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We introduce a new class of spherically symmetric solutions of the SU~2!
Einstein–Yang/Mills equations. These solutions have a Reissner–Nordstro¨m-type
essential singularity at the origin, and are well behaved in the far field. These
solutions are needed to classify all spherically symmetric solutions which are
smooth, asymptotically flat in the far field, and have finite~ADM ! mass. ©1997
American Institute of Physics.@S0022-2488~97!00312-5#

I. INTRODUCTION

In this paper we study a new type of solution of the spherically symmetric Einstein–Y
Mills ~EYM! equations with SU~2! gauge group. These solutions are well behaved in the far fi
and have a Reissner–Nordstro¨m-type ~see Refs. 1 and 2! essential singularity at the originr 50.
These solutions display some novel features that are not present in particlelike or blac
solutions.

In order to describe these solutions and their properties, we recall that for the sphe
symmetric EYM equations, the Einstein metric is of the form

ds252AC2 dt21A21 dr21r 2~du21sin2 u df2!, ~1.1!

and the SU~2! Yang–Mills curvature two-form is

F5w8t1 dr∧du1w8t2 dr∧~sin u df!2~12w2!t3 du∧~sin u df!. ~1.2!

HereA, C, andw are functions ofr , andt1 ,t2 ,t3 form a basis for the Lie algebra su~2!. These
equations have been studied in many papers; see, e.g., Refs. 3–21.

Smooth solutions of the EYM equations, defined for allr>0, are called~Bartnik–McKinnon,
BM! particlelike solutions; such solutions satisfy 1.A(r ).0 for all r .0, andA(0)51. The
EYM equations also admit black-hole solutions; i.e., solutions defined for allr>r.0, where
A(r)50. Here again, 1.A(r ).0 for all r .r. The classical Reissner–Nordstro¨m ~RN! solutions
of the Einstein equations with zero electric charge,A(r )512c/r 11/r 2, (c5const) and (AC2)
3(r )5(12c/r 11/r 2), are also solutions to the EYM equations, withw(r )[0. We note that for
this solution,A(r ).1 for r near 0. In this paper we prove the existence of solutions which h
this feature@A(r ).1 for r near 0# of the classical RN solution, and we study their properties;
call these Reissner–Nordstro¨m-like ~RNL! solutions.@We base the name RNL on the behavior
such solutions nearr 50. For such solutions which are connecting orbits and have finite~ADM !
mass, the results in Ref. 2, p. 393, show thatA(r )512c/r 10(1)/r 2, asr→`, and thus behave
differently atr 5` from the RN solutions.~The RN solutions that we consider have zero elec
charge and unit magnetic charge; c.f. Ref. 20. We thank P. Bizon for pointing this out to u!#

For these RNL solutions, we show that ifA(r 1)51 for somer 1.0, then the solution is
defined for all r , 0,r<r 1 , and limr↘0 A(r )5`5 limr↘0(AC2)(r ). However, the function
B(r )[r 2A(r ) is analytic, on 0<r<r 1 , as is the functionw(r ); moreover limr↘0 w8(r )50.

If we consider solutions that are defined in the far field, i.e., forr @1, then it was shown in
Ref. 12 that limr→`„A(r ),w2(r ),w8(r )…5(1,1,0). Thus the projection of the solution in thew-w8
plane for a particlelike solution starts at the ‘‘rest point’’ (61,0) and goes to a ‘‘rest point’’
0022-2488/97/38(12)/6522/38/$10.00
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(61,0). Black-hole solutions start at certain curves in thew-w8 plane.11 and end at a rest poin
(61,0). In both of these cases, there are an infinite number of solutions, distinguished b
nodal class.10,11For RNL solutions, there is a parameters.0 defined byA(s)51. We prove that
for fixed s, there are an infinite number of RNL solutions distinguished by their integral n
class, which must start atr 50 on the linew850 and end at a rest point (61,0). The RNL
solutions corresponding to the special casew(0)50 are tangent to the linew50; these give rise
to half-integral nodal classes.

The proof of the existence of locally defined RNL solutions relies on a local existence
rem atr 50, where we show that there is a three-parameter family of analytic solutions start
r 50 and w8(0)50. The proof of the existence of these local analytic solutions is nontr
because the associated vector field is not even continuous atr 50 ~see the last part of Sec. III!.
Some of these solutions have been found numerically in Ref. 20. It is interesting to note tha
the first parameterw(0)561, and the second parameterb150, we recover the BM solutions. I
b1.0, we get RNL solutions and ifb1,0 we get Schwarzschild-like solutions.

We also prove that for fixeds. 1
2, the~ADM ! masses of a sequence of our RNL solutions

s fixed, and increasing nodal class, tend to 1/s. Furthermore, the globally defined RNL solution
which we obtain all have naked singularities atr 50; there may well be other RNL solutions fo
which the singularity atr 50 is inside an event horizon. We prove that the singularity atr 50 for
these solutions is always nonremovable. We note that since our RNL solutions have no ho
r is always monotonic. In fact, if we look on at5const. slice, thenl , the distance in the radia
direction on this slice, satisfiesdl 5Agrr dr5A21/2 dr, so dr/dl 5A1/2.0, andr is a mono-
tonic function ofl . Hence our Schwarzschild coordinates cover the entire ‘‘physical’’ manif

In the last section, we show how the results which we have obtained enable us to clas
spherically symmetric EYM solutions, with SU~2! gauge group, which are smooth and satisfyA
.0 in the far field.

II. THE EQUATIONS

As discussed elsewhere,3–15 the static spherically symmetric EYM equations with gau
group SU~2! can be written in the form

rA81~112w82!A512u2/r 2, ~2.1!

r 2Aw91@r ~12A!2u2/r #w81wu50, ~2.2!

C8/C52w82/r , ~2.3!

where

u~r !512w2~r !. ~2.4!

Here w(r ) is the connection coefficient which determines the Yang–Mills curvature two-f
~1.2!, andA andC are the metric coefficients~1.1! ~see Refs. 4 and 7!.

If we define the functionF by

F~A,w,r !5r ~12A!2u2/r . ~2.5!

then ~2.1! and ~2.2! can be written in the compact form

rA812Aw825F/r , ~2.6!

r 2Aw91Fw81wu50. ~2.7!

If „A(r ),w(r )… is a specific solution of~2.1! and ~2.2!, then we write
J. Math. Phys., Vol. 38, No. 12, December 1997
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F~r !5F„A~r !,w~r !,r ….

We define the functionm(r ) by

m~r !5r „12A~r !….

Then, as shown in Ref. 9,m8.0. If

lim
r→`

m~r !,`, ~2.8!

such solutions are said to have finite~ADM ! mass~see Ref. 2!.
SinceA(r )→` asr↘0, for the solutions we consider in this paper, it is useful to rewrite

equations~2.1! and ~2.2! in terms ofw andB(r )5r 2A(r ). They become

rB81~2w8221!B5r 22u2, ~2.9!

Bw91~r 22B2u2!~w8/r !1uw50. ~2.10!

III. REISSNER–NORDSTRÖM-LIKE SOLUTIONS

In this section we take initial conditions atr 5s.0, and follow the solution backward fo
r ,s. We shall determine properties of such solutions in 0<r ,s.

Consider the initial-value problems defined by~1.1! and ~1.2! with initial conditions

A~s!51, ~3.1!

and

„w~s!,w8~s!…5~a,b!, ~3.2!

wheres.0 and (a,b)Þ(61,0). Such a solution is called a Reissner–Nordstro¨m–like ~RNL!
solution. We study RNL solutions on 0<r ,s. Note that for RNL solutions,sA8(s)522b2

2(12a2)2/s2,0, so thatA(r )Ó1.
We remark in passing that if we replace~3.1! by the conditionA(s)5k.1, then we cannot

be assured that such solutions have positive~ADM ! mass. Indeed, there are solutions of~2.1! and
~2.2! which satisfyA(r ).1 for all r .0. For example, ifm.0, then the Schwarzschild solutio
A(r )511m/r , w(r )[1, is one such solution. Note, however, that even ifA(r ).1 for all r
.0, thenA(r )→1 as r→`. This holds because if we writeÃ(r )5A(r )21, then from~2.1!,
(rÃ)85rÃ81Ã<0. Thus integrating fromr 0.0 to r .r 0 gives rÃ(r )<r 0Ã(r 0), and soÃ(r )
,(r 0 /r )Ã(r 0). This shows thatÃ(r )→0 asr→`, and yields the assertion.

Notice that solutions which satisfy~3.1! form a three-parameter family, indexed by~a,b,s!,
where (a,b)Þ(61,0). Thus we see that the space of RNL solutions is in 1–1 corresponden
the set

$~s,a,b!PR3:s.0, ~a,b!Þ~61,0!%.

which has the homotopy type of a figure eight. We impose the condition (a,b)Þ(61,0) because
if „A(r ),w(r )… is a solution satisfying~3.1! and (a,b)5(61,0), then, by uniqueness, the solutio
of ~2.1! and ~2.2! must satisfyA(r )[1 andw2(r )[1, and thus is the flat Minkowski metric.

Our first goal is to prove the following result.
Proposition 3.1:If ( A,w) is a local solution to the EYM equations~2.6! and~2.7!, with initial

conditions„A(s),w(s),w8(s)…5(1,a,b), wheres.0 and (a,b)Þ(61,0), then the following
hold:
J. Math. Phys., Vol. 38, No. 12, December 1997
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~i! A8(r ),0 on 0,r<s,
~ii ! w(r ) andw8(r ) are defined and bounded on 0<r<s,
~iii ! the maximum domain of definition of the solution includes the interval 0,r<s,
~iv! limr↘0 A(r )51`,
~v! w̄5 limr↘0w(r ) exists.

Remark: This justifies our calling solutions which satisfy~3.1! and ~3.2! RNL solutions
because the usual RN solutions

A~r !511c/r 11/r 2, w~r ![0,

satisfy these properties.
Proof: From ~2.1!, we have

rA8~r !5„12A~r !…22w82A~r !2u2/r 2,

and soA8(r ),0 if A(r ).1. Also, if A(s)51, then againA8(s),0 unlessw2(s)51, and
w8(s)50, but this is explicitly ruled out by hypothesis. Thus sinceA(s)Þ0, it follows by
standard existence and uniqueness theorems that the solution is defined on an interval 0,s2«
<r<s, for some«.0. Settingd5s2«, we have thatA(r ).1 if d<r ,s. Hence as long as the
solution exists,A8(r ),0. The solution can fail to exist only ifuwu or uw8u or A tends to infinity.
In fact, in order to show~i! and ~ii !, it suffices to show thatw8(r ) is bounded on 0<r<d @cf.
~2.1!#.

To show thatw8 is bounded, we show that

if uw8~r !u.maxF S 31A5

2 D 1/2 1

AA~d!21
,dG[t, then ~w8w9!~r !.0. ~3.3!

This implies thatuw8(r )u<max„t,w8(d)…. Since if, e.g.,w8(r ).t, then w9(r ).0 so w8 de-
creases asr decreases. To prove~3.3!, we shall assume thatw8(r ).0; the case wherew8(r )
<0 is similar, and will be omitted. Thus we must show thatw9(r ).0. Using~2.2!, this will hold
provided that

F r ~12A~r !!2
u2

r Gw81uw,0. ~3.4!

To show~3.4!, we consider two cases:~a! uwu.11A5, and~b! uwu<11A5.
Thus supposeuwu.11A5; then from~3.3! w8(r ).d.r , so 2w8(r )/r ,21, and

r „12A~r !…w82
u2

r
w81uw,r „12A~r !…w82u21uw

,u~2u1w!5~12w2!@w2211w#,0,

sinceuwu.11A5 implies 12w2,0 andw2211w.0. Thus~3.4! holds in this case.
Suppose now that we are in case~b!, uwu<11A5. Then
J. Math. Phys., Vol. 38, No. 12, December 1997
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F r ~12A~r !!2
u2

r Gw81uw5r H 2w8FA~r !211S u

r D 2G1
u

r
wJ

,r H 2w8~r !FA~d!211S u

r D 2G1
u

r
wJ

5r H 2w8~r !S u

r D 2

1wS u

r D1w8~r !„12A~d!…J .

We consider the term$ % as a quadratic form in (u/r ). It is clearly negative when (u/r )50, and its
determinant is

w2~r !14w8~r !2
„12A~s!…<612A514w8~r !2

„12A~d!…,

which is negative if

w8~r !.S 31A5

2 D 1/2 1

AA~d!21
.

Thus the term$ % is negative so~3.4! holds, and thusw8 and w are bounded on 0<r<t; this
proves~i! and ~ii !.

We next show thatA(r ) is finite if 0,r<s. Thus if 0, r̄ ,s and limr↘r A(r )5` ~the limit
exists sinceA8(r ),0 for r ,s, r̄ being maximal with respect to this property!, then as we have
shown thatw andw8 are bounded on@ r̄ ,s#, we can find constantsk.0 andm.0 such that on
this interval„112w82(r )…<k andu2(r )<m. Then from~2.1!, if r̄<r<s,

rA8~r !>2kA~r !2
m

r 2 or rA8~r !1kA~r !>2
m

r 2 ,

so that (r kA)8>2(m/r 2)r k21, and integrating fromr . r̄ to s gives

r 2kA~s!2r kA~r !>D,

for some constantD, and this shows thatr kA(r ) is bounded, which implies thatA is bounded at
r̄ . This is a contradiction. HenceA(r ) is finite on~0,s#, andw andw8 are bounded on@0,s!; this
proves~ii !. To complete the proof of the proposition, we must only prove~iv!. To do this, we have
already seen thatA8(r ),0 if 0,r<s so A(r ).1 for suchr , and if 0,r ,s/2, we can find an
«.0 such that 12A(r ),2«. Then from~2.1!, if 0,r ,s/2,

rA8~r !,2«,

so A8(r ),2«/r andA(s/2)2A(r ),2« ln(2r/s), soA(r )→` as r↘0.
By ~i! w(r ) is uniformly continuous on~0,s# sow extends to a continuous function on@0,s#.

This establishes~v!, and this completes the proof of Proposition 3.1. j

We next show that the projection of a RNL solution into the (w,w8) plane has finite rotation
on the interval 0,r<s. In fact, we shall show that the rotation is ‘‘uniform’’ nearr 50. To this
end, for any RNL solution define

s̃5min@ 1
3,$r :A~r !53%#. ~3.5!

Note that asA(s)51 andA(s̃)>3, it follows thats̃,s and s̃< 1
3.

In what follows, we setū512w̄2.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Proposition 3.2:Let u(r ) be defined by Tanu(r )5w8(r )/w(r ). Thenu(s̃)2u(0).2p for
any RNL solution.

Remark:It is easy to see that the set of points inR4 that lie on a RNL solution is an open se
in fact, if (A,w) is any RNL solution, then there existr 1 andr 2 such thatA(r 1),1,A(r 2) and
this characterizes RNL solutions. On the other hand, by ‘‘continuous dependence,’’ nearby
tions have the same property. On this open set we have defined a continuous functions by
A(s)51. Similarly, we can define a continuous functions̃ on this open set by~3.5!. The propo-
sition states thatu(s̃)2u(0).2p for any RNL solution. It is in this sense that the rotation ne
r 50 is uniform over all RNL solutions.

Proof: An easy calculation shows that

u8~r !52sin2 u2
u

r 2A
cos2 u2

F

r 2A
sin u cosu

52
1

r 2A F r 2A sin2 u1u cos2 u1S r 2rA2
u2

r D sin u cosuG .
Note thatu8521 whenu5p/2. We will show thatu8(r ).0 if u(r )5p/4 andr ,s̃, and thus
the orbit is trapped outside the wedgep/4,u,p/2 for suchr .

Indeed, ifu5p/4, then

u852
1

2r 2A F r 2A1u1r 2rA2
u2

r G . ~3.6!

Now let @ #5r 2A1u1r 2rA2u2/r . Then

@ #5u1r 2
u2

r
1A~r 22r !.

However, sincer ,s̃, 1
3, r 22r ,0, and asA(r )>3, we have

@ #,u1r 2
u2

r
13~r 22r ![S. ~3.7!

We consider two cases:u>r andu,r . If u>r , then

S<u1r 13~r 22r !<2r 13~r 22r !5r ~3r 22!,0,

because 3r ,1. Thus@ #,0, sou8.0 at u5p/4, if r ,s̃. Now supposeu,r . Then

S,2r 13r 223r 5r ~3r 21!,0,

so the result holds in this case too. j

Lemma 3.3:If w̄2Þ1, thenF(r )→2` as r↘0.
Proof: F(r )5r 2rA2u2/r<r 2u2/r→2` as r↘0. j

Lemma 3.4:If w̄2Þ1, then limr↘0 rA(r )5`.
Proof: Write rA5A/r 21. Then, in view of Proposition 3.1, we may apply L’Hoˆpital’s rule to

obtain

lim
r↘0

rA~r !5 lim
r↘0

A8~r !

21/r 2 5 lim
r↘0

@2r 2A8~r !#5 lim
r↘0

@2F~r !12Aw82r #> lim
r↘0

@2F~r !#5`,

~3.8!
J. Math. Phys., Vol. 38, No. 12, December 1997
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in view of the last lemma. j

Lemma 3.5:If w̄2Þ1, then limr↘0 w8(r ) exists.
Proof: From Proposition 3.2,w8(r ) is of one sign nearr 50. Assume thatw8(r ),0 nearr

50. The proof in the casew8(r ).0 nearr 50 is similar, and will be omitted.
Thus suppose for contradiction that

lim
r↘0

w8~r !. lim
r↘0

w8~r !, ~3.9!

and chooseh,0 between these two numbers. Then ifw8(r )5h and Proposition 3.1, part~i!
implies A8(r ),0 on 0,r<s, ~2.7! implies

w9~r !5
1

r 2A~r !
@2hF~r !2~uw!~r !#,0, ~3.10!

if r is near 0, in view of Lemma 3.3. Thusw9(r ),0, so thatw8 can crossh at most once forr
near 0, and this contradicts~3.9!. It follows that limr↘0 w8(r ) exists. j

Proposition 3.6:If w̄2Þ1, then limr↘0 w8(r )50.
Proof: From Lemma 3.5, limr↘0 w8(r ) exists. Assume

lim
r↘0

w8~r !2.2«, ~3.11!

where«,1. Then forr near 0,w8(r )2>«. Setv5Aw8. Thenv satisfies the equation7

v81
2w82v

r
1

uw

r 2 50, ~3.12!

and u limr↘0 v(r )u5`. From ~3.12! we have

vv85
2rw82v22uwv

r 2 <
22«rv22uwv

r 2 . ~3.13!

But urv(r )u5urA(r )w8(r )u→` as r↘0, by Lemmas 3.4 and 3.5. Thus forr near 0,

22«rv22uwv<2r«v2, ~3.14!

so that this together with~3.14! gives

vv8<2«v2/r .

Then

v8

v
<

2«

r
, ~3.15!

so uv(r )u<r 2«k, sor «uv(r )u<k, or r «A(r )uw8(r )u<k, and as«,1, this contradicts Lemma 3.4
and completes the proof of the proposition. j

Proposition 3.7:limr↘0 w8(r )50.
Proof: In view of the last result, we may assume thatw̄251. We claim thatw8(r ) is of one

sign nearr 50. To see this, suppose first thatw̄51. If w(r 1).1 andw8(r 1),0, then the orbit
stays in the regionw.1 andw8,0 for all r , 0,r ,r 1 . Similarly, if w(r 1),1 andw8(r 1).0,
this persists for allr ,r 1 . If w(r 1).1, andw8(r 1).0, or w(r 1),1 andw8(r 1),0, thenw8 can
change sign at most once if 0,r ,r 1 . Similarly, if w̄521, then againw8(r ) is of one sign near
J. Math. Phys., Vol. 38, No. 12, December 1997
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r 50, and we shall assumew8(r ).0 for r near 0@as usual, the case wherew8(r ),0 nearr 50 is
treated similarly#. This implies that either21,w(r ),0 or w(r ).1 for r near 0~cf. Fig. 1!.

Now from ~2.2!, we have

rAw91S 12A2
u2

r 2 Dw81
u

r
w50. ~3.16!

Note that in both cases,

u~r !

r
w~r !,0. ~3.17!

Moreover, sinceA(r )→` as r↘0 ~Proposition 3.1!, we see that„12A(r )2u2(r )/r … w8(r )
,0, for r near zero. This, together with~3.17! and ~3.16!, shows thatw9(r ).0 if r is near 0;
hence

t5 lim
r↘0

w8~r ! exists and is finite. ~3.18!

Now t>0, so supposet.0. We shall show that this leads to a contradiction. Indeed, fr
~3.16!,

rAw95Aw81S u2

r 221Dw82
u

r
w. ~3.19!

Now asw̄251, L’Hôpital’s rule gives

lim
r↘0

u

r
5 lim

r↘0
22w~r !w8~r !522w̄t

so thatu(r )/r is bounded nearr 50. SinceA(r )→` as r↘0, it follows that forr near 0,

Aw8~r !1S u2

r 221Dw82
u

r
w.

1

2
Aw8~r !.

Thus, for suchr , ~3.19! gives

rAw9. 1
2Aw8,

so

FIG. 1. Behavior of (w,w8).
J. Math. Phys., Vol. 38, No. 12, December 1997
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w9

w8
.

1

2r
.

Integrating fromr ,s to s, we find

w8~s!

w8~r !
.S s

r D
1/2

,

and hencew8(r ),(r /s)1/2w8(s), sow8(r )→0 asr↘0. This contradiction completes the proof.j

We next consider the behavior ofA nearr 50; the casesw̄251 or w̄2.1 are quite different.
We begin with the following result.

Proposition 3.8:limr↘0 r 2A(r )5ū2[(12w̄2)2.
Proof: Defineh by

h~r !5r 2A~r !2u2~r !.

We first show

lim
r↘0

h~r !5L exists. ~3.20!

To do this we need the following lemma.
Lemma 3.9:Let «Þ0 be given. Then there exists anr 1.0 such that if 0,r<r 1 and h(r )

5«, then (hh8)(r ).0. Thush can assume the value« at most once.
Proof: We will assume thath(r ).0. The proof in the caseh(r ),0 is similar, and will be

omitted.
Thus assumeh(r ).«. Then, sincew8(r )→0 asr↘0, we have, forr near 0,

r 2A~r !„122w8~r !2
…2u2~r !.

«

2
. ~3.21!

Then for suchr ,

h8~r !5
1

r
@r 2A~r !22A~r !w82~r !r 21r 22u~r !224u~r !w~r !w8~r !r #

5
1

r
@r 2A~r !„122w82~r !…2u~r !21„r 224u~r !w~r !w8~r !r …#

>
1

r F«2 1„r 224u~r !w~r !w8~r !…G.0,

sincer 224uww8(r )→0 asr↘0. j

We can now prove~3.20!. Thus, if ~3.20! were false, then

a[ lim
r↘0

h~r !. lim
r↘0

h~r ![b,

so we can find an«Þ0, with a.«.b. Without loss of generality, let us assume«.0 ~the case
«,0 is treated similarly!. Then sincea.«.b, we can find a sequencer n↘0 with h(r n).« and
h8(r n),0 for all n. This contradicts Lemma 3.9, so that~3.20! holds.

Next, we show thatL is finite. Indeed since (h2)8.0 if h2.« for small r , this shows thatL
is finite.
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We now showL50. To do this, we consider two cases:w̄2Þ1 and w̄251. First suppose
w̄2Þ1. Then from Lemma 3.4, limr↘0 rA(r )5`, so that we may use L’Hoˆpitals rule to obtain

lim
r↘0

r 2A~r !5 lim
r↘0

rA

1/r
5 lim

r↘0
2r 2~rA !85 lim

r↘0
2r 2~A1rA8!5 lim

r↘0
2r 2S A1

f

r
22Aw82D

5 lim
r↘0

2r 2S A112A2
u2

r 222Aw82D5 lim
r↘0

~2r 21u212~r 2A!w82
…5ū2,

sincer 2A(r )→L, andL is finite, and limr↘0 w8(r )50. This proves Proposition 3.8 in the ca
w2Þ1.

Now assumew̄251. Supposew̄51 ~the casew̄521 is treated similarly!. Then we see tha
for large r ~cf. Fig. 1!,

~uww8!~r !,0. ~3.22!

We shall need the following lemma:
Lemma 3.10:If w̄251, then limr↘0(Aw82)(r )5l ,`.
Proof: Let f 5Aw82. Then~cf. Ref. 9! f satisfies the equation

r 2f 81r S 2 f 1
F

r Dw8212uww850. ~3.23!

Also asr→0,

2 f 1
F

r
5~2w8221!A112

u2

r 2→2`, ~3.24!

becausew8(r )→0 andA(r )→`. Then from~3.23! and~3.24!, we see thatf 8(r ).0 if r is near
0. This implies thatf has a finite limit atr 50. j

Now let us return to the main argument of our proof; namely, to prove Proposition 3
w̄251. Thus, from~2.1!,

~rA !8522w82A112u2/r 2,

and since lim
r↘0

u/r 5 lim
r↘0

22ww850, andAw82 is bounded, we see that (rA)8 is bounded nearr

50. ThusrA(r ) has a finite limit atr 50. It follows that limr↘0 r 2A(r )505ū2. This completes
the proof of Proposition 3.8. j

We have demonstrated above that ifū50, thenrA(r ) has a finite limit atr 50. Thus, using
Lemma 3.4, we have the following.

Corollary 3.11:

lim
r↘0

rA~r !5 Hb1,`, if w̄251 and b1.0,
`, if w̄2Þ1.

Proof: Clearly b1>0, sincerA(r )>0. We must only show thatb1Þ0. Thus, supposeb1

50. Then using L’Hoˆpital’s rule

lim
r↘0

A~r !5 lim
r↘0

rA~r !

r
5 lim

r↘0
S 12

u2

r 222Aw82D . ~3.25!
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But limr↘0 u/r 5 limr↘022(ww8)(r )50, and from Lemma 3.12, limr↘0(Aw82)(r ) exists and is
finite. Thus~3.25! gives the contradiction limr↘0 A(r ),`. j

Now if w̄251, and we definerA(r ) to be equal tob1 at r 50, then we seerA is continuous
at r 50.

Corollary 3.12:

lim
r↘0

F~r !5 H 2b1 , if w̄251,
2`, if w̄2Þ1,

whereb1 is as in the last corollary.
Proof: We have

F~r !5r 2rA~r !2u2/r .

If w̄251, L’Hôpital’s rule shows that

lim
r↘0

u

r
5 lim

r↘0
22ww850, ~3.26!

so thatu2/r→0 and hence

lim
r↘0

F~r !52b1 .

If w̄2Þ1, the result follows from Lemma 3.5. j

We will show thatw and

B5r 2A ~3.27!

are analytic functions atr 50. As a first step, we will show that they have derivatives of all ord
at r 50. To do this, note that, using~2.1!, B satisfies the equation

rB81~2w8221!B5r 22u2. ~3.28!

Next, we claim that (B,w)PC0@0,«#3C1@0,«#, for some«.0. Indeed, from Proposition 3.8
limr↘0 B(r ) exists, so definingB(0) to be that limit, we see thatB is continuous atr 50. Also
from Proposition 3.7, limr↘0 w8(r )50, and, using L’Hoˆpital’s rule,

w8~0!5 lim
h↘0

w~h!

h
5 lim

h↘0
w8~h!.

This shows thatw8 is continuous atr 50.
The proof of the regularity ofw andB is broken up into two cases:w̄251 andw̄2Þ1. We first

have the following.
Proposition 3.13:If w̄251, thenw andB have derivatives of all orders atr 50.
Proof: Since limr↘0 rA(r )5b1Þ0 ~Corollary 3.11!, to show that limr↘0 w9(r ) exists and is

finite, it suffices to show that

lim
r↘0

rA~r !w9~r ! exists and is finite. ~3.29!

To do this, we write~2.2! as
J. Math. Phys., Vol. 38, No. 12, December 1997
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2rAw95F12A2
u2

r 2Gw81
u

r
w. ~3.30!

Then using~3.26!, we see that~3.29! will hold provided that

lim
r↘0

v~r !5 lim
r↘0

~Aw8!~r ! exists and is finite. ~3.31!

Next we write~3.13! in the form

~eQv !85
2eQuw

r 2 , ~3.32!

whereQ8(r )52w82/r 52Aw82/rA. SincerA(r )→b1Þ0 asr→0 andAw82 has a finite limit at
r 50 ~Lemma 3.10!, we see thatQ8(r ), and henceQ(r ), has a finite limit atr 50.

Sincew̄251, the (w,w8) orbit must lie in one of the following four regions, forr near 0;
namely, ~i! w.1, w8.0; ~ii ! 0,w,1, w8,0; ~iii ! 21,w,0, w8.0; or ~iv! w,21, w8
,0. Suppose for definiteness thatw.1 andw8.0 nearr 50 ~the proofs for the other cases a
similar, and will be omitted!. Then for r near 0, v(r ).0, so eQv(r ).0, and from ~3.32!,
(eQv)8.0. Thus limr↘0 eQ(r )v(r ) exists and is finite. SinceQ has a finite limit atr 50, it follows
that ~3.31! holds. Thusw9 has a finite limit atr 50.

Now as

~rA !8522w82A112u2/r 2, ~3.33!

we see that (rA)8 is continuous atr 50 so thatrA is aC1 function nearr 50 and hence the sam
is true of (rA)21 sinceb1Þ0. It follows from ~3.30! that wPC2 nearr 50.

We next show thatwPC3 nearr 50. Using~3.30!, this will follow, provided that the right-
hand side of~3.30! is a C1 function. But

S u

r D 8
~0!5 lim

r↘0

u~r !/r 20

r
5 lim

r↘0

u~r !

r 2 5 lim
r↘0

22~ww8!~r !

2r
52w̄w9~0!,

and for rÞ0,

S u

r D 8
5

22rww82u

r 2 5
22ww8

r
2

u

r 2→2w̄w9~0!, ~3.34!

as r→0. Henceu(r )/r PC1, and asAw85v is a C1 function @cf. ~3.13!#, it follows thatwPC3

near r 50. Using this in~3.34!, we see that (rA)8 is a C1 function, sorAPC2. Using this in
~3.30!, we see thatwPC4, and hence from~3.34!, rAPC3, and continuing in this way, we se
that w and rA areC` at r 50. ThusB5r 2A is alsoC` at r 50. This completes the proof of th
proposition. j

To do the regularity in the caseūÞ0, we first show thatwPC2@0,«) for some«.0. For this
we need the following lemma~cf. Lemma 3.10!.

Lemma 3.14:Let f 5Aw82. Then if ūÞ0, f is bounded nearr 50.
Proof: Using ~3.23!, we see thatf satisfies the equation

r 2f 81w8@2r f w81F!w812uw] 50. ~3.35!

We shall show that ifr is near 0, andf (r ).72w̄22, then f 8(r ).0. This will prove thatf is
bounded nearr 50.

To do this, letg be defined by
J. Math. Phys., Vol. 38, No. 12, December 1997
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g~r !52r f w81Fw812uw. ~3.36!

Sincew8(r ) is of one sign nearr 50, ~cf. the proof of Proposition 3.7!, we shall assume tha
w8(r ).0 for r near 0. The proof in the case wherew8(r ),0 is similar, and will be omitted. Then
using ~2.5!, we have

g~r !5~2r 2A!
w83

r
1rw82r 2A

w8

r
2u2S w8

r D12uw

5
w8

r
@2r 2Aw821r 22r 2A2u2#12uw. ~3.37!

But asr 2A→ū2, w8(r )→0, and 2uw→2ūw̄, asr↘0, we see that we can find ad.0 such that
if 0 ,r ,d, then

2r 2Aw821r 22r 2A2u2,2ū2/2,

2uw,3uūw̄u, and r 2A,2ū2.

Thus, if 0,r ,d, then

g~r !,2
w8

r

ū2

2
13uūw̄u.

It follows that if 0,r ,d, and

w8

r
.6Uw̄ūU, ~3.38!

theng(r ),0 and so~3.35! and ~3.36! imply that f 8(r ).0; i.e., if ~3.38! holds, thenf 8(r ).0.
Now if 0,r ,d, then

f ~r !5r 2AS w8

r D 2

,2ū2S w8

r D 2

,

so if 0,r ,d, and f (r ).72w̄2, then ~3.38! holds, so f 8(r ).0 and f is bounded on this
r -interval. j

We next prove thatw9(r ) has a limit atr 50 namely, we have the following.
Proposition 3.15:If ūÞ0, then limr↘0 w9(r ) exists and is finite.
Proof: We shall estimatew-(r ) nearr 50, and show that it is integrable; this will imply th

desired result.
From ~2.7!, we find

r 2Aw-12rAw91r 2A8w91Fw91F8w81~123w2!w850,

so

r 2Aw-1@2rA1r ~rA8!1F#w91~F81123w2!w850,

and using~2.6!, together withF852u2/r 212Aw8214uww8/r ~cf. Ref. 9!, we obtain

w-5
2~rw92w8!~u2/r 21Aw82!

r 2A
2

2rw9

r 2A
2

w8

r 2A S 4uww8

r
1123w2D . ~3.39!
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Now let

h5rw92w8. ~3.40!

Then

h85rw-, ~3.41!

and in these terms~3.39! becomes

h82
2d

r
h5c ~3.42!

where

d5
u2

r 2A
1w82 ~3.43!

and

c~r !5
22r 2w9

r 2A
2

w8

r 2A
@4uww81r ~123w2!#

5
r

r 2A H 22rw92
4uww82

r
1~123w2!w8J . ~3.44!

But

rw95
2rFw82ruw

r 2A
5

2~r 22r 2A2u2!w82ruw

r 2A
,

so

rw9~r !→0 as r↘0. ~3.45!

Also,

w82

r
5

Aw82r

r 2A
→0

as r↘0, in view of Lemma 3.14. This, together with~3.45!, shows that we may write~3.44! as

c~r !5ru~r !, ~3.46!

where

u~r !5
1

r 2A H 22rw92
4uww82

r
1~123w2!w8J

and

u~0!50. ~3.47!

Now observe thatd(r )→1 asr↘0, ~cf. Proposition 3.1!, so if
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0,«, 1
4, ~3.48!

we can find ad.0 so that if 0,r ,d,

12«,d~r !,11«. ~3.49!

Then, if we let

q85
22d

r
, q~r 1!50, 0,r 1,d, ~3.50!

multiplying ~3.41! by

P5eq, ~3.51!

we obtain from~3.41!

~hP!85Pc. ~3.52!

From ~3.49! and ~3.50!, if 0,r ,r 1 ,

22~11«!

r
,q8,

22~12«!

r
,

so that integrating fromr ,r 0 to r 0 gives

logS r 0

r D 2~12«!

,q~r !< logS r 0

r D 2~11«!

,

and thus

S r 0

r D 2~12«!

,P~r !,S r 0

r D 2~11«!

. ~3.53!

Then integrating~3.52! from r ,r 0 to r 0 gives

c2h~r !P~r !5E
r

r 0
P~s!c~s! ds, c5h~r 0!P~r 0!,

and thus for 0,r ,d,

h~r !5
c

P~r !
2

1

P~r !
E

r

r 0
P~s!c~s! ds. ~3.54!

Now asP(r )→` when r↘0, we see

c/P~r !→0 as r↘0. ~3.55!

Also, from ~3.46!, we see thatc(r )→0 asr↘0, so that for smallr , uc(r )u,1. Thus from~3.53!,

U 1

P~r !
E

r

r 0
P~s!c~s! dsU<S r

r 0
D 2~12«!E

r

r 0S r 0

s D 2~11«!

ds5constr 2~12«!@s2122«ur
r 0#,
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and as 4«,1, the last term tends to zero. This together with~3.55! shows thath(0)→0 asr↘0.
Defining h(0)50, we see thath is continuous at 0. Then

h8~0!5 lim
r↘0

h~r !

r
,

and from~3.54! and ~3.46!

h~r !

r
5

c

rP~r !
2

1

rP~r !
E

r

r 0
sP~s!u~s! ds.

Now from ~3.53!, c/rP(r )→0 asr↘0, and for smallr , using~3.53!, we have

U 1

P~r !
E

r

r 0
sP~s!u~s! dsU< r 122«

r 0
2~12«! E

r

r 0
sP~s! ds

<
r 122«

r 0
2~12«! E

r

r 0
r 0

2~11«!s2122« ds

5r 0
4«r 122«

s22«

22«
ur
r 0

5
r 0

4«

2«
r 122«S 1

r 2«2
1

r 0
2«D .

Thus, since«, 1
4, we see that

h8~0!50. ~3.56!

Now, from ~3.41!,

w-~r !5
h8~r !

r
. ~3.57!

But, using~3.42! and ~3.46!,

h8~r !

r
5

c~r !

r
22d

h~r !

r 2 5u~r !22d
h~r !

r 2 . ~3.58!

Now limr↘0 u(r )50, and from~3.54!

h~r !

r 2 5
c

r 2P~r !
2

1

r 2P~r !
E

r

r 0
sP~s!u~s!ds.

But limr↘0 @1/r 2P(r )#50, and forr near 0,

U 1

r 2P~r !
E

r

r 0
sP~s!u~s!U<constr 22«E

r

r 0
sP~s!ds

<constr 22«E
r

r 0
s2122« ds

50~r 24«! as r→0.

Thus, nearr 50, w-(r )<0(r 24«), and hence, forr near 0,
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w9~r 0!2w9~r !5E
r

r 0
w-~s!ds<0~r 124«!.

Since«, 1
4, this shows that limr↘0 w9(r ) exists, and is finite. j

Corollary 3.16: If ūÞ0, thenw is a C2 function atr 50.
Proof:

w9~0!5 lim
r↘0

w8~r !

r
5 lim

r↘0
w9~r !,

by L’Hôpital’s rule. Thusw9 is continuous atr 50. j

We now prove the analog of Proposition 3.13 in the case thatw̄2Þ1.
Proposition 3.17:If w̄2Þ1, thenw andB have derivatives of all orders atr 50.
Proof: By induction; namely, from the last result, we know thatw is C2 at r 50, andB is

continuous atr 50. Now we need the following lemma.
Lemma 3.18:If wPCk at r 50, thenBPCk21 at r 50.
Proof: Let B̃5B2ū0

2. Then from~3.18!, we see thatB̃ satisfies the following equation:

rB̃81~2w8221!B̃5r 22~u22ū2!22w82ū2. ~3.59!

Now if

Q8~r !52w82/r , Q~r 0!50, r 0.0, ~3.60!

thenQPCk21, and we may rewrite~3.59! as

S eQ

r
B̃D 8

5eQF12
~u22ū2!

r 2 2
22w82ū2

r 2 G . ~3.61!

If

h~r !512
u22ū2

r 2 2
22w82ū2

r 2 ,

thenhPCk22. Thus, integrating~3.61! from r ,r 0 to r 0 , we get

D2
eQ~r !

r
B̃~r !5E

r

r 0
eQ~s!h~d! ds S D5

eQ~r 0!

r 0
B̃~r 0! D ,

or

B̃~r !5
Dr

eQ~r !2
r

eQ~r ! E
r

r 0
eQ~s!h~s! ds.

Now eQ(s)h(s)PCk22, so B̃(r )PCk21 at r 50. j

Now returning to the proof of Proposition 3.17, we see that in view of Corollary 3.16 and
last lemma,wPC2 andBPC1, at r 50. Now assume that

BPCk21 and wPCk. ~3.62!

We shall show that

wPCk11 at r 50; ~3.63!
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this, together with the last lemma, will complete the proof of the proposition.
To show~3.63!, we first write~2.7! as

w95
2rF~w8/r !2uw

B
.

Then asrF5r 22r 2A2uPCk21, BPCk21, andB(0)5ū2Þ0, we see that if we prove

w8/r PCk21 ~3.64!

at r 50, thenw9PCk21 so wPCk11, at r 50. Thus the proof will be complete once we pro
~3.64!.

Let

z5rv, where v5Aw8.

Thenz5B(w8/r ), so if we show

zPCk21 ~3.65!

at r 50, then~3.64! holds so we will be done.
To show~3.65!, we first see from~3.13! that z satisfies the equation

rz85~122w82!z2uw, ~3.66!

so if Q is defined as above by~3.60!, thenQPCk21, and we can rewrite~3.66! as

S eQ

r
zD 8

5
2eQuw

r 2 . ~3.67!

so integrating fromr ,r 0 to r 0 gives

z~r !5
Cr

eQ 1
r

eQ E
r

r 0 eQ~s!~uw!~s!

s2 ds,

whereC5(eQ(r 0)/r 0)z(r 0). Now Cre2QPCk21, and if we defineg by

g~r !5eQ~r !~uw!~r !,

thengPCk21 andg8(0)50. Then integrating by parts gives

r E
r

r 0 g~s!

s2 ds5r F2g~s!

s U r
r 01E

r

r 0 g8~s!

s
dsG .

But asr @@2g(s)/s#ur
r 0#PCk21, we will havezPCk21 provided that we show

I[r E
r

r 0 g8~s!

s
dsPCk21, ~3.68!

at r 50.
Now as

g85uweQQ81eQ~123w2!w8,
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we see thatg8PCk21 andg8(0)50, sog8(s)/sPCk22 @in general, ifhPCk andh(0)50, then
h(s)/sPCk21#, and henceI PCk21 at r 50. This completes the proof of Proposition 3.17.j

Next we shall show that nearr 50, the phase portraits of the RNL solutions in the (w,w8)
plane have some surprising features, in the case wherew̄2Þ1. These will follow from the follow-
ing result.

Proposition 3.19:If w̄2Þ1, thenw9(0)5w̄/ū.
Proof: From ~2.7! we have

w9~r !5
2Fw82uw

r 2A
5F2rw8

r 2A
1

rAw8

r 2A
1

u2

r 2A

w8

r
2

uw

r 2AG .
Using Propositions 3.7, 3.8, and 3.15, we have

w9~0!5 lim
r↘0

F2rw8

r 2A
1

w8

r
1

u2

r 2A

w8

r
2

uw

r 2AG52w9~0!2
w̄

ū
,

and the result follows. j

Thus, in the case wherew̄2Þ1, the (w–w8) phase plane portrait nearr 950, is as shown in
Fig. 2 ~depending on whetherw̄,21, 21,w̄,0, 0,w̄,1, or w̄.1!.
These are quite different than the phase portraits for non-RNL solutions. For example, ifw850
and 0,w,1, then we have the picture, depicted in Fig. 3 because whenw850, w9,0.

FIG. 2. The RNL phase portrait.

FIG. 3. Non-RNL phase portrait.
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The difference is that for the RNL solutions atr 50, satisfyingw̄2Þ0,1, the functionF is infinite
andFw8 is not equal to zero, even thoughw8(0)50. Indeed, in this case

lim
r↘0

F~r !w8~r !5 lim
r↘0

F rw82rAw82
u2

r
w8G5 lim

r↘0
F2r 2A

w8

r
2u2

w8

r G522ūw̄,

where we have used Propositions 3.7 and 3.8.
As a final comment along these lines, note that the vector field@cf. ~2.9! and ~2.10!#

S B8
w8
v8
r 8

D 5S 1

r
@r 22u22~2v221!B#

v

2
1

B
@r 22B2u2#

v
r

2
uw

B
1

D
cannot be continuously extended from the regionr .0, v50, to r 50, v50; indeed if w̄
5w(0), 0,w̄,1, and~as usual! w9(B,w,w8,r )52Fw8/B2uw/B, then

lim
r↘0

w9~B,w,w8,r !5H w̄

ū
, along orbits

2
w̄

ū
, along the patht→~ ū2,w̄,0,t !.

Thusw9 cannot be extended to be a continuous function at (ū2,w̄,0,0). Therefore the vector field
is not continuous at this point, even though the functionsB(r ) andw(r ) are analytic inr>0 ~see
Sec. IV!. The point is that the analyticity ofw is a nontrivial statement and does not follow fro
the usual theorems about analytic vector fields, since the vector field is not continuous.

We close this section by studying the behavior of the metric coefficientAC2 nearr 50 @cf.
~1.1!#. Note that sincer 2A is analytic, we see that ifw̄2Þ1, then limr↘0 r 2A(r )5ū2Þ0 ~by
Proposition 3.8!, so thatA(r )5O(1/r 2), nearr 50. If w̄251, thenr 2A(r )5b1r 1O(r 2), where
b1.0 ~by Corollary 3.11!, so thatA(r )5O(1/r ) near r 50. We use these facts in proving th
following theorem.

Theorem 3.20: If „A(r ),w(r )… is a RNL solution, then the metric coefficientAC2 of the
metric ~1.1! satisfies, forr near 0,

A~r !C2~r !5H O~1/r 2!, if w̄2Þ1,

O~1/r !, if w̄251.
~3.69!

Proof: From our above remarks, the theorem will hold provided that we showC(r ) is
bounded nearr 50. To see this note that from~2.3!, if r .0,

C~r !5C~0!expS E
0

r 2w82~s!

s
dsD ,

whereC(0)Þ0, and sincew82(s)/s is bounded nearr 50, it follows thatC(r ) is also bounded for
r near 0. j
J. Math. Phys., Vol. 38, No. 12, December 1997
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IV. EXISTENCE AND UNIQUENESS OF LOCAL ANALYTIC RNL SOLUTIONS

In this section we shall prove that there is a unique three-parameter family of locaC2

solutions of the equations

rB81~2w8221!B5r 22u2, ~4.1!

Bw91~r 22B2u2!~w8/r !1uw50, ~4.2!

whereB5r 2A. This will imply that some of these solutions match up with those solutions wh
we specified in the previous section by the parameterss, a, andb, whereA(s)51, w(s)5a, and
w8(s)5b, s.0 and (a,b)Þ(61,0). The proof will be broken up into two cases:w(0)2Þ1 and
w(0)251. In the former case, we will show thatw(0)2 can be any value different from 1. We wi
also show that these local solutions are analytic.

Theorem 4.1: Given any triple p5(a,b,c), a2Þ1, there exists a unique local solutio
„wp(r ),Bp(r )…PC43C2 of ~4.1! and ~4.2!, defined on@0, R#, for someR.0, satisfyingwp(0)
5a, wp-(0)5b, andBp8(0)5c, and the solution depends continuously on these initial values.
solution is analytic atr 50.

In the case wherea251, we have the following theorem.
Theorem 4.2: Given any triple of the formq5(1,b,c), there exists a unique local solutio

„wq(r ),Bq(r )…PC43C2 of ~4.1! and ~4.2!, defined on@0, R#, for someR.0, satisfyingwq(0)
51, wq9(0)5b, andBq8(0)5c, and the solution depends continuously on these initial values.
solution is analytic atr 50.

Remarks:~1! That the solutions constructed in the above theorems are actually analyticr
50 ~and hence on@0, R#! follows as in Ref. 11, p. 401.

~2! The solutions constructed in the above theorems are not necessarily RNL solution
example, the solution of~2.1! and ~2.2!,

B~r !5r 21c2r , w~r ![1,

wherec2Þ0, satisfiesA(r )511c2/r .1 for all r .0.
~3! The solutions described in Theorem 4.2 that havec50 are not RNL solutions, by Corol

lary 3.11. In fact, these are the~local! Bartnik–McKinnon~particlelike! solutions whose existenc
was proved in Ref. 9. One can see this by noting that Proposition 3.8 implies thatB(0)50, so
r 2A(r )5B(r )5O(r 2) nearr 50, and thusA is analytic atr 50. Now if A(0),0, then from~2.1!
we see that forr near 0,rA8(r ).1 and this violates the analyticity ofA at r 50; thusA(0)
>0. If A(0)50, then from~2.1!, we see that sinceu(r )/r→22w(0)w8(0) asr→0, we obtain
124w8(0)250 so w8(0)25 1

4. On the other hand,~2.2! yields 2w8(0)50; this contradiction
shows thatA(0).0. The fact thatA(0)51 andw8(0)50 follows by expanding these function
in a Taylor series nearr 50 ~cf. Ref. 8!.

Proof of Theorem 4.1:To conform with our earlier notation, letū512a2. SinceūÞ0, we
defineB̃(r ) by

B̃~r !5B~r !2ū2.

Then ~4.1! and ~4.2! become

rB̃81~2w8221!B̃5r 22~u22ū2!22w82ū2 ~4.3!

and

~B̃1ū2!w91~r 22B̃2ū22u2!
w8

r
1uw50. ~4.4!
J. Math. Phys., Vol. 38, No. 12, December 1997
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We fix a, b, andc, and seek a solution of the form

w~r !5a1
a

2ū
r 21

b

6
r 31v~r ! ~4.5!

and

B̃5cr1g~r !, ~4.6!

where

vPC0000
4 @0, R#, z5v8PC000

3 @0, R#, ~4.7!

and

gPC00
2 @0, R#. ~4.8!

Here the zero subscripts denotev(0)5v8(0)5v9(0)5v-(0)50, and so on.
We let

v85z, ~4.9!

and then we can rewrite~4.3! and ~4.4! as the first-order system:

v85z, ~4.10!

z852
1

B̃1ū2 Fuw1S a

ū
1

rb

2
1

z

r
D ~r 22cr2g2ū22u2!G2br2

a

ū
, ~4.11!

g85
r 22~u22ū2!22w82ū22~2w8221!~cr1g!

r
2c, ~4.12!

wherew is given by~4.5!, andw85(a/ū)r 1br2/21z. Let X be the space defined by

X5~C0000
4 3C0000

3 3C00
2 !@0, R#,

and for fixedu, 0,u,1, we let

uvu45u sup
0<r<R

uv ~4!~r !u, uzu35 sup
0<r<R

uz-~r !u, ugu25 sup
0<r<R

ug9~r !u,

and as a norm onX, we take

i~v,z,g!i5max ~ uvu4 ,uzu3 ,ugu2!.

We rewrite~4.10!–~4.12! as integral equations, and we seek a local solution via iteration

ṽ~r !5E
0

r

z~s! ds, ~4.13!

z̃~r !5E
0

r H 2
1

~B̃1ū2!
Fuw1S a

ū
1

sb

2
1

z

s
D ~s22cs2g2ū22u2!G2b2

a

ū
J ds, ~4.14!
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g̃~r !5E
0

r H s22~u22ū2!22w82ū22~2w8221!~cs1g!

s
2cJ ds. ~4.15!

where 0<r<R, and againw is given by~4.5! andw85(a/ū)r 1br2/21z. We abbreviate~4.13!
and ~4.14! as (ṽ,z̃,g̃)5T(v,z,g).

We fix a real numberr.0, and assumei(v,z,g)i,r; i.e., (v,z,g)PBr(X). We shall show
that for smallR the following hold:

~a! T(Br),Br

~b! T is a contraction.

These will imply local existence of a solution inX.
We note that it is straightforward to show that (ṽ,z̃,g̃)PX, and that~a! holds if R is small. To

show thatT is a contraction for smallR, we consider the differentialdT, evaluated at a poin
(v,z,g)PX, and show that

idTi<C,1, ~4.16!

if R is small. HereidTi is defined by

idTi5 sup
i~a,b,d!i51

id~v,z,g!T~a,b,d!i5 max
i 51,2,3

sup
i~a,b,d!i51

id~v,z,g!~p i+T!~a,b,d!i , ~4.17!

whereṽ5p1+T(v,z,g), z̃5p2+T(v,z,g), g̃5p3+T(v,z,g), and (a,b,d)PX.
Now (p1+T)(v,z,g)5 ṽ, so

ud~p1+T!~a,b,d!u45U E
0

r

b~s!dsU
4

5uubu3<ui~a,b,d!i5u. ~4.18!

Next (p2+T)(v,z,g)5 z̃, so

ud~p2+T!~a,b,d!u35U ] z̃

]v
a1

] z̃

]z
b1

] z̃

]g
dU

3

.

Now write

s15dz̃~v,z,g!~a,0,0!5
d

dt
z̃~v1at,z,g!

5
] z̃

]v
a

52E
0

r 1

~B̃1ū2!
F ~123w2!14uwS a

ū
1

sb

2
1

z

s
D Ga~s! ds,

s25dz̃~v,z,g!~0,b,0!5
] z̃

]z
b5E

0

r

2
1

~B̃1ū2!
~s22cs2g2ū22u2!

1

s
b~s! ds,

s35dz̃~v,z,g!~0,0,d!5
] z̃

]g
d

5E
0

r

2
1

~B̃1ū2!
F2

w̄

ū
1

sb

2
1

z

s
Gd~s! ds,1E

0

r

2
1

~B̃1ū2!

3Fuw1S a

ū
1

sb

2
1

z

s
D ~s22cs2g2ū22u2!Gd~s! ds.
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Then

ud~p2+T!~a,b,d!u35us11s21s3u35U2
1

~B̃1ū2!
H F ~123w2!14uwS a

ū
1

sb

2
1

z

r
D Ga~r !

1~r 22cr2g2ū22u2!
b~r !

r
1F2

a

ū
1

sb

2
1

z

r
Gd~r !J 2

1

~B̃1ū2!
Fuw

1S a

ū
1

sb

2
1

z

r
D ~r 22cr2g2ū22u2!Gd~r !U

2

,

and it is easily seen that for smallR, we have an estimate of the form

ud~p2+T!~a,b,d!u3<c1Ru~a,b,d!u5c1R,1, ~4.19!

wherec1 is a constant depending only onr, a, b andc. Similarly,

ud~p3+T!~a,b,d!u25U]g̃

]v
a1

]g̃

]z
b1

]g̃

]g
dU

2

,

]g̃

]v
a5E

0

r 22u

s
a~s! ds

]g̃

]z
b5E

0

r

2
24w8~ ū21cs1g!

s
b~s! ds,

]g̃

]g
d5E

0

r 2~2w8221!

s
d~s! ds,

so that

ud~p3+T!~a,b,d!u25U22ua~r !

r
24w8~ ū21cr1g!

b~r !

r
2~2w8221!

d~r !

r U
1

,

and it is again easy to see that for smallR

ud~p3+T!~a,b,d!u2<c2Ru~a,b,d!u5c2R,1, ~4.20!

wherec2 depends only onr, a, b, andc. It follows from ~4.17!–~4.20! that for R small,

idTi< c̄,1,

soT is a contraction. This proves that for smallR.0, Eqs.~4.1! and~4.2! have a unique solution
(B,w)P(C23C4)@0, R#, for any choice ofaÞ61, b, andc.

To complete the proof of Theorem 4.1, we must show thatR depends continuously on (a,b,c)
and that the solution is analytic atr 50. However, the fact thatR depends continuously on (a,b,c)
follows as in Ref. 9, p. 147, and the fact that the solution is analytic atr 50 follows as in Ref. 11,
p. 401. This completes the proof of Theorem 4.1. j

We now turn to the following proof.
Proof of Theorem 4.2:The details here are similar to those in the last theorem, so we

merely sketch them.
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We consider the equations~4.1! and ~4.2!, and write

w~r !511
br2

2
1v~r !, vPC000

3 @0, R# ~4.21a!

and

B~r !5cr1g~r !, gPC00
2 @0, R#. ~4.21b!

Note thatcÞ0; otherwiseA(r )—/→` as r↘0. Again we let

v85z, zPC00
2 @0, R# ~4.21c!

and we rewrite~4.1! and ~4.2! as the system

v85z, ~4.22!

z85
2uw/r 2~r 2c2g/r 2u2/r !~b1z/r !

c1g/r
2b, ~4.23!

g85
r 22u22~2w8221!~cr1g!

r
2c, ~4.24!

wherew is given by~4.21a! andw85br1z. Now let Y be defined by

Y5~C000
3 3C00

2 3C00
2 !@0, R#,

and for fixedu, 0,u,1, we let

uvu35u sup
0<r<R

uv-~r !u, uzu25 sup
0<r<R

uz9~r !u, ugu25 sup
0<r<R

ug9~r !u,

and as a norm onY, we take

i~v,z,g!i5max~ uvu3 ,uzu2 ,ugu2!.

We rewrite~4.22!–~4.24! as integral equations:

ṽ~r !5E
0

r

z~s! ds, ~4.25!

z̃~r !5E
0

r F2uw/s2~s2c2g/s2u2/s!~b2z/s!

c1g/s
2bG ds, ~4.26!

g̃~r !5E
0

r Fs22u22~2w8221!~cs1g!

s
2cG ds, ~4.27!

where 0<r<R, w is given by ~4.20!, and w85br1z. We write ~4.25!–~4.27! as (ṽ,z̃,g̃)
5S(v,z,g).

Again fix r.0 and assumei(v,z,g)i,r. Then it is easy to check that (ṽ,z̃,g̃)PY and that
S(Br),Br if R is small. To show thatS is a contraction for smallR, we show that the differential
dS, evaluated at a point (v,z,g)PY, satisfies
J. Math. Phys., Vol. 38, No. 12, December 1997
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idSi<c8,1, ~4.28!

if R is small, wheredS is defined by@cf. ~4.17!#

idSi5 max
i 51,2,3

sup
i~a,b,d!i51

id~v,z,g!~p i+S!~a,b,d!i , ~4.29!

where (ṽ,z̃,g̃)5„p1+T(v,z,g),p2+T(v,z,g),p3+T(v,z,g)… and (a,b,d)PY. As in the proof of
Theorem 4.1,

ud~p1+S!~a,b,d!u3<u

and

ud~p2+S!~a,b,d!u25U ] z̃

]v
a1

] z̃

]z
b1

] z̃

]g
dU

2

.

Moreover,

] z̃

]v
a5E

0

r 2~123w2!~1/s!2~4uw/s!~b2z/s!

c1
g

s

a~s! ds,

] z̃

]z
b5E

0

r ~1/s!~s2c2g/s2u2/s!

c1g/s
b~s! ds,

and

]g̃

]g
d5E

0

r ~1/s!~b2z/s!

c1g/s
d~s! ds.

Thus

ud~p2+S!~a,b,d!u25UF1

r S r 2c2
g

r
2

u2

r Da2F ~123w2!
b

r
1S 4uw

b

r
2

d

r D S b2
z

r D G
S c1

g

r D U
1

,

and it is easy to see that

ud~p2+S!~a,b,d!u2<c3R, ~4.30!

wherec3 depends only onb, c, andr. Finally,

ud~p3+S!~a,b,d!u25U]g̃

]v
a1

]g̃

]z
b1

]g̃

]g
dU

2

,

and

]g̃

]v
a5E

0

r 4uw

s
a~s! ds
J. Math. Phys., Vol. 38, No. 12, December 1997
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]g̃

]z
b5E

0

r 24w8~cs1g!

s
b~s! ds,

]g̃

]g
d5E

0

r 2~2w8221!

s
d~s! ds.

Then again one easily shows

ud~p3+S!~a,b,d!u2<c4R, ~4.31!

wherec4 depends only onb, c, andr. As in the proof of Theorem 4.1,~4.29!–~4.31! yield the
theorem. j

V. EXISTENCE OF INFINITELY MANY RNL CONNECTING ORBITS

As was shown in Ref. 12, any solution of~2.1! and~2.2! defined in the far field, and satisfyin
0,A(r ),1 for sufficiently larger , must satisfy limr→` A(r )51, the solution has finite~ADM !
mass; i.e., limr→` r „12A(r )…,` and limr→` w(r )P$61,0%. Such solutions will be calledcon-
necting orbitsor connectors. In Ref. 10, it was shown that there exist an infinite number
particlelike solutions~i.e., defined for allr>0!, distinguished by the nodal class of the connect
coefficientw. In Ref. 11, it was shown that given any event horizonr.0, there exist an infinite
number of black hole solutions distinguished by the nodal class of the connection coefficiew.

In this section, we shall show that given anys. 1
2, then there are an infinite number of RN

connectors having integral rotation numbers for the connection coefficientw. Moreover, we shall
also prove that ifs. 1

2, there are an infinite number of RNL solutions having half-integer rota
numbers; i.e., limr↘0 w(r )50 and limr→`„w2(r ),w8(r )…5(1,0) ~see the discussion below!. The
solutions we consider here satisfy„w(r ),w8(r )…Þ(0,0) for anyr .0. @Given any solution (A,w)
of ~2.6! and ~2.7! for which w(r 1)505w8(r 1), andA(r 1).0, for somer 1.0, then by unique-
ness,w(r )[0 andA(r )511c/r 11/r 2 for some constantd; i.e., the solution is a RN solution
Thus the solutions we obtain here aredifferent from these RN solutions.#

We begin by defining the regionG,R4 ~cf. Ref. 10! by

G5$~A,w,w8,r !:1>A.0,w2,1, r .0,~w,w8!Þ~0,0!%.

Then if P5(1,w,w8,s)PG, we denote the orbit throughP by „AP(r ),wP(r ),wP8 (r ),r …—when
there is no danger of confusion, we shall suppress theP. We let theexit-time re(P) be the first
value of r .s for which the orbit throughP exits G; r e(P)5` if the orbit stays inG for all r
.s.

For PPG, we defineu(r ) by tanu(r)5w8(r)/w(r), and u(s)5tan21 (w8(s)/w(s)); thus we
chooseu(s)P@2p,p#. Sincew8(0)50 for RNL solutions~Proposition 3.7!, we see thatu(0)
[0 (mod 2p), if w(0).0, andu(0)[0 (modp), if w(0),0. On the other hand, ifw(0)50,
then Propositions 3.7 and 3.19 imply thatw8(0)505w9(0). Thus for r near 0,w(r ) has an
expansion of the form

w~r !5cr31O~r 4!,

wherecÞ0 ~otherwise the solution is a RN solution, and we are not considering these!. Thus
w8(r )53cr21O(r 3), so that nearr 50, w8(r )/w(r )5O(1/r ), and hence

lim
r↘0

u~r ![6
p

2
~mod 2p!, if w~0!50. ~5.1!
J. Math. Phys., Vol. 38, No. 12, December 1997
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The rotation number,V5Vs , of this solution is defined by~cf. Ref. 8!

V52
1

p
@u~0!2u~r e!#. ~5.2!

Thus, on connecting orbits, ifw(0)50, thenV5(2n11)/2, i.e., V is a half-integer, while if
w(0)Þ0, thenV is an integer. Our first result yields infinitely many RNL solutions with ha
integral rotation numbers.

Theorem 5.1: Let s. 1
2 be given. Then there is an integerN5N(s).0 such that ifnPZ,

n.N, there exists a RNL connector satisfyingA(s)51, having rotation number (n1 1
2).

Note that the solution is defined for allr .0, w(0)5w8(0)50, and limr↘0 „w(r )/w8(r )…
50.

Before proving Theorem 5.1, we recall, and slightly restate, a result from Ref. 10 whic
shall need.

Theorem A~Ref. 10, Proposition 3.1!: Suppose that

Ln~r !5$~An~r !,wn~r !,wn8~r !,r !:an<r<bn%, n51,2,...,

is a sequence of orbit segments inG satisfying the following hypotheses:

~i! The set$un(bn)2un(an):n51,2,...% is uniformly bounded; sayuun(bn)2un(an)u<M , n
51,2,... .

~ii ! limn→` Ln(an)5PL[(AL ,wL ,wL8 ,a)PG, and limn→` Ln(bn)5PR[(AR ,wR ,wR8 ,b)
PG.

Then there is an orbit segment

L̄~r !5$„A~r !,w~r !,w8~r !,r …:a<r<b%

in G joining PL to PR , such that for eachr , a<r<b, limn→` Ln(r )5L̄(r ), and uū(a)2 ū(b)u
<M .

The proof of Theorem 5.1 will require a few preliminary results, the first of which is
‘‘intermediate-value’’ theorem for rotation numbers,~cf. Ref. 10, Cor. 3.6!. To formulate this, we
first recall from Theorem 4.1, ifw(0)2Þ1, we can parametrize the RNL solutions by the triple
numbers (a,b,c), wherea5w(0), b5w-(0), andc5B8(0). Recall thatB(r )[r 2A(r ). In these
terms, we can state the intermediate-value theorem as follows.

Proposition 5.2: Let s.0 be given and fixa50. Suppose that there are pointsP0

5(0,b0 ,c0), P15(0,b1 ,c1), and an arcg lying in the planea50, connectingP0 to P1 and such
that for everyP5(a,b,c)Pg the corresponding solution„A(r ),w(r )… satisfiesA(s)51. Assume
that the orbit throughP0 either lies inG for all r .0, or else exitsG throughw251 @in particular
A(r ).0 for all r<r e#. Assume thatV1.V0 , whereV i denotes the rotation number of the orb
throughPi , i 50,1. Then ifkPZ satisfiesV0,k1 1

2,V1 , there exists a pointP on g such that
VP5k1 1

2.
Proof: We parametrize the curveg by p(t), 0<t<1, wherep(0)5P0 andp(1)5P1 . Denote

by V t the rotation number of the orbit through the pointp(t). Let

X5$tP@0,1#:V t<k1 1
2%.

ThenXÞf since 0PX. Thus, let

t̃5supX.
J. Math. Phys., Vol. 38, No. 12, December 1997
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We claim thatV t̃ <k1 1
2. To see this, suppose thatV t̃ .k1 1

2. Then we can find anr 1.0 such
that (1/p)@u t̃ (0)2u t̃ (r 1)#.k1 1

2, so by ‘‘continuous dependence,’’ fort near t̃, tPX, (1/p)
3@u t(0)2u t(r 1)#.k1 1

2, and this contradicts the definition oft̃. ThusV t̃ <k1 1
2.

We next prove thatV t̃ is a half-integer, i.e.,r e( t̃)5`, so that the orbit throughp( t̃) is a
connecting orbit. To do this, we first show that the orbit cannot exitG via A50. Thus sincet̃ is a
limit of a sequencetnPX and each orbit lies inG and has rotation bounded byk1 1

2, it follows
from Theorem A~recalled above! that thet̃-orbit cannot exitG throughA50. Next, thet̃-orbit

cannot exitG through w251 and w8Þ0. Indeed, if this happens, then (1/p)@u t̃ (r e
t̃ )2u t̃ (0)#

,k1 1
2, so we can find an«.0 such that (1/p)@u t̃ (r e

t̃ 1«)2u t̃ (0)#,k1 1
2, and hencew

t̃

2
(r e

t̃

1«).1, so by ‘‘continuous dependence’’,wt
2(r e

t̃ 1«).1, for t. t̃, t neart̃. But then for theset ’s,
kp2p/2,u t(r e),kp1p/2, and this violates the definition oft̃. Finally, thet̃-orbit cannot go to

(w,w8)5(0,0) for finite r since this would imply~by uniqueness! w(r )[0. Thusr e
t̃ 5`, so the

t̃-orbit is a connecting orbit. Sincew(0)50, we see thatV t̃ is a half-integer<k1 1
2. If V t̃ 5 j

1 1
2<(k21)1 1

2, then by Ref. 8, Proposition 3.4, we can find at, t̃,t,1, such thatV t,( j
11)1 1

2<(k11)1 1
2, and this again violates the definition oft̃. This proves thatV t̃ 5k1 1

2. j

Remark:By a completely analogous method, if the curveg lies in the complement of the
planea50, we can prove an intermediate value theorem for integral rotation numbers; i.e., w
we replacek1 1

2 by k in Proposition 5.2. We omit the details of the proof.
Proof of Theorem 5.1:In (a,b,c) parameter space, we may considers as a function defined

on an open subsetU of this space. Namely, given any triple (a,b,c), we consider the local RNL
solution „A(r ),w(r )…, obtained via Theorem 4.1, satisfyingw(0)5a, w-(0)5b, and B8(0)
5c. HereU consists of those solutions which satisfyA(s)51 for somes. 1

2. The corresponding
set of points (a,b,c) clearly lies in an open subsetU. We thus have a mapping
(a,b,c,r )→Aabc(r ), and for (a0 ,b0 ,c0)PU, we have for somes, s. 1

2, Aa0b0c0
(s)51. Since

]Aa0b0c0
~s!/]r 52F S 2w82~s!1

u2~s!

s2 G Y sÞ0,

we see that the equationAabc(s)51 definess implicitly as a function of (a,b,c) nears0 , for any
point (a0 ,b0 ,c0) in U.

Next, if a505b, andc5c0Þ0, then by uniqueness, the corresponding solution is the
solution

w~r ![0, A~r !512
1

s0r
1

1

r 2 ,

wheres052c0
21. For this solution, we see that]s/]c5c0

225s0
2Þ0. Thus grads has a nonzero

component in thec direction, so from the implicit function theorem, we may represent the sur
s5s0 asc5c(a,b,s0), in a neighborhooduau,«, ubu,«, near the hyperplanec5c0 .

Now fix a50, and forubu,«, let g0 denote the curve in the planea50 determined by the
intersection of the surfaces5s0 with thec–b plane, and let (c̄,0) ~c̄ nearc0! denote the point of
intersection in the planea50, of g0 with thec axis ~cf. Fig. 4 where we have assumedc̄.c0!. At
this point we will need the following result.

Proposition 5.3:Given anys0. 1
2 anda50, we can find a sequence of points (cn ,bn) lying

on g0 such that (cn ,bn)→( c̄,0) and the rotation numberVn of the orbit „An(r ),wn(r )… through
the point (a,b,c)5(0,bn ,cn), whereAn(sn)51 satisfiesVn→` as n→`. Moreover, if (c,b)
lies ong0 , and is close to (c̄,0), the orbit through this point either lies inG for all r .0, or else
it exits G via w251.

We defer the proof of Proposition 5.3 until later, and we show here how it allows u
complete the proof of Theorem 5.1. The orbit through (0,0,c̄) is the RN solutionA(r )51
J. Math. Phys., Vol. 38, No. 12, December 1997
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21/sr 11/s2, w(r )[0, and hence, from Proposition 5.3, solutions through nearby points (0,b,c)
lying on g0 must lie inG, for s,r ,2. ChooseP0 on g0 in this neighborhood; the orbit throug
P0 either lies inG for all r .0, or else it exitsG via w251 and the same is true for points ong0

betweenP0 and (0,0,c̄). From Proposition 5.3, points (cn ,bn) lying on g0 ~in the planea50!
betweenP0 and (0,0,c̄) can be found satisfyingVn→`. Thus, given any half-integerN1 1

2

.VP0
, choosen so large thatVn.N1 1

2. Then the intermediate-value theorem, Proposition 5
shows that there is a pointQ on g0 with VQ5N1 1

2, and the corresponding orbit throughQ is a
RNL solution satisfyingA(s)51. This proves Theorem 5.1, ifN(s)5@VP0

#.
To complete the proof of Theorem 5.1, we must prove Proposition 5.3. This will be a co

quence of the following lemma.
Lemma 5.4:Fix s. 1

2, and fix a positive integern. Then if ~a,b! is sufficiently close to~0,0!,
the orbit through~1,a,b,s! has rotation number exceedingn.

Proof: Define the distance functionr by

r2
„P~r !…5w~r !21w82~r !, P~r !5„w~r !,w8~r !….

Let « be such that 0,«, 1
4, and letT.0 be arbitrary.

Sinces. 1
2, ARN(r ).0 for all r .0. Thus by ‘‘continuous dependence on initial conditions

we can findd.0 such that

if r„P~s!…,d, then r„P~r !…,«, if s<r<s1T. ~5.3!

Define an ‘‘angle’’g by

tan g5rv/w,

wherev5Aw8. ~Note that the zeros ofg and the zeros ofu5tan21(w8/w) occur at the same value
of r .! We shall show that ifd is small,g can be made large by takingT large; this will imply the
desired result. Now using~3.13!, we find

g852
1

r Fu cos2 g1
sin2 g

A
1~2w8221!

sin 2g

2 G . ~5.4!

Thus ifs<r<s1T, ~5.3! implies thatu>12«2 andu2w8221u,1. SinceA21>12«2, we have

@ #>~12«!2 cos2 g1~12«2!sin2 g2 1
25

1
22«2> 1

4.

FIG. 4. Intersection ofs5s0 , with a50.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Thus from~5.4!, we get for 0<r<s1T,

g8~r !<21/4r ,

and hence

g~s1T!2g~s!5E
s

s1T

g8~r !<2
1

4 E
s

s@1T# dr

r
.

Since the last integral can be made arbitrarily large by takingT large, the results follows. j

To see how this lemma implies Proposition 5.3, we proceed as follows. First, if atr 50 the
solution determined by (a,b,c) is close to the RN solutionw(r )[0, then by ‘‘continuous depen
dence on initial conditions,’’ the solution through (a,b,c) will be close to this RN solution atr
5s. Hence takinga21b2 sufficiently small andc̃ sufficiently close to21/s we can make
„w(s),w8(s)… as close as we wish to~0,0!. Then applying Lemma 5.4 shows that the or
through„1,w(s),w8(s),s… has arbitrarily high rotation forr .s, if a21b2 is sufficiently small.
This proves Proposition 5.3 and hence completes the proof of Theorem 5.1. j

Using Theorem 5.1, we shall show how to obtain RNL connectors of sufficiently high inte
rotation numbers, ifs. 1

2. This is the content of the next theorem.
Lemma 5.5.Let s. 1

2 be given. Then there is an integerN5N(s).0 such that ifnPZ, n
.N, there exists a RNL connector satisfyingA(s)51, having rotation numbern.

Remark: Nis the same integer as in Theorem 5.1.
Proof: We shall obtain these integral connectors by perturbing off the half-integral conne

obtained in Theorem 5.1.
Fix s5s0. 1

2. Then as shown in the proof of Theorem 5.1, the surfacesa50 ands5s0

intersect transversally since gradsÞ0 at the pointa50, b50, c5c0Þ0. Thus gradsÞ0 at the
point a5«, b50, c5c0 , if «.0 is sufficiently small, so the surfaces5s0 intersects the surface
a5« transversally. Letg« denote the curve in the planea5«, determined by the intersection o
the surfaces5s0 , and let (0,c̃), ~c̃ nearc0! denote the point of intersection in the planea5« of
g« with the c axis ~cf. Fig. 4 where we here replaceg0 by g« , a50 by a5«, and c̄ by c̃!.

As in the proof of Theorem 5.1, we shall show that there is a pointP« ong« such that the orbit
throughP« either lies inG for all r .0, or else it exitsG via w251, and the same is true for a
points ong« ‘‘below’’ P« .

Now the orbit throughP05(0,b̄,c̄) ~cf. Fig. 4! hasA0(r ).0 for r ,r 0
e . If it exits G via w2

51, then there is anr 1 such thatw0
2(r 1).1. Thus if« is small, the orbit throughP«5(«,b̄,c̄) also

satisfiesw«
2(r 1).1, andA«(r ).0 for 0,r<r 1 . If the orbit throughP0 is a connecting orbit, then

at r 5s11, the orbit lies inG, so if « is small enough, the orbit throughP« lies in G for s<r
<s11, and hence hasA«(r ).0 for s<r<r «

e . Thus the orbit throughP« either lies inG for all
r .0, or else it exitsG via w251. Now from Theorem 5.1, given anyn.N(s), there is a point
QnPg0 in the a50 plane, and there is anr 2.s such that the orbit throughQn satisfiesu0(r 2)
2u0(0).np. Thus, if «5«n,1/n is small, we can find a pointQn

« on g« , in the a5«n plane,
such that the orbit throughQn

« satisfiesu«(r 2)2u«(0).np. It follows then from the intermediate
value theorem~for RNL connectors with integral rotation numbers, cf. the remark after the p
of Proposition 5.2! that we can find RNL connectors with rotation numbern, if n.N(s). This
completes the proof of Theorem 5.5. j

We next show that given anys.0, we can find a RNL connector having rotation numb
zero.

Lemma 5.6:For everys.0, there is a RNL solution~a,b,s! having rotation number 0; tha
is there is a RNL solution„A(r ),w(r )… of ~2.1! and ~2.2! with zero rotation number satisfying
„A(s),w(s),w8(s)…5(1,a,b).
J. Math. Phys., Vol. 38, No. 12, December 1997
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Proof: Let p andq be points in thes5s0 plane:p5(21,1), q5(22,0), and letL denote
the line segment joiningp andq; cf. Fig. 5. We consider the solutions of~2.6! and~2.7! alongL.
At p the orbit immediately enters the regionw.21, w8.0, and atq the orbit immediately enters
the regionw,21, w8,0; cf. Fig. 5. Since orbits cross the linesw521 andw850 transversally,
the set of points onL which cross any one of these two sets is open. Thus by connectedness,
must be a pointt in L whose orbit tends to (21,0) asr→`. If we consider the orbit throught for
r ,s, it must tend tow850, asr↘0, as depicted since no orbit crosses the half-linew850, w
,1 in backwardsr , andw8(0)50 ~Proposition 3.7!. This orbit is thus a RNL solution having
zero rotation. j

Remarks:

~1! In the proof of the lemma, we showed that if an orbit ever gets into the regionw2.1, ww8
,0 with A.0 at some pointr 5 r̃ , then the orbit„w(r ),w8(r )… stays in this region forr
, r̃ , and limr↘0„A(r ),w(r ),w8(r )…5(`,w̄,0), wherew̄ is finite. This thus gives an improve-
ment of Ref. 12, Proposition 2.3, where it was only shown thatA(r ).1 for somer , r̃ .

~2! Note that all of our connecting orbit RNL solutions haveA(r ).0 for all r .0. The question
of the existence of ‘‘black-hole’’ RNL solutions defined for allr .0, which are different from
the usual RN black-hole solutions, will be addressed in a future publication.

~3! Although the last theorem shows that for eachs we have a zero connector, and Lemma 5
shows that ifs. 1

2, we can find orbits with arbitrarily high rotation, we cannot invoke th
intermediate-value-type theorems~Proposition 5.2!, which we used for particlelike, and black
hole solutions~cf. Refs. 10 and 11! to obtain RNL solutions in each rotation class. This
because for RNL solutions, there are jumps in angle atr 50, as well as atr 5`.

We next investigate the behavior of the masses for the families of RNL solutions ha
unbounded rotation numbers.

Theorem 5.7: Let s0. 1
2 be given, and suppose thatLn(r )5„An(r ),wn(r ),wn8(r ),r …, n

51,2,..., is a sequence of RNL connectors constructed in either Theorem 5.1 or Theorem
satisfyingAn(s)51, whose rotation numbersVn→`. If mn5 limn→` r „12An(r )… is the~ADM !
mass of thenth solution, thenmn→1/s0 asn→`.

Proof: In both Theorems 5.1 and 5.5, the RNL connectors are parametrized by the
(an ,bn ,cn) where an50, for connectors with half-integral rotation numbers, or 0,an5«n

,1/n for connectors with integral rotation numbers, and in both cases,bn→0 andcn→c, where
the points (an ,bn ,cn) lie in the surfacess5s0 . The orbit through (an ,bn ,cn) enters the region
G for small r .0. Since these orbits correspond to RNL connectors, they lie inG for all r .0. At
r 50, Ln(0) converges toP5(0,0,21/s0,0). The unique solution of the (B2w) equations~2.9!
and ~2.10! is wRN(r )[0 andBRN(r )5r 22(1/s)r 11; thus

FIG. 5. The RNL solution with zero rotation.
J. Math. Phys., Vol. 38, No. 12, December 1997
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wRN~r ![0, ARN~r !512
1

s0r
1

1

r 2 . ~5.5!

This solution has~ADM ! mass 1/s0 . By ‘‘continuous dependence’’~sinces0. 1
2! these solutions

converge to the RN solution~5.5! at any r .0. Thus, as in Ref. 13, the corresponding~ADM !
masses satisfymn→1/s0 . j

Based on numerical evidence, we conjecture that for any sequence of RNL connectors,Ln(r ),
n51,2,..., satisfyingA(s)51, whose rotation numbersVn→`, the corresponding~ADM ! masses
mn satisfy

lim
n→`

mn5H 2, if s<
1

2
,

1

s
, if s.

1

2
.

VI. CONCLUDING REMARKS

We first show that for any RNL solution, the Yang–Mills field strengthuFu2 is infinite at r
50, but the energy densityT0

0 is finite atr 50 if and only if w(0)251. We shall then show tha
the singularity in the metric atr 50 is nonremovable by any coordinate transformation. Fina
we shall classify all solutions of the SU~2! EYM equations which are well-behaved in the far fie
~Theorem 6.3!.

Theorem 6.1:For any RNL solution, the Yang–Mills fields strengthuFu2 satisfies

lim
r↘0

uFu25`, ~6.1!

and the energy densityT0
0 is finite at r 50 if and only if w̄251.

Proof: It is easy to show thatuFu2 is a constant multiple ofT00. Thus for~6.1! it suffices to
show

lim
r↘0

T00~r !5`. ~6.2!

From Ref. 3, we have

8pT00~r !5
2Aw82

r 2 1
u2

r 4 ,

so if w̄2Þ1, then as above limr↘0 T00(r )5`. If w̄251, then from Corollary 3.11,
limr↘0 rA(r )5b1Þ0. Also we can write

8pT00~r !5
2~rA !w82

r 3 1
u2

r 4 . ~6.3!

Now notice that

lim
r↘0

w82

r 3 5 lim
r↘0

2w8w9

3r 2 5 lim
r↘0

1

3

w8w-1w92

r
.

Thus T00 is finite at r 50 if and only if w250. In this case, the solutionw(r )[1, B(r )5b1r
1r 2, of ~4.1! and ~4.2! satisfiesw̄51, w8(0)50, w250, andB(0)50, so that it is the unique
J. Math. Phys., Vol. 38, No. 12, December 1997
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solution of ~4.1! and ~4.2! satisfying these initial conditions. Thusr 2A(r )5B(r )5b1r 1r 2, or
A(r )511b1 /r , so the corresponding solution is a Schwarzschild solution. Note, however
from Corollary 3.11b1.0, so the solution is not a RNL solution.

To study the behavior ofT0
0 nearr 50, we first note thatT0

05g00T00, so that

T0
0~r !5

T00~r !

AC2 52
1

8p

1

C2 F2w82

r 2 1
u2

Ar4G .
Now in the proof of Theorem 3.20, we have shown that limr↘0 C(r ) is a finite nonzero constant
Moreover, limr↘0 w8(r )/r 5w9(0) exists and is finite. Using~3.69!, we see that ifw(0)2Þ1,
thenT0

0 is infinite at r 50. On the other hand, ifw(0)251, then

u2

Ar4 5OS u2

r 3 D ,

and, using L’Hôpital’s rule,

lim
r↘0

u2

r 3 5 lim
r↘0

H 2
4

3
w

u

r

w8

r J 5
8

3
w~0!2w9~0!50.

j

Now we consider the singularity in the metric atr 50. A computation~using Maple! gives
~whereRbgd

a is the Riemann curvature tensor!

RabcdR
abcd5

6F2

r 6 1
4u2

r 8 1
8~Aw82!2

r 4 >
6F2

r 6 .

Now if w̄2Þ1, then asF5r 2rA2u2/r , we see that nearr 50, F is well-approximated by
22ū2/r so that

lim
r↘0

RabcdR
abcd5`. ~6.4!

Similarly, if w̄251, rA(r )→b1Þ0, and soF→2b1 as r↘0, and hence~6.4! holds in this case
too. It follows that the singularity in the metric atr 50 cannot be removed by any change
coordinates.

We next give a classification of spherically symmetric SU~2! solutions of the EYM equations
which are well behaved in the ‘‘far field;’’ i.e.r @1. We shall show that they basically fall int
three classes: particlelike solutions, black-hole solutions, and RNL solutions.

As a first step, before stating the main result, we shall strengthen the results in Ref. 12. I
12 we considered solutions defined and smooth in the far field, which satisfied

0,A~r !,1 for r @1. ~6.5!

For such solutions, set

r5 inf $r :A~s!>0 for all s.r %,

and define such a solution to beregular if 1 .A(r )>0 for r .r. We proved, among other things
that such solutions satisfy

lim
r→`

„w2~r !,w8~r !…5~1,0!. ~6.6!
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lim
r→`

A~r !51, ~6.7!

and

m̄5 lim
r→`

r „12A~r !…,`. ~6.8!

We shall show here that the conditionA(r ),1 for r .r is superfluous. This is the content of th
following proposition.

Proposition 6.2:Assume that„A(r ),w(r )… is a solution of~2.1! and ~2.2!, which for some
r 1.0 is defined and smooth forr>r 1 and satisfies

A~r !.0 for all r>r 1 . ~6.9!

Then ~6.6!–~6.8! hold.
Proof: If ( A,w) is a RN solution,

A~r !511
c

r
1

1

r 2 , w~r ![0, ~6.10!

then certainly~6.6!–~6.8! hold. Thus assume that (A,w) is not a RN solution. Then ifA(s)51 for
somes, ~2.1! implies that

sA8~s!522w82~s!2
u2~s!

s2 ,0.

ThusA8(s),0 so we have eitherA(r ),1 for all sufficiently larger , or

A~r !.1 for all r .0. ~6.11!

The caseA(r ),1 was considered in Ref. 10 so we may assume that~6.11! holds.
Now if Ã(r )5A(r )21, thenÃ(r ).0 for all r .0, and so from~2.1!,

rÃ~r !<2Ã~r !2u2/r 2 ~6.12!

for all r .0. We now show that~6.6! and ~6.7! hold, considering three cases; namely for so
r̄ .0,

~a! w2( r̄ ).1 and (ww8)( r̄ ).0 ~in this case,A→0 anduw8u is unbounded near somer 1. r̄ !,
~b! w2( r̄ ).1 and (ww8)( r̄ ),0, and
~c! w2( r̄ )<1.

Case (a): w2( r̄ ).1 and (ww8)( r̄ ).0.
In this case, we see that there is a constantc.0 such thatu(r )2.c for r . r̄ , so that~6.12!

implies (rÃ)8<2c/r 2. Therefore integrating gives, forr . r̄ ,

rÃ~r !<c11c/r , c15const,

and hence given any«.0, Ã(r ),« so

A~r !,11« for large r . ~6.13!
J. Math. Phys., Vol. 38, No. 12, December 1997
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Our strategy is to show thatw grows at least linearly inr , which will imply thatA(r ),1 for some
r , and hence, from the results in Ref. 10w8 becomes unbounded near somer , thereby violating
our smoothness assumption in the far field.

To carry out this program, we see from~2.2!

r 2Aw95F r ~A21!1
u2

r Gw82uw>
u2

r
w8>

c

r
w8,

so w9/w8>c/(11«)r 3, and integrating gives, for larger ,

ln w8>c22
c

2~11«!

1

r 2 >c3 ,

wherec2 andc3 are constants. Thusw8(r )>ec3[d8, so w(r )>d8r 1k, wherek is a constant.
Thus there is a constantd.0 such that

w~r !>dr if r>1. ~6.14!

Then from~2.1!, if r is large, we can findk1.0 such that

rA852~112w82!A112
u2

r 2 <
2u2

r 2 <
2k1r 4

r 2 52k1r 2,

and so for theser , A8(r )<2k1r . This implies that for some larger , A(r ),1, and as we have
noted above, this gives a contradiction, and completes the argument in case~a!.

We now consider the next case.
Case (b): w2( r̄ ).1 and (ww8)( r̄ ),0.
In this case, it is easy to see that either~6.7! holds, or (ww8)(r ).0 for somer . r̄ @in which

case we are done by case~a!#, or w2(r )<1 for somer . r̄ . In this latter case, if the orbit exits th
regionw2<1, it must get into the regionww8.0, and again we would be finished by case~a!.
Thus we may assume that the orbit stays in the regionw2,1 for all sufficiently larger . Since the
projection of orbit into thew2w8 plane has finite rotation~Ref. 17, Cor. 3.4!, it follows as in Ref.
11 that~6.6!–~6.8! hold. Finally we note that case~c! is subsumed by what we have proved in ca
~b!. This completes the proof of the proposition. j

We can now state the classification theorem for spherically symmetric solutions of
equations with gauge group SU~2!.

Theorem 6.3:Let „A(r ),w(r )… be a solution of~2.1! and~2.2! which is defined and smooth
for r .r 1 and satisfiesA(r ).0 if r .r 1 . Then every such solution must be in one of the followi
classes:

~i! A(r ).1 for all r .0;
~ii ! Schwarzschild solution: A(r )512m/r , w2(r )[1, wheremPR;
~iii ! Reissner–Nordström solution: A(r )512c/r 11/r 2, w(r )[0, wherecPR;
~iv! Bartnik–McKinnon particlelike solution:„A(r ),w(r )… is defined for allr>0, A(0)51,

w2(0)51, w8(0)50;
~v! Black-hole solution: A(r)50 for somer.0, A(r ).0 if r .r, „w(r),w8(r)… lies onCr

5$(w,w8):@r2(12w2)2/r#w81w(12w2)50%, and „A(r ),w(r )… is defined for all r
.r;

~vi! Reissner–Nordström-like solution: „A(r ),w(r )… is defined for all r .0,
limr↘0 „A(r ),w(r )w8(r )…5(`,w̄,0), wherew̄ is finite.

In each case limr→` w2(r )51 or 0 ~0 only for RN solutions!, limr→` rw8(r )50, and
limr→` A(r )51. The solution also has finite~ADM ! mass.
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Observe that the Schwarzschild solution

w~r ![1, A~r !512m/r , m,0,

is an example of a solution of type~i!.
Proof: If the solution is not of type~i!, there exists anr 2.0 such thatA(r 2),1. We consider

solutions defined in the far field, say forr>r 1 , and see what happens as we decreaser to values
less thanr 1 . If the solution satisfiesA(r ),1 for r ,r 1 , then it was proved in Ref. 12 that th
solution lies in one of the sets described in~i!–~iv!. If A(s)51 for somes.0, then the solution
is a RNL solution, while ifA(r ).1 for all r .0, the solution is either a RNL solution or
Schwarzschild solution as described in~i! with m,0, or a RN solution as described in~ii ! with
c,0. The last statement follows from Proposition 6.1. j

Note: The behavior of black-hole solutions in the regionr ,r requires further investigation
and will be considered in a separate publication.

Problem 1:Do there exist RNL solutions, different from the classical RN solutions, which
not have a naked singularity?

In this paper we have proved the existence of RNL connectors, with sufficiently large int
or half-integral rotation numbers, ifs. 1

2.
Problem 2:Is this true ifs< 1

2?
Problem 3:Do there exist integral and half-integral RNL connectors in each rotation clas

any s.0?
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