr=0, thenBe C*"* atr=0.
Proof: Let B= B—Ug. Then from(3.18), we see thaB satisfies the following equation:

B’ +(2w'2—1)B=r2—(u2—u?)—2w' &2 (3.59
Now if
Q'(r)=2w'?r, Q(ry)=0, ry>0, (3.60

thenQ e Ck™1, and we may rewrit¢3.59 as

eQ _\’ (u>=u?) —2w'?
—B| =e91- 2 . (3.61)
If
ul—u? —2w'u?
h(r)=1- r2 r2 ,

thenhe CX~2. Thus, integratind3.61) from r<r, tor,, we get

eQn _ "o eQlro) _
D— B(r)=j e h(d) ds<D= B(ro)),
r . ro
or
~ Dr r o
B(r)= m— m Jr eQ(S)h(S) ds.
Now e2®h(s) e C* 2, soB(r)eCk L atr=0. [ ]

Now returning to the proof of Proposition 3.17, we see that in view of Corollary 3.16 and the
last lemmaw e C2 andB e C!, atr=0. Now assume that

BeCk"! and wecCk (3.62
We shall show that

weCK™l at r=0; (3.63
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this, together with the last lemma, will complete the proof of the proposition.
To show(3.63, we first write(2.7) as

—rd(w'/r)—uw
B

Then asr®=r2—r?A—ueCk ! BeCK 1 andB(0)=u?#0, we see that if we prove

w'/reckt (3.69
atr=0, thenw” e C*"* sowe Ck™?, atr=0. Thus the proof will be complete once we prove
(3.64.

Let
z=rv, wherev=Aw'".
Thenz=B(w’/r), so if we show
zeCk? (3.69

atr=0, then(3.64 holds so we will be done.
To show(3.65, we first see from3.13 that z satisfies the equation

rz'=(1-2w'?)z—uw, (3.66

so if Q is defined as above b§8.60), thenQ e C¥~1, and we can rewrit¢3.66 as

e? ' —eRuw

S0 integrating fronr <rg to r gives

Cr r (roe?®(uw)(s)
z(r)=e—Q+e—QJ Tds,

whereC=(e?"0/r)z(r,). Now Cre e C*"1, and if we defineg by
g(r)=e"(uw)(r),

thenge C¥~! andg’(0)=0. Then integrating by parts gives
r S r "(s

rfog(z) ds=r r°+fog()ds}.
r ) r r S

But asr[[—g(s)/s]|;°] e C*~*, we will haveze C*~* provided that we show

—g(s)
S

r "(s
Izrf ° gé ) gseckt (3.69
r

atr=0.
Now as

g’ =uweQ’ +e?(1-3w?)w’,
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FIG. 2. The RNL phase portrait.

we see thag’ e C*" ! andg’(0)=0, sog’(s)/se C*~? [in general, ifhe Ck andh(0)=0, then
h(s)/se Ck™1], and hencd e Ck~* atr=0. This completes the proof of Proposition 3.17.1

Next we shall show that near=0, the phase portraits of the RNL solutions in thve\{')
plane have some surprising features, in the case wherel. These will follow from the follow-
ing result.

Proposition 3.19:f w?# 1, thenw”(0)=w/u.

Proof: From (2.7) we have

!

w'(r)=

—dw —uw [—rw’ rAw’ u?Zw' uw
= + + — —
r2A r°A r’°A rAr r?A

Using Propositions 3.7, 3.8, and 3.15, we have

(0)=lim| W W W 2w(0)- .
B B N - R Ty
and the result follows. u

Thus, in the case wheme?# 1, the (v—w’) phase plane portrait neat=0, is as shown in
Fig. 2 (depending on whethew<—1, —1<w<0, 0<w<1, orw>1).
These are quite different than the phase portraits for non-RNL solutions. For examples @
and O<w<1, then we have the picture, depicted in Fig. 3 because wHen0, w”<0.

FIG. 3. Non-RNL phase portrait.
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The difference is that for the RNL solutionsrat 0, satisfyingw?# 0,1, the functior® is infinite
and®dw’ is not equal to zero, even though' (0)=0. Indeed, in this case

_ _ u? , o Wow .
Im®d(r)yw'(r)=Ilim{rw'—rAw’' — —w'|=Ilim| —r“A ——u® —|=—2uw,
r\,0 r\.0 r r\.0 r

where we have used Propositions 3.7 and 3.8.
As a final comment along these lines, note that the vector ffeld2.9) and (2.10)]

%[rz—uz—(sz—l)B]

w v
1 v uw
2R ——
B[r B u]r B
1

cannot be continuously extended from the region0, v=0, to r=0, v=0; indeed ifw
=w(0), O<w<1, and(as usualw’(B,w,w’,r)=—®dw’'/B—uw/B, then

| =]

. along orbits

c

limw”(B,w,w',r)=
r\,0

N

T along the patht— (u?,w,0}).

Thusw” cannot be extended to be a continuous functioruai,0,0). Therefore the vector field
is not continuous at this point, even though the functiB(s) andw(r) are analytic ir=0 (see
Sec. V). The point is that the analyticity off is a nontrivial statement and does not follow from
the usual theorems about analytic vector fields, since the vector field is not continuous.

We close this section by studying the behavior of the metric coeffié@h nearr =0 [cf.
(1.D]. Note that sinca?A is analytic, we see that W?# 1, then lim. o r?A(r)=u?#0 (by
Proposition 3.8 so thatA(r)=0(1/r?), nearr=0. If w?>=1, thenr?A(r)=b;r +O(r?), where
b;>0 (by Corollary 3.1}, so thatA(r)=0(1/r) nearr=0. We use these facts in proving the
following theorem.

Theorem 3.20:1f (A(r),w(r)) is a RNL solution, then the metric coefficieAtC? of the
metric (1.1) satisfies, for near 0,

O(1r?), if w?#1,

A(r)cz(r):[ o(1h), if wi=1. (3.69

Proof: From our above remarks, the theorem will hold provided that we stigw) is
bounded near=0. To see this note that froif2.3), if r>0,

r 12
C(r)=C(O)ex;{ fo ZWS(S) ds),

whereC(0)+ 0, and sincev’?(s)/s is bounded near=0, it follows thatC(r) is also bounded for
r near O. |
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IV. EXISTENCE AND UNIQUENESS OF LOCAL ANALYTIC RNL SOLUTIONS

In this section we shall prove that there is a unique three-parameter family of @cal
solutions of the equations

rB’+(2w'?—1)B=r?—u?, 4.9
BwW'+(r2—B—u?)(w'/r)+uw=0, 4.2

whereB=r?A. This will imply that some of these solutions match up with those solutions which
we specified in the previous section by the parametets andB, whereA(o)=1,w(o)=«a, and
w'(0)=p, o>0 and (@, 8) #(*1,0). The proof will be broken up into two caseg:0)?+ 1 and
w(0)?=1. In the former case, we will show thai0)? can be any value different from 1. We will
also show that these local solutions are analytic.

Theorem 4.1: Given any triplep=(a,b,c), a?#1, there exists a unique local solution
(Wp(r),By(r)) e C*X C? of (4.1) and (4.2), defined on[0, R], for someR>0, satisfyingw,,(0)
=a, W’F’,’(O)z b, andB",(O)z ¢, and the solution depends continuously on these initial values. The
solution is analytic at =0.

In the case whera?=1, we have the following theorem.

Theorem 4.2: Given any triple of the forng=(1b,c), there exists a unique local solution
(Wq(r),By(r)) e C*x C? of (4.1) and (4.2, defined on[0, R], for someR>0, satisfyingw,(0)
=1, Wg(O)z b, andBé(O)zc, and the solution depends continuously on these initial values. The
solution is analytic at =0.

Remarks:(1) That the solutions constructed in the above theorems are actually analytic at
=0 (and hence ofO, R]) follows as in Ref. 11, p. 401.

(2) The solutions constructed in the above theorems are not necessarily RNL solutions. For
example, the solution af2.1) and(2.2),

B(r)=r2+c?%r, w(r)=1,

wherec?+0, satisfiesA(r)=1+c?/r>1 for all r>0.

(3) The solutions described in Theorem 4.2 that hawed are not RNL solutions, by Corol-
lary 3.11. In fact, these are tiilocal) Bartnik—McKinnon(particlelike) solutions whose existence
was proved in Ref. 9. One can see this by noting that Proposition 3.8 implieB{@at0, so
r2A(r)=B(r)=0(r?) nearr =0, and thusA is analytic atr =0. Now if A(0)<0, then from(2.1)
we see that for near 0,rA’(r)>1 and this violates the analyticity &k at r=0; thusA(0)
=0. If A(0)=0, then from(2.1), we see that since(r)/r— —2w(0)w’(0) asr—0, we obtain
1—4w’(0)>=0 sow’(0)?=3. On the other hand(2.2) yields 2w’(0)=0; this contradiction
shows thatA(0)>0. The fact thaA(0)=1 andw’(0)=0 follows by expanding these functions
in a Taylor series near=0 (cf. Ref. 8.

Proof of Theorem 4.1To conform with our earlier notation, let=1—a?. Sinceu#0, we
defineB(r) by

B(r)=B(r)—uZ
Then(4.1) and(4.2) become
rB’+(2w'?—1)B=r?— (u2—u?)—2w' 2u? 4.3

and

!

~ ~ w
(B+Uud)W"+ (r2—B—u?—u?) —+uw=0. (4.4
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We fix a, b, andc, and seek a solution of the form

a 2 b 3

W(r)=a+2—u—r +€r +u(r) (4.5

and
B=cr+ y(r), (4.9

where

veChyod0, R], z=v'eC3{0,R], 4.7

and
yeC2J0, R]. (4.9

Here the zero subscripts denat€0)=v'(0)=v"(0)=v"(0)=0, and so on.
We let

v'=z2, (4.9
and then we can rewrite}.3) and(4.4) as the first-order system:
v'=1z, (4.10

a
(r’—cr—y—u?—u?) —br—i, (4.11

a rb z
-t —+ -
u 2 r

uw-+

B+u?

r2—(u?—u?)—2w'2u?—(2w'2—1)(cr+7y)

v'= ; c, (4.12

wherew is given by(4.5), andw’ = (a/u)r + br?/2+z. Let X be the space defined by

X=(Co00X CioooX Co)[0, R,

and for fixedg, 0< 9<1, we let

vla=0 sup [0@(M)], |zs= sup [2"(N)], [¥l,= sup [y'(N)],

0osr=<R osr=<R O=sr=R
and as a norm o, we take

w2, y)|=max(lv]4,|2l5.]7]2)-

We rewrite(4.10—(4.12 as integral equations, and we seek a local solution via iteration:

U(r)zfrz(s) ds, (4.13
0
r a sb z a
— _ A A2 re T2y & .
Z(r) fo{ B9 w+ u_+ 5 +S (s*—cs—y—u“—u)|—b U}ds, (4.19
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(2 (12—T7) — 2w’ 22— 12_
7(r)=J[S (u )— 2w’ 2u%— (2w 1)(cs+y)_C ds .15

S

where O<r=<R, and agairw is given by(4.5) andw’ = (a/u)r +br?/2+z. We abbreviaté4.13
and(4.14 as ©,z,7)=T(v,z,7).

We fix a real numbep>0, and assumiv,z,7)|<p; i.e., (v,z,7) € B,(X). We shall show
that for smallR the following hold:

(@ T(B,)CB,
(b) T is a contraction.

These will imply local existence of a solution K
We note that it is straightforward to show that%,y) € X, and thaf(a) holds if R is small. To
show thatT is a contraction for smalR, we consider the differentiad T, evaluated at a point

(v,z,7) e X, and show that
[dT=C<1, (4.16

if R is small. Herg|dT|| is defined by

ldTl= " sup dg 2 T(@.B,0)= max  sup |dg, 4 (meT)(a,8.9)]. (4.17)
[(e.,0)l|=1 i=123|(a,8,9)]=1

wherev =m°T(v,2,y), Z=m,°T(v,2,7), y=m5T(v,2,7), and (@,B,9) € X.
Now (74°T)(v,z,v)=7, SO

dmseT) w0l [ 513 ~olglo=0llep.=0. .18
4

Next (m5°T)(v,2z,7)=Z, SO

dz +a§ +a’25
w TPty

|d(772°T)(a!ﬁ15)|3:

3

Now write

d_
0'1=dhz'(uvz‘y)(a,0,0)= a Z(v+at,z,y)

Jz
= o
Jv
fr (1-3w?)+4 a+5b+z (s) d
=— = —3w uwl =+ —+—| |a(s) ds,
0 (B+u?) u 2 s
Jz r 1 1
=dz,,.,(0,8,0=— =f - —= s?—cs—y—u?—u?) = B(s) ds,
o,=dz, ;,(0,8,0) (9zﬁ . (B+UZ)( Y )3,3()
dz
UgZdE(U‘Z,),)(O,O,é)= — 5
Jy
fr 1 W—+Sb+ 4(s) d +fr !
= ——= — =4+ —+-]48(s) ds, —
o (B+u? u 2 s (B+u?)
a sb z
X | uw+ —_+;+— (s®—cs—y—u?—u?) | 4(s) ds
u
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Then
d(mpeT) (@, )s=lo1 + oo+ g (1-3w2)+ auw 24 224 2 o)
0 a, B, =|o1FT 0t o3|3=|— =—— —3W Uw| =+ —+—| |«
2 3 1T 01 033 B+ T 2
B(r) a sb z
+(r2—cr—y—u—u?) —+| — =+ —+—|3(r) | — = uw
( Y ) r u 2 r S (B+Uu?)
a sb z
+| =+ —+ - |(rP—cr—y—u?—u?) | &(r)| ,
u 2 r
2
and it is easily seen that for sm&l, we have an estimate of the form
|d(72°T)(a,B,6)|3=c1R|(a,B,8)|=c,R<1, (4.19
wherec, is a constant depending only @na, b andc. Similarly,
dy dy  dy
|d(7T30T)(a{,ﬂ,5)|2—‘% a+EB+¢9—'y§2'
Jy r —2u
5 a= o T a(S) ds
Jy r o —4w'(u’+csty)
%z —jo— s B(s) ds,
Jy 5_fr —(2w'2-1) sis) d
v, T s (s) ds,
so that
—2ua(r r o(r
|d<7r3°T)<a,B,a>|2=‘%—4w'(ﬁz+cr+y) @—(MZ—D ¥ ,
1
and it is again easy to see that for sl
|d(73eT)(a,B,8)|;=<C,R|(a,B,8)|=c,R<1, (4.20

wherec, depends only o, a, b, andc. It follows from (4.17)—(4.20 that for R small,
[dT|<c<1,

soT is a contraction. This proves that for smRlk>0, Egs.(4.1) and(4.2) have a unique solution
(B,w) e (C2xC*[0, R], for any choice ofa# +1, b, andc.

To complete the proof of Theorem 4.1, we must show Ehdepends continuously o (b,c)
and that the solution is analytic et 0. However, the fact tha® depends continuously om(b,c)
follows as in Ref. 9, p. 147, and the fact that the solution is analyticdl follows as in Ref. 11,
p. 401. This completes the proof of Theorem 4.1. |

We now turn to the following proof.

Proof of Theorem 4.2The details here are similar to those in the last theorem, so we shall
merely sketch them.
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We consider the equatiord.1) and(4.2), and write

2
w(r)=1+ b7r+v(r), veC3,{0, R] (4.213
and
B(r)=cr+vy(r), yeC3J0,R]. (4.21b

Note thatc#0; otherwiseA(r)—/—o asr\,0. Again we let
v'=2z, zeCZj0,R] (4.210

and we rewrite(4.1) and (4.2 as the system

v'=z, (4.22
. —uw/r—(r—c—ylr—u?/r)(b+z/r)
zZ'= T oir —b, (4.23

rZ—u?—(2w'?2—1)(cr+y)

v'= ; c, (4.29

wherew is given by(4.2139 andw’=br+z. Now letY be defined by
Y =(C3ox C3ox CHo)[ 0, R,
and for fixed#, 0<0<1, we let

lo[s=6 sup [v"(N)], [Z]o= sup [2'(r)], [¥lo= sup[y"(r)],

o=r=<R o=r=<R 0O=r=<R

and as a norm olY, we take

[(v,z, y)l[=max|v]3,]2]2.] ¥]2)-
We rewrite(4.22—(4.24) as integral equations:
r
'J(r)zf z(s) ds, (4.25
0
~  ["[-uw/s=(s—c—yl/s—u?s)(b—zls)
z(r)—f0 T ols —b| ds, (4.26
r[s?2—u?—(2w'?—1)(cs+
’;(r)zf ( - X 7)—0} ds, 4.27)
0

where O<r<R, w is given by (4.20, and w'=br+z. We write (4.25—(4.27) as {,z,7)
=S(v,z,7).

Again fix p>0 and assumi(v,z,v)||<p. Then it is easy to check thab (z,) € Y and that
S(B,)CB, if Ris small. To show thaB is a contraction for smaR, we show that the differential,
dS, evaluated at a pointv(z,vy) e Y, satisfies
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l[dS|=c'<1, (4.28
if R is small, wheredS is defined by[cf. (4.17)]

ldS|= max  sup |ld, ;5 (mieS)(a,B,3)ll, (4.29
i=12,3[(a,8,0)]=1

where ©,2,%) =(71°T(v,2,7),7°T(v,2,7),7m3°T(v,2,7)) and («,8,5) €Y. As in the proof of
Theorem 4.1,

|d(77'1°S)(0.’,B,5)|3$ 7

and
d S d)|,= 7 +(E + 7 S
|[d(720S)(a,B,6)|,= 7 ¢ 5,3 oy 5
Moreover,
Jz r —(1—3w?)(1/s)— (4uw/s)(b—1z/s)
— aZJ a(s) ds,
Jv 0 Y
c+—
S
dZ [T (Us)(s—c—yls—u?ls)
Eﬁ_ 0 c+ ’y/S 'B(S) ds,
and
LY r (1/s)(b—2zl/s)
19_’}/ o= o C+—’)’/S o(s) ds.
Thus
1 2 ) z
[— (r—c— %’— T)a_ (1-3w?) €+ 4uw b F)(b_ F)
|d(772°S)(a,,8,5)|2= by ’
c+—
r 1
and it is easy to see that
|d(772°S)(01,,8,5)|2SC3R, (43@

wherecs depends only otb, ¢, andp. Finally,

oy dy
|d(773°5)(a1,3!5)|2_’av at 0z At dy 52,

and
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E 0 S

- (r—(2w2-1)
7y 0= fo ————ds) ds.

Then again one easily shows
|d(73°S) (@, B,6)|2<C4R, (4.3))

wherec, depends only o, ¢, andp. As in the proof of Theorem 4.14.29—(4.31) yield the
theorem. [

V. EXISTENCE OF INFINITELY MANY RNL CONNECTING ORBITS

As was shown in Ref. 12, any solution @&.1) and(2.2) defined in the far field, and satisfying
0<A(r)<1 for sufficiently larger, must satisfy lim_,., A(r) =1, the solution has finitéADM)
mass; i.e., lim_,,, r(1—A(r))<w and lim_,,, w(r) e{+1,06t. Such solutions will be calledon-
necting orbitsor connectors In Ref. 10, it was shown that there exist an infinite number of
particlelike solutiongi.e., defined for alt =0), distinguished by the nodal class of the connection
coefficientw. In Ref. 11, it was shown that given any event horizon0, there exist an infinite
number of black hole solutions distinguished by the nodal class of the connection coefficient

In this section, we shall show that given amy 3, then there are an infinite number of RNL
connectors having integral rotation numbers for the connection coeffigiehoreover, we shall
also prove that it=> 3, there are an infinite number of RNL solutions having half-integer rotation
numbers; i.e., lim o w(r)=0 and lim . (W?(r),w’(r))=(1,0) (see the discussion belowThe
solutions we consider here satigfy(r),w’(r))# (0,0) for anyr >0. [Given any solution A,w)
of (2.6) and(2.7) for which w(r;)=0=w’'(r,), andA(r,)>0, for somer >0, then by unique-
nessw(r)=0 andA(r)=1+c/r+ 1/r? for some constand; i.e., the solution is a RN solution.
Thus the solutions we obtain here alifferentfrom these RN solutions.

We begin by defining the regioRC R* (cf. Ref. 10 by

C={(A,w,W,r):1=A>0w?<1, r>0,w,w’)#(0,0)}.

Then if P=(1,w,w’,0) eT", we denote the orbit througR by (Ap(r),wp(r),wp(r),r)—when
there is no danger of confusion, we shall suppressPth&Ve let theexit-time r,(P) be the first
value ofr>g¢ for which the orbit throughP exitsT'; r(P) = if the orbit stays inl" for all r
>g0.

For PeT, we defined(r) by tané(r)=w’'(r)w(r), and 8(c) =tan * (W' (0)/W(0)); thus we
choosed(o) e[ — ,7]. Sincew’(0)=0 for RNL solutions(Proposition 3.7, we see tha#(0)
=0 (mod 27), if w(0)>0, and#(0)=0 (mod ), if w(0)<<0. On the other hand, iv(0)=0,
then Propositions 3.7 and 3.19 imply that(0)=0=w"(0). Thus forr near O,w(r) has an
expansion of the form

w(r)=cr3+0(r%),
wherec#0 (otherwise the solution is a RN solution, and we are not considering)th€kas

w’(r)=3cr?+0(r?), so that near=0, w’(r)/w(r)=0(1/r), and hence

lim o(r)==+
r\.0

(mod 2r), if w(0)=0. (5.9

NS
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The rotation number,Q=Q ., of this solution is defined bycf. Ref. 8

1
Q=-—[6(0)=0(re)]. (5.2

Thus, on connecting orbits, i(0)=0, thenQ)=(2n+1)/2, i.e.,Q is a half-integer, while if
w(0)#0, thenQ is an integer. Our first result yields infinitely many RNL solutions with half-
integral rotation numbers.

Theorem 5.1: Let o> 3 be given. Then there is an integhi=N(o)>0 such that ifne Z,
n>N, there exists a RNL connector satisfyiAgo) =1, having rotation numbem( 3).

Note that the solution is defined for al>0, w(0)=w’(0)=0, and lim. o (W(r)/w’(r))
=0.

Before proving Theorem 5.1, we recall, and slightly restate, a result from Ref. 10 which we
shall need.

Theorem A(Ref. 10, Proposition 3)1 Suppose that

An(n)={(As(r),wp(r),w(r),r):a,<r<b,}, n=12,..,

is a sequence of orbit segmentslirsatisfying the following hypotheses:

(i)  The set{6,(b,)— 0,(a,):n=1,2,..} is uniformly bounded; sayd,(b,)— 6,(a,)|<M, n
=1,2,....

(i) limy_. Ay(a) =P =(A_,w_,w/,a)el’, and lim_. A,(b,)=Pr=(Ag,Wg,Wg,b)
el.

Then there is an orbit segment
/T(r)={(A(r),w(r),w’(r),r):asrsb}

in T joining P_ to Py, such that for each, a<r<b, lim,_.. A,(r)=A(r), and|é(a)— 6(b)]
=M.

The proof of Theorem 5.1 will require a few preliminary results, the first of which is an
“intermediate-value” theorem for rotation numbefsf. Ref. 10, Cor. 3.6 To formulate this, we
first recall from Theorem 4.1, ifv(0)?+# 1, we can parametrize the RNL solutions by the triple of
numbers &,b,c), wherea=w(0), b=w"(0), andc=B'(0). Recall thatB(r)=r2A(r). In these
terms, we can state the intermediate-value theorem as follows.

Proposition 5.2: Let >0 be given and fixa=0. Suppose that there are poini,
=(0)bg,cq), P1=(0)b4,cq), and an arey lying in the planea=0, connecting®, to P, and such
that for everyP =(a,b,c) e y the corresponding solutiofA(r),w(r)) satisfiesA(o)=1. Assume
that the orbit throughP, either lies inI" for all r>0, or else exitd" throughw?=1 [in particular
A(r)>0 for all r<r.]. Assume thaf),>Q, where(); denotes the rotation number of the orbit
throughP;, i=0,1. Then ifk e Z satisfiesQ)o<k+ 3<(,, there exists a poin® on y such that
Qp: k+ %

Proof: We parametrize the curveby p(t), O<t<1, wherep(0)=P, andp(1)=P;. Denote
by , the rotation number of the orbit through the popft). Let

X={te[0,1]:Q;<k+3}.
ThenX+# ¢ since Oe X. Thus, let

T=supX.
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We claim thatQ7<k+ 3. To see this, suppose thft; >k+ 3. Then we can find an,;>0 such
that (147)[ 07(0)— 67(r;)]>k+3, so by “continuous dependence,” farneart, te X, (1/m)
X[ 6,(0)— 6,(r,)]>k+ 3, and this contradicts the definition tf ThusQ7<k+ 3.

We next prove thaf)7 is a half-integer, i.e.ro(ty=, so that the orbit througip(t) is a
connecting orbit. To do this, we first show that the orbit cannot Bxita A=0. Thus sincd is a
limit of a sequence, e X and each orbit lies if" and has rotation bounded txy+ 3, it follows
from Theorem A(recalled abovethat thet-orbit cannot exitl’ throughA=0. Next, thet-orbit

cannot exitl’ throughw?=1 andw’ #0. Indeed, if this happens, then @[ 67(rl)— 67(0)]
<k+3, so we can find am>0 such that (4)[ 67(r.+e)— 67(0)]<k+3, and hencew%(ré

+¢&)>1, so by “continuous dependence)\’/,f(ret3 +¢)>1, fort>1, t neart. But then for these's,
ke — w/2< 6,(r ) <km+ /2, and this violates the definition of Finally, theT—orbit~cannot go to
(w,w’)=(0,0) for finiter since this would imply(by uniquenessw(r)=0. Thusri=c, so the
‘t-orbit is a connecting orbit. Sinoe(0)=0, we see thaf); is a half-integer<k+ 3. If Q7=]j
+i<(k—1)+1%, then by Ref. 8, Proposition 3.4, we can findt,at<t<1, such thatQ,<(j
+1)+3=<(k+1)+%, and this again violates the definition of This proves thaf);=k+%. W

Remark:By a completely analogous method, if the curydies in the complement of the
planea=0, we can prove an intermediate value theorem for integral rotation numbers; i.e., where
we replacek+ 3 by k in Proposition 5.2. We omit the details of the proof.

Proof of Theorem 5.1tn (a,b,c) parameter space, we may consideas a function defined
on an open subse¥ of this space. Namely, given any tripla,p,c), we consider the local RNL
solution (A(r),w(r)), obtained via Theorem 4.1, satisfyig(0)=a, w”(0)=b, and B'(0)
=c. Here7/ consists of those solutions which sati#fgo) = 1 for someo> 3. The corresponding
set of points @,b,c) clearly lies in an open subset/. We thus have a mapping
(a,b,c,r)—A,pdr), and for @g,bg,co) € %, we have for somer, o> 3, Aagboc,(0)=1. Since

/o’iO,

we see that the equatidy,, (o) =1 definess implicitly as a function of @,b,c) nearoy, for any
point (ag,bg,Cq) in 7.

Next, if a=0=b, andc=cy#0, then by uniqueness, the corresponding solution is the RN
solution

: u*(o)
(Zw 2(0)+ =

aAaObOCO( U)/&I’ =—

=0, A(rn=1 ! +1
W(r=0, A(N=1-_—+5,

whereoy=—c, *. For this solution, we see thatr/dc=c, >= g2+ 0. Thus gradr has a nonzero
component in the direction, so from the implicit function theorem, we may represent the surface
o=0y asc=c(a,b,oy), in a neighborhoodla| <&, |b|<e, near the hyperplane=c,.

Now fix a=0, and for|b|<e, let y, denote the curve in the plarse=0 determined by the
intersection of the surface= o, with thec—b plane, and let§,0) (c nearc,) denote the point of
intersection in the plana=0, of y, with thec axis (cf. Fig. 4 where we have assume c). At
this point we will need the following result.

Proposition 5.3:Given anyo,> 3 anda=0, we can find a sequence of points, (b,) lying
on v, such that ¢,,b,)—(c,0) and the rotation numbe, of the orbit (A,(r),w,(r)) through
the point @,b,c)=(0b,,c,), whereA,(o,)=1 satisfies(),,—» asn—o. Moreover, if (C,b)
lies onvy,, and is close tod,0), the orbit through this point either lies Infor all r>0, or else
it exits " via w?=1.,

We defer the proof of Proposition 5.3 until later, and we show here how it allows us to
complete the proof of Theorem 5.1. The orbit through @,0s the RN solutionA(r)=1
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7o a=0

O
oi

FIG. 4. Intersection ofr= o, with a=0.

—1/or+ 1/o?, w(r)=0, and hence, from Proposition 5.3, solutions through nearby poiriisc]O,
lying on yo must lie inT’, for o<r<2. ChooseP, on ¥y, in this neighborhood; the orbit through
P, either lies inI" for all r>0, or else it exitd" viaw?=1 and the same is true for points 9§
betweenP, and (0,0¢). From Proposition 5.3, pointx{,b,) lying on vy, (in the planea=0)
betweenP, and (0,0¢) can be found satisfying),,—o. Thus, given any half-integeN+ 3
>Qp0, choosen so large that),>N+ 3. Then the intermediate-value theorem, Proposition 5.2,
shows that there is a poi on y, with Qo=N+ 1, and the corresponding orbit throughis a
RNL solution satisfyingA(o)=1. This proves Theorem 5.1, IM(a)z[on].

To complete the proof of Theorem 5.1, we must prove Proposition 5.3. This will be a conse-
guence of the following lemma.

Lemma 5.4Fix o> 3, and fix a positive integan. Then if (a,B) is sufficiently close tq0,0),
the orbit through(1,a,8,0) has rotation number exceeding

Proof: Define the distance functiom by

p?(P(r)=w(r)?+w'?(r), P(r)=(w(r),w'(r)).

Let £ be such that &ce<3%, and letT>0 be arbitrary.
Sinceo >3, Ag\(r)>0 for all r>0. Thus by “continuous dependence on initial conditions,”
we can find6>0 such that

if p(P(0))<d, thenp(P(r))<e, if os<r<o+T. (5.3
Define an “angle” y by
tan y=ruv/w,

wherev =Aw’. (Note that the zeros of and the zeros of=tan (w’/w) occur at the same values
of r.) We shall show that i5 is small,y can be made large by takifiglarge; this will imply the
desired result. Now usin.13, we find

sin 2y
2

1 Sir? y

y'=-<|u cog y+ +(2w'2-1) (5.4)

Thusifo<r<o+T, (5.3 implies thatu=1—¢? and|2w’?— 1| <1. SinceA 1=1-¢2, we have

IS

[ 1=(1—¢)% cod y+(1—¢&?)si? y—i=1-g?=
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Thus from(5.4), we get for G=r<o+T,
v (r)ys—1l4r,

and hence

o+ T , 1 (o[+T] dr
7’(0+T)—7(0)=J’ 04 (r)$—ZJ

p r

Since the last integral can be made arbitrarily large by taKingrge, the results follows. H

To see how this lemma implies Proposition 5.3, we proceed as follows. Firstr i @tthe
solution determined byab,c) is close to the RN solutiow(r)=0, then by “continuous depen-
dence on initial conditions,” the solution through,p,c) will be close to this RN solution at
=o. Hence takinga?+b? sufficiently small andc sufficiently close to—1/c we can make
(w(o),w'(0)) as close as we wish t0,0). Then applying Lemma 5.4 shows that the orbit
through(1w(o),w’(o),o) has arbitrarily high rotation for> o, if a?+b? is sufficiently small.
This proves Proposition 5.3 and hence completes the proof of Theorem 5.1. ]

Using Theorem 5.1, we shall show how to obtain RNL connectors of sufficiently high integral
rotation numbers, it-> 3. This is the content of the next theorem.

Lemma 5.5Let o> 3 be given. Then there is an integde=N(o)>0 such that ifne Z, n
>N, there exists a RNL connector satisfyiAgo) =1, having rotation numben.

Remark: Nis the same integer as in Theorem 5.1.

Proof: We shall obtain these integral connectors by perturbing off the half-integral connectors
obtained in Theorem 5.1.

Fix o=0>3%. Then as shown in the proof of Theorem 5.1, the surface® ando =0,
intersect transversally since graet0 at the pointa=0, b=0, c=cy#0. Thus gracr#0 at the
pointa=g, b=0, c=cy, if £>0 is sufficiently small, so the surfaee= o intersects the surface
a=¢ transversally. Lety, denote the curve in the plare=¢, determined by the intersection of
the surfacer= oy, and let (0g), (C nearcy) denote the point of intersection in the plame ¢ of
v. with the ¢ axis (cf. Fig. 4 where we here replacg by y., a=0 bya=g, andc by C).

As in the proof of Theorem 5.1, we shall show that there is a g®jran y, such that the orbit
throughP, either lies inI" for all r>0, or else it exitd" via w?=1, and the same is true for all
points ony, “below” P,. o

Now the orbit throughPy=(0,b,c) (cf. Fig. 4 hasAy(r)>0 for r<r§. If it exits I via w?
=1, then there is an; such thalw(z)(rl)> 1. Thus ife is small, the orbit througP,=(¢,b,c) also
satisfiesv?(r,)>1, andA,(r)>0 for 0<r=<r,. If the orbit throughP, is a connecting orbit, then
atr=o0+1, the orbit lies inl’, so if ¢ is small enough, the orbit throudgh, lies inT" for o=<r
<o+1, and hence ha&,(r)>0 for o<r=<r{. Thus the orbit througlP, either lies inI for all
r>0, or else it exitd" via w>=1. Now from Theorem 5.1, given any>N(o), there is a point
Qne yo in thea=0 plane, and there is anp> o such that the orbit throug®,, satisfiesy(r,)
—00(0)>nar. Thus, ife=¢,<1/n is small, we can find a poir@; on vy,, in thea=¢, plane,
such that the orbit througQ;, satisfiesd,(r,) — 6,(0)>n. It follows then from the intermediate-
value theorenifor RNL connectors with integral rotation numbers, cf. the remark after the proof
of Proposition 5.2 that we can find RNL connectors with rotation numiperif n>N(o). This
completes the proof of Theorem 5.5. |

We next show that given any>0, we can find a RNL connector having rotation number
zero.

Lemma 5.6For everyc>0, there is a RNL solutiofia,8,0) having rotation number 0; that
is there is a RNL solutiorfA(r),w(r)) of (2.1) and (2.2) with zero rotation number satisfying

(A(0),w(o),w'(0))= (1., B).
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w=~1] w’
P —
,-AL //
A/z‘ t\“\
N
4 ql > W

FIG. 5. The RNL solution with zero rotation.

Proof: Let p andq be points in thes= o plane:p=(—1,1), g=(—2,0), and letL denote

the line segment joining andq; cf. Fig. 5. We consider the solutions (£.6) and(2.7) alongL.

At p the orbit immediately enters the regiorn>—1, w’ >0, and aig the orbit immediately enters

the regionw<—1,w’<0; cf. Fig. 5. Since orbits cross the lines= —1 andw’ =0 transversally,

the set of points oh which cross any one of these two sets is open. Thus by connectedness, there

must be a point in L whose orbit tends to{ 1,0) asr —«. If we consider the orbit throughfor

r<o, it must tend tow’ =0, asr\,0, as depicted since no orbit crosses the halfirie=0, w

<1 in backwards, andw’(0)=0 (Proposition 3.7. This orbit is thus a RNL solution having

zero rotation. |
Remarks:

(1) In the proof of the lemma, we showed that if an orbit ever gets into the regfonl, ww’
<0 with A>0 at some point =T, then the orbit(w(r),w’(r)) stays in this region for
<T, and lim-_o(A(r),w(r),w’(r))=(,w,0), wherew is finite. This thus gives an improve-
ment of Ref. 12, Proposition 2.3, where it was only shown ft) > 1 for somer <T.

(2) Note that all of our connecting orbit RNL solutions ha&ér)>0 for all r>0. The question
of the existence of “black-hole” RNL solutions defined for al-0, which are different from
the usual RN black-hole solutions, will be addressed in a future publication.

(3) Although the last theorem shows that for eaclve have a zero connector, and Lemma 5.4
shows that ife>3, we can find orbits with arbitrarily high rotation, we cannot invoke the
intermediate-value-type theorertRroposition 5.2 which we used for particlelike, and black-
hole solutions(cf. Refs. 10 and 1)1to obtain RNL solutions in each rotation class. This is
because for RNL solutions, there are jumps in angle=ad, as well as at = .

We next investigate the behavior of the masses for the families of RNL solutions having
unbounded rotation humbers.

Theorem 5.7: Let 0,>3 be given, and suppose that,(r)=(A,(r),w,(r),w,(r),r), n
=1,2,..., is a sequence of RNL connectors constructed in either Theorem 5.1 or Theorem 5.6,
satisfyingA, (o) = 1, whose rotation numbef3,—o. If w,=lim,_. r(1—A,(r)) is the(ADM)
mass of thenth solution, thenu,— 1/oy asn—os.

Proof: In both Theorems 5.1 and 5.5, the RNL connectors are parametrized by the triple
(a,,b,,c,) where a,=0, for connectors with half-integral rotation numbers, oL &,=¢,
<1/n for connectors with integral rotation numbers, and in both cdses,0 andc,—c, where
the points &, ,b,,c,) lie in the surfacesr= 0. The orbit through §,,,b,,c,) enters the region
I" for smallr>0. Since these orbits correspond to RNL connectors, they liéfor all r >0. At
r=0, A,(0) converges td®=(0,0,— 1/05,0). The unique solution of theB(—w) equationg2.9)
and(2.10 is Wgn(r)=0 andBgy(r)=r?—(1/o)r+1; thus
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1 1
WRN(I‘)EO, ARN(r):l_O'_OI'+r_Z (55)

This solution hagADM) mass 14. By “continuous dependence(sinceo,> 3) these solutions
converge to the RN solutiofb.5 at anyr>0. Thus, as in Ref. 13, the correspondif&ADPM )
masses satisfy,— 1/oy. |

Based on numerical evidence, we conjecture that for any sequence of RNL connkg(o)s,
n=1,2,..., satisfyind\(o) = 1, whose rotation numbef3,,— o, the correspondin@ADM) masses
Mn Satisfy

lim p,=

n—oo

, if o>

NP NP

VI. CONCLUDING REMARKS

We first show that for any RNL solution, the Yang—Mills field stren{f? is infinite atr
=0, but the energy densiff] is finite atr =0 if and only if w(0)?=1. We shall then show that
the singularity in the metric at=0 is nonremovable by any coordinate transformation. Finally,
we shall classify all solutions of the $2) EYM equations which are well-behaved in the far field
(Theorem 6.3

Theorem 6.1: For any RNL solution, the Yang—Mills fields strendff|? satisfies

lim|F|?=ce, (6.1)
r\.0

and the energy densiffJ is finite atr =0 if and only if w?=1.
Proof: It is easy to show thatF|? is a constant multiple of o. Thus for(6.1) it suffices to
show

lim Tog(r)=-ce. (6.2
r\.0

From Ref. 3, we have

u
8mToo(r)= z T

so if w?#1, then as above limg To(r)=. If w?=1, then from Corollary 3.11,
lim, o rA(r)=Db,#0. Also we can write

2(rA)w’?2  u?
87Tofl)=—3 —+ 17 (6.3
Now notice that
12 2W/W" 1 W/W///+W//2
lim —5 = lim ———=lim = ——
r\.0 r r\.0 3r r\.0 3 r

Thus Ty is finite atr=0 if and only if w,=0. In this case, the solutiow(r)=1, B(r)=b,r
+r2, of (4.1 and (4.2 satisfiesw=1, w’(0)=0, w,=0, andB(0)=0, so that it is the unique
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solution of (4.1) and (4.2) satisfying these initial conditions. ThugA(r)=B(r)=b;r+r?, or
A(r)=1+hb,/r, so the corresponding solution is a Schwarzschild solution. Note, however, that
from Corollary 3.11b;>0, so the solution is not a RNL solution.

To study the behavior 6f3 nearr =0, we first note thalf§=g%T,,, so that

12 2

Tofr) 1 1
AC? ~ 8x C?

2w u

+-—|.
r2 - Ar?

T3(r)=

Now in the proof of Theorem 3.20, we have shown that lig@C(r) is a finite nonzero constant.
Moreover, lim. o w'(r)/r=w"(0) exists and is finite. Using3.69, we see that ifw(0)%2+#1,
thenT8 is infinite atr =0. On the other hand, if’(0)?>=1, then

and, using L’'Hital’s rule,

i u? i [ 4 uw’] 8 (0)2W"(0)=0
im —=1lim{ —=w——{ == w(0)?w"(0)=0.
r\Or3 ol 3T 3

|

Now we consider the singularity in the metric mt 0. A computation(using Maplg gives
(wherengﬁ is the Riemann curvature tengor

abeg. BPZ 4UZ B(AW'?)?  6D?
RabcdR s Tt T3

;_

ré -

Now if w?#1, then asb=r—rA—u?/r, we see that near=0, ® is well-approximated by
—2u?r so that

lim R,pcR*PC9=100, (6.4)
r\.0

Similarly, if w?=1, rA(r)—b;#0, and sob— —b; asr\,0, and hencé¢6.4) holds in this case
too. It follows that the singularity in the metric a&=0 cannot be removed by any change of
coordinates.

We next give a classification of spherically symmetric(3lsolutions of the EYM equations,
which are well behaved in the “far field;” i.e.>1. We shall show that they basically fall into
three classes: particlelike solutions, black-hole solutions, and RNL solutions.

As a first step, before stating the main result, we shall strengthen the results in Ref. 12. In Ref.
12 we considered solutions defined and smooth in the far field, which satisfied

0<A(r)<l for r>1. (6.5
For such solutions, set
p=inf {r:A(s)=0 for all s>r},

and define such a solution to begularif 1 >A(r)=0 forr>p. We proved, among other things,
that such solutions satisfy

lim (W2(r),w’(r))=(1,0). (6.6)

r—oo
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lim A(r)=1, (6.7)

r—oo
and

w=Ilim r(1—A(r))<o. (6.9

r—oo

We shall show here that the conditiér)<1 for r>p is superfluous. This is the content of the
following proposition.

Proposition 6.2:Assume that(A(r),w(r)) is a solution of(2.1) and (2.2), which for some
r.>0 is defined and smooth fo=r, and satisfies

A(r)>0 for all r=ry. (6.9

Then(6.6)—(6.8) hold.
Proof: If (A,w) is a RN solution,

c 1
A(r):1+F+r_2’ w(r)=0, (6.10

then certainly(6.6)—(6.8) hold. Thus assume thaf\(w) is not a RN solution. Then iA(o) =1 for
somea, (2.1) implies that

2
oA (o) = —2W' (o) — u;f)<o.

ThusA'(0)<0 so we have eitheA(r)<1 for all sufficiently larger, or
A(r)>1 for all r>0. (6.11

The caseA(r)<1 was considered in Ref. 10 so we may assume (hat) holds.
Now if A(r)=A(r)—1, thenA(r)>0 for all r>0, and so from2.1),

FA(r)<—A(r)—u?/r? (6.12

for all r>0. We now show that6.6) and (6.7) hold, considering three cases; namely for some
r>o,

(@ wA(r)>1 and vw')(r)>0 (in this caseA—0 and|w’| is unbounded near song>T),
(b) w?(r)>1 and vw')(r)<0, and
(0 w2(r)<1.
Case (a): W(r)>1 and (ww’')(r)>0. o
In this case, we see that there is a constand such thau(r)2>c for r>r, so that(6.12)
implies (fA)’'<—c/r2. Therefore integrating gives, for>r,
rK(r)scﬁc/r, C,=const,

and hence given any>0, K(r)<s SO

A(r)<1l+e for larger. (6.13
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Our strategy is to show that grows at least linearly in, which will imply thatA(r)<1 for some
r, and hence, from the results in Ref. ¥0 becomes unbounded near somehereby violating
our smoothness assumption in the far field.

To carry out this program, we see frof@.2)

u2
r(A=1)+—

2
[ >U_ ’>E 4
w UW/rW/rW,

r2Aw’ =

sow”/w’'=c/(1+¢)r3, and integrating gives, for largg

c 1

In W’?CZ— mr—z

=Cj,

wherec, andcy are constants. Thus'(r)=e%=d’, sow(r)=d’r +k, wherek is a constant.
Thus there is a constadt>0 such that
w(r)=dr if r=1. (6.19

Then from(2.1), if r is large, we can find;>0 such that

2 _ 2 —k 4
r— 12 u iy — 2
rA’=—(1+2w )A+1—r—2<r—2< 2 =—kyre,

and so for these, A'(r)<—kyr. This implies that for some large A(r)<1, and as we have
noted above, this gives a contradiction, and completes the argument ifagase

We now consider the next case.

Case (b): W(r)>1 and (ww’')(r)<0.

In this case, it is easy to see that eith@7) holds, or (vw')(r)>0 for somer >r [in which
case we are done by ca@®], or w?(r)<1 for somer>r. In this latter case, if the orbit exits the
regionw?<1, it must get into the regioww’ >0, and again we would be finished by cdag
Thus we may assume that the orbit stays in the regioxi 1 for all sufficiently larger. Since the
projection of orbit into thev—w’ plane has finite rotatio(Ref. 17, Cor. 3.4 it follows as in Ref.

11 that(6.6)—(6.8) hold. Finally we note that cage) is subsumed by what we have proved in case
(b). This completes the proof of the proposition. |

We can now state the classification theorem for spherically symmetric solutions of EYM
equations with gauge group £).

Theorem 6.3: Let (A(r),w(r)) be a solution 0f2.1) and(2.2) which is defined and smooth
for r>r, and satisfieg\(r) >0 if r>r,. Then every such solution must be in one of the following
classes:

(i) A(r)>1 for all r>0;

(i)  Schwarzschild solution: &)=1—m/r, w?(r)=1, whereme R;

(i) ReissnerNordstran solution: Ar)=1—c/r+1/r?, w(r)=0, wherec e R;

(iv) Bartnik—-McKinnon particlelike solution:(A(r),w(r)) is defined for allr=0, A(0)=1,
w?(0)=1, w’(0)=0;

(v)  Black-hole solution: Ap) =0 for somep>0, A(r)>0 if r>p, (W(p),w’(p)) lies onC,
={(w,w"):[p—(1—w?)?/plw'+w(1—w?)=0}, and (A(r),w(r)) is defined for allr
>p;

(vi) ReissnerNordstran-like  solution:  (A(r),w(r)) is defined for all r>0,
lim, o (A(r),w(r)w’(r))=(%,w,0), wherew is finite.

In each case lim,.. w?(r)=1 or 0 (0 only for RN solutiony lim, .. rw’(r)=0, and
lim,_. A(r)=1. The solution also has finitdDM) mass.
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Observe that the Schwarzschild solution
w(r)=1, A(r)=1-m/r, m<Q0,

is an example of a solution of tyd®.

Proof: If the solution is not of typsi), there exists an,>0 such that\(r,)<1. We consider
solutions defined in the far field, say foer,, and see what happens as we decreasevalues
less tharr . If the solution satisfieg\(r)<<1 for r<r,, then it was proved in Ref. 12 that the
solution lies in one of the sets describedii-(iv). If A(o)=1 for someo >0, then the solution
is a RNL solution, while ifA(r)>1 for all r>0, the solution is either a RNL solution or a
Schwarzschild solution as described(inwith m<0, or a RN solution as described (in) with
€<0. The last statement follows from Proposition 6.1. ]

Note: The behavior of black-hole solutions in the regiofip requires further investigation
and will be considered in a separate publication.

Problem 1:Do there exist RNL solutions, different from the classical RN solutions, which do
not have a naked singularity?

In this paper we have proved the existence of RNL connectors, with sufficiently large integral
or half-integral rotation numbers, &> 3.

Problem 2:Is this true ifo<3?

Problem 3:Do there exist integral and half-integral RNL connectors in each rotation class for
anyo>07?
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