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Radiative deformation
V. S. Arpacia) and A. Esmaeeli
Department of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor,
Michigan 48109

~Received 7 September 1999; accepted for publication 13 December 1999!

An infinitesimal changedQ in heat fluxQ is shown, in terms of entropy fluxC5Q/T, to have two
parts,dQ5TdC1CdT. The first part being the thermal displacement and the second part being
the thermal deformation. Only the second part dissipates into internal energy and generates entropy.
Thermodynamic arguments are extended to transport phenomena. It is shown that the thermal part
of the rate of local entropy generation is related to the local rate of thermal deformation bys-5
2c i /T(]T/]xi), wherec i5qi /T, c i being the rate of entropy flux vector, andqi the rate of heat
flux vector. The part of this generation related to radiation is illustrated in terms of an example.
© 2000 American Institute of Physics.@S0021-8979~00!06806-7#
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I. INTRODUCTION

The concept of entropy production is now assumed w
understood~see, for example, Bird, Stewart and Lightfoo1

De Groot and Mazur2!. Recent interest is primarily aimed a
a variety of applications. Because of the size of the literatu
no attempt is made here for a complete review. Some of
recent work include Arpaci and Selamet3 on the entropic
efficiency of energy systems, Bejan4 on a variety of thermal
problems from the view point of minimized entropy produ
tion, Lior5 on the energy, exergy and thermomechanics
nuclear power plants, Szargut and Morris6 on the exergy
losses associated with metal production, DiVita and Brus7

on the minimum entropy production due to ohmic dissipat
in tokamaks, and Kucinski8 on the minimum entropy produc
tion in toroidal pinches. An inspection of this literature, ho
ever, reveals a need for further studies on the Second L
Specifically, in the classical thermodynamics, the entro
difference between a system~heat reservoir at temperatur
T1! separated by a partition from another system~heat reser-
voir at temperatureT2! is given by

S22S15QS 1

T2
2

1

T1
D , T1.T2 , ~1!

Q being the heat flux through the partition~Fig. 1!. First note
that a finite temperature drop cannot exist across a part
of no appreciable thickness. Actually, one needs to rep
the ideal model of Fig. 1 dealt in thermodynamics with a r
model which involves a partition of finite thicknessL sepa-
rating two baths~Fig. 2!. In this model, the bath at tempera
ture T1 transfers heat via an irreversible process over
thickness of partition to the bath at temperatureT2 . The
objective of the present study is the entropy change wit
the partition rather than the difference between the~internal!
entropy of two baths. Toward this objective, first consid
the energy balance

dE5dQ2dW. ~2!
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Here,E5U1UK1UP , whereU, UK , andUP respectively
denote internal, kinetic, and potential energy, andW5pV, p
being the pressure andV the volume. Splitting the net work

dW5d~pV!5Vdp1pdV, ~3!

and, after some regrouping, Eq.~2! becomes

dU1pdV1@d~UK1UP!1Vdp#5dQ. ~4!

In the absence of the mechanical effects, the terms in bra
ets vanish and Eq.~4! is reduced to a thermal energy balanc

dU1pdV5dQ. ~5!

Now, in a manner similar to splitting work, rearranging th
heat flux in terms of the entropy flux,C5Q/T, gives

dQ5d~CT!5TdC1CdT. ~6!

The first term on the right-hand side of Eqs.~3! and ~6!
respectively denotes the displaced mechanical and the
energy, and the second term denotes the deformed mec
cal and thermal energy. Only the deformed energy irreve
ibly dissipates into internal energy and produces entro
Note that the pressure related volumetric change is dila
rather than deformation, it is reversible and produces no
tropy, but shear stress related deformation, to be consid
in the next section, is irreversible and produces entro
Now, Eq. ~5! may be rearranged in terms of Eq.~6! to give

dU1pdV5TdC1CdT. ~7!

Next, consider the entropy balance including a genera
term, sayP, as a measure of irreversibility,

dS5dC1dP. ~8!

For the energy equivalent of Eq.~8!, multiply this equation
by temperature,

TdS5TdC1TdP. ~9!

Now, consider the fundamental difference,

Thermal energy balance2T3Entropy balance,

obtained by subtracting Eq.~9! from Eq. ~7!,
3 © 2000 American Institute of Physics
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dU1pdV2TdS5CdT2TdP. ~10!

For a reversible process, the right-hand side of Eq.~10! van-
ishes and we obtain the well-known thermodynamic relat

dU1pdV5TdS. ~11!

For an irreversible process to be assumed locally revers
Eq. ~11! continues to be valid, and the left-hand side of E
~10! vanishes and the right-hand side results

dP5
C

T
dT5Cd~ ln T!5

Q

T2 dT.

For a steady process within a solid partition, Eq.~5! is
reduced todU5dQ50, and Eq.~8! to dC1dP50. Then,

dC52dP52
Q

T2 dT. ~12!

Now, integration of Eq.~12! between the boundaries of th
partition yields

Cu1
252Pu1

252QE
1

2 dT

T2 ,

or

Cu1
25QS 1

TD U
1

2

,

or, explicitly,

C22C152~P22P1!5QS 1

T2
2

1

T1
D ~13!

which is identical to the right-hand side of Eq.~1! but should
be identified as the the change of entropy flux across a s
partition of finite length. This change is balanced by t
change of entropy production in the partition.

For a case involving both radiation and conduction,
the internal energy, heat, and work associated with gas
diation ~including infrared as well as visible spectra! be UR,
QR, andWR, respectively. For negligible relativistic effect

UR!U, QR;QK, WR!W,

provided the characteristic transport velocity remains m
less than the velocity of light. Then,

Q5QK1QR,

QK and QR respectively being the heat flux by conductio
and radiation. In the next section, the foregoing developm
is extended to transport phenomena.

FIG. 1. Thermodynamic model—heat flux across a temperature discon
ity.
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The study consists of six sections: following this secti
which introduces thermal deformation into classical therm
dynamics Section II extends the concept by incorporating
rate of thermal deformation into transport phenomena,
elaborates this deformation in terms of radiation. Section
deals with the electromagnetic deformation Section IV giv
an illustrative example on entropy production resulting fro
these deformations Section V generalizes the results of
IV by some dimensional arguments, and Sec. VI conclu
the study.

II. RATE OF THERMAL DEFORMATION

Transport phenomena involve the rate of thermal def
mation which requires first a consideration of the moment
balance. For a Newtonian fluid, this balance in terms of
conventional nomenclature is

r
Dv i

Dt
52

]p

]xi
1

]t i j

]xi
1 f i , ~14!

where f i includes all body forces. In terms of the rate
entropy flux,c i5qi /T, the local rate of entropy balance is

r
Ds

Dt
52

]c i

]xi
1s-, ~15!

wheres- denotes the local rate of entropy production. Als
the conservation of the rate of total energy including the r
of heat flux expressed in terms of the rate of entropy flux

r
D

Dt S u1
1

2
v iv i D52

]

]xi
~Tc i !2

]

]xi
~pv i !

1
]

]xj
~t i j v i !1 f iv i1u-, ~16!

whereu- denotes dissipation of any energy other than th
momechanical energy into internal energy. Note that we
pressed both the entropy balance and the total energy bal
in terms of entropy fluxc i rather than the customary ap
proach in which the Second Law is expressed in terms
heat fluxqi . Thus, the rate of net heat flux becomes

]qi

]xi
5

]

]xi
~Tc i !5T

]c i

]xi
1c i

]T

]xi
,

the first and second right-hand terms respectively deno
the rate of displaced and deformed thermal energy. One
also note that the rate of total mechanical energy associ
with shear stress can be written as

u-FIG. 2. Heat transfer model—heat flux over a continuous temperature
ference.
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]

]xj
~t i j v i !5v i

]t i j

]xj
1t i j si j ,

wheresi j is the rate of mechanical deformation and the fi
and second terms in the right-hand side denote the displ
and deformed mechanical energy, respectively. Only the
formed part of any~mechanical, thermal, electromagnet
nuclear, chemical! energy dissipates~irreversibly converted!
into internal energy. Thermal deformation in terms of e
tropy flux appears to be overlooked in the literature and
the motivation of this work. Now, consider the fundamen
difference

Rate of total energy2~Newton’s Law)iv i

2T~Second Law!

by subtracting the rate of mechanical energy@obtained by
multiplying Eq. ~14! by velocity# and the rate of therma
energy @obtained by multiplying Eq.~15! by temperature#
from the rate of total energy given by Eq.~16!. The result is,
after some rearrangement with the conservation of mass

Dr

Dt
1r

]v i

]xi
50,

andr51/v,

rS Du

Dt
2T

Ds

Dt
1p

Dv
Dt D52c i

]T

]xi
1t i j si j 1u-2Ts-.

~17!

For a reversible process, all forms of deformation~that is, the
right-hand side! vanish and Eq.~17! is reduced to the Gibbs
thermodynamics relation

Du

Dt
2T

Ds

Dt
1p

Dv
Dt

50. ~18!

For an irreversible process to be assumed locally revers
Eq. ~18! continues to be valid and the right-hand side of E
~17! gives the rate of local entropy production

s-5
1

T F2c i S ]T

]xi
D1t i j si j 1u-G , ~19!

where the first and second terms in brackets respectively
notes the deformed~or dissipated! thermal and mechanica
energy into internal energy, and the third term denotes
deformed~or dissipated except for thermomechanical! en-
ergy into internal energy. Next, we consider the radiat
part of thermal deformation.

Thermal part of deformation may be illustrated in term
of the radiative deformation. First, consider both the cond
tion and radiation modes of heat transfer,

qi5qi
K1qi

R .

The conductive constitution, usually described by Fourie
law,

qi
K52k

]T

]xi
, ~20!
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is well known but the radiative constitution, depending
the assumptions made, can be described in a numbe
ways. Here, following Arpaci,9 consider the constitution
based on the radiative stressP i j ,

qi
R52

h

aM

]P i j

]xj
, ~21!

where

P i j 5E
n
E

V
I nl i l jdVdn,

I n being the monochromatic intensity,l i and l j are spherical
unit vectors, and

P i j 5
4

3
Ebd i j 14(

n51

`
1

aM
2n S Mi jpq ..

]

]xp

]

]xq
DEb ~22!

with

Mi jpq ..5
1

4p E
V

~ l i l j l pl q ...!dV.

Here,Eb5sT4 is the Stefan–Boltzmann law for blackbod
emissive power,aM5(aPaR)1/2 the mean absorption coeffi
cient,h5(aP /aR)1/2 the degree of nongrayness,aP andaR

respectively the Planck and Rosseland means of the abs
tion coefficients.Mi jpq .. is annth-order moment operator. A
procedure for evaluatingMi jpq .. in terms of the Wallis In-
tegrals is described in Unno and Spiegel10 who apparently
overlook earlier work by Milne.11 After lengthy manipula-
tions, the procedure leads to

P i j 54(
n50

`
¹2n22~2n] i] j1¹2d i j !Eb

aM
2n~2n11!~2n13!

, ~23!

where] i[]/]xi and ] j[]/]xj are used for notational con
venience.

A useful alternative form of this stress explicitly in
volves radiative pressure,p5(1/3)J, where

J5Pkk5 (
n50

` S ¹2

aM
2 D n B

2n13
, ~24!

B54Eb and Pkk is the trace ofP i j and J is the spectrally
and directionally averaged monochromatic intensity,

J5E
n
E

V
I ndVdn.

For the alternative form of the stress, one follows Prandtl a
Tietjens12 in a manner similar to the development of th
Stokesean viscous constitution from the Hookean ela

constitution, by rearranging Eq.~24! in terms of (13J
2P i j )d i j 50, and obtains

P i j 5
1

3
Jd i j 1 (

n50

`
2n¹2n22@] i] j2~1/3!¹2d i j #B

aM
2n~2n11!~2n13!

. ~25!

A first approximation for the radiative heat flux based
pressure is the well-known Eddington approximation,
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qi
R52

1

3aR

]J

]xi
. ~26!

Although extensively used in the literature on gas rad
tion and to be utilized in the next section, the radiative fl
based on this approximation deviates as much as 29% f
the exact flux given by Eq.~21!. In terms of this approxima-
tion, the local entropy production, resulting from the sum
thermoelectromagnetomechanical deformations, become

s-5
1

T F1

T S k
]T

]xi
1

1

3aR

]J

]xi
D ]T

]xi
1t i j si j 1u-G ~27!

whose radiative part based on the Eddington approxima
needs to be coupled with the radiative constitution

~¹223aM
2 !J5212aM

2 Eb ~28!

~see, for example, Arpaci and Go¨züm13 or Philips and
Arpaci14!. The next section illustrates local entropy produ
tion resulting from electromagnetic deformation.

III. ELECTROMAGNETIC DEFORMATION

For a plasma flow prescribed by MHD approximatio
~see, for example, Shercliff,15 Mitchner and Kruger16!, the
electromagnetic body force in Eq.~14! becomes

f i
e5e i jkJjBk , ~29!

where Jj and Bk respectively denote the electrical curre
density and the magnetic field, andJj is given by Ohm’s
Law,

Ji5s~Ei1e i jkv jBk!, ~30!

s being the electrical conductance andv j is flow velocity.
For the electromagnetic power, consider the dot produc
Eq. ~30! with Ji ,

JiJi5s~Ei1e i jkv jBk!Ji

which may be rearranged as

JiJi /s5EiJi1~e i jkv jBk!Ji

or, in terms of the identity,

~e i jkv jBk!Ji52~e i jkJjBk!v i ,

as

EiJi5~e i jkJjBk!v i1JiJi /s,

or, in view of Eq.~29! andu-5JiJi /s, as

EiJi5 f i
ev i1u-, ~31!

EiJi being the total electromagnetic power,f i
ev i andu- re-

spectively the displaced and deformed~dissipated! electro-
magnetic power.

The foregoing considerations on the deformation ene
are next illustrated in terms of an example.

IV. AN ILLUSTRATIVE EXAMPLE

Consider a gas between two parallel plates at temp
ture T1 and T2 separated a distanceL apart. The emissive
power and emissivity of the plates areEb1

andEb2
, ande1
-

m

f

n

-

of

y

a-

and e2 , respectively. The rate of uniform energy per un
volume,u-, is steadily generated in the gas. For negligib
conduction, distribution of emissive power and entropy p
duction between the plates are desired.

The thermal balance for a one-dimensional differen
system is

2dqx
R/dx1u-50. ~32!

The radiative energy balance for the same system is

dqx
R/dx5aP~4Eb2J!. ~33!

Also, the one-dimensional form of Eq.~26! is

qx
R52~1/3aR!~dJ/dx!. ~34!

Now, inserting Eq.~32! into Eq. ~33! gives

J54Eb2u-/aP ~35!

and inserting this result into Eq.~34! yields

qx
R52~4/3aR!~dEb /dx!. ~36!

Note that Eq.~36!, usually valid for a thick gas, now applie
to a gas of any optical thickness because of the negle
conduction.

The combination of Eqs.~32! and~36! gives the govern-
ing equation,

d2Eb /dx213aRu-/450 ~37!

subject to the gas emissive power on the plate walls,

Eb~0!5Eb0
and Eb~L !5EbL

. ~38!

Because of neglected conduction, these emissive power
different than those imposed on the walls~the radiative
jump!. The solution of Eq.~37!, subject to boundary condi
tions ~38!, is

Eb~x!2Eb0
52~Eb0

2EbL
!~x/L !1~3/8!aRu-~xL2x2!

~39!

which gives, in terms of Eq.~36!,

qx
R5

4

3
S Eb0

2EbL

aRL
D 1

u-
2

~2x2L !. ~40!

However, Eqs.~39! and~40! need to be expressed in terms
the wall emissive powers rather than wall values of the
emissive power. To accomplish this, consider the radia
boundary conditions~see, e.g., Goody17 or Arpaci and
Troy18!,

Eb1
2Eb0

5S 1

e1
2

1

2Dqx
R~0!2

1

4aP

dqx
R~0!

dx
, ~41!

and

Eb2
2EbL

5S 1

e2
2

1

2Dqx
R~L !2

1

4aP

dqx
R~L !

dx
, ~42!

which may be rearranged in terms of Eq.~32! to give

Eb1
2Eb0

5S 1

e1
2

1

2Dqx
R~0!2

u-
4aP

~43!

and



E

e
,

er

o

us

ical

3097J. Appl. Phys., Vol. 87, No. 6, 15 March 2000 V. S. Arpaci and A. Esmaeeli
Eb2
2EbL

5S 1

e2
2

1

2Dqx
R~L !2

u-
4aP

. ~44!

The difference between Eqs.~43! and ~44! yields

Eb1
2Eb2

5~Eb0
2EbL

!1S 1

e1
2

1

2Dqx
R~0!

1S 1

e2
2

1

2Dqx
R~L !, ~45!

where, employing Eq.~40!,

qx
R~0!5

4

3
S Eb0

2EbL

aRL
D 2

u-L

2
~46!

and

qx
R~L !5

4

3
S Eb0

2EbL

aRL
D 1

u-L

2
. ~47!

Note that

2qx
R~0!1qx

R~L !5u-L, ~48!

as expected. Now, from Eqs.~45!, ~46!, and~47!, after some
manipulations,

Eb0
2EbL

5

~Eb1
2Eb2

!1
u-L

2 S 1

e1
2

1

e2
D

11
4h

3tM
S 1

e1
1

1

e2
21D , ~49!

tM5aML being the optical thickness. Then,qx
R , in terms of

the imposed wall emissive powers, obtained by inserting
~49! into Eq. ~40!, is

qx
R5

~Eb1
2Eb2

!1
u-L

2 S 1

e1
2

1

e2
D

3tM

4h
1

1

e1
1

1

e2
21

1
u-
2

~2x2L !. ~50!

Also, for x50,

qx
R~0!5

~Eb1
2Eb2

!1
u-L

2 S 1

e1
2

1

e2
D

3tM

4h
1

1

e1
1

1

e2
21

2
u-L

2
. ~51!

For u-50 andtM50, Eq. ~51! is reduced to the enclosur
radiation between two closely located parallel large plates
expected.

To expressEb of Eq. ~39! in terms of the wall emissive
powers, rearrange Eq.~43! as

Eb0
5Eb1

2S 1

e1
2

1

2Dqx
R~0!1

u-
4aP

. ~52!

Then, in terms of Eqs.~49! and ~52!,

Eb~x!2Eb1
52S 1

e1
2

1

2
1

3tMx

4hL Dqx
R~0!

1
u-L

4h S 1

tM
2

3tMx2

2L2 D , ~53!
q.

as

whereqx
R(0) is given by Eq.~51!.

To evaluate the radiative entropy production, consid
the one-dimensional thermal part of Eq.~19! in terms of the
radiative heat flux,

s-52
qx

R

T2 S dT

dxD
and replaceqx

R in the above equation in terms of Eq.~36!.
Thus,

s-5
4

3aRT2 S dEb

dx D S dT

dxD . ~54!

Next, substitute fordT/dx and dEb /dx in the above using
Eq. ~53! and noting thatEb5sT4 to get

s-5S 3L

16tsT5D S tM

hL D 2

~qx
R~0!1u-x!2. ~55!

This entropy production is now evaluated for the tw
special cases that follow.

A. Stagnant gas between two plates

In this case,u-50, and heat flux is constant@i.e.,
qx

R(0)5qx
R(L)5qx

R(x)#. Thus, Eq.~55! reduces to

s-5S 3L

16tsT5D S tM

hL D 2

@qx
R~0!#2, ~56!

or

4sT5Ls-5S 3t

4 D ~qx
R!2.

For this special case, Eq.~45! reduces to

Eb1
2Eb2

5~Eb0
2EbL

!1S 1

e1
1

1

e2
21Dqx

R ,

which in terms of Eqs.~46! or ~47!, gives

qx
R5

Eb1
2Eb2

3t/411/e111/e221
.

Substitution of the above relation in Eq.~56! results in

4sT5s-L/Eb1

2

~12Eb2
/Eb1

!2 5
3t/4

~3t/411/e111/e221!2 . ~57!

Figure 3 shows the radiative entropy production vers
optical thicknesst for the special cases ofe15e25e. As
expected, this production diminish fort50 andt→`, and it
goes through a maximum at an intermediate thickness,

t5
4

3 S 1

e1
1

1

e2
21D ,

which, for black surfaces, becomest54/3. An inspection of
Eq. ~57! reveals that

s-T5L5 f ~t,Eb1
,Eb2

,e1 ,e2!.

Then, for specified temperature, emissivities, gas opt
thickness, and geometry,
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s-T55Const.

which can also be seen directly from Eq.~57!.

B. Plasma between two plates

Let the gas be an electrically conducting fluid. In a fu
developed plasma flow~say, for example, the Hartman flow!,
the Joulean dissipation is spacewise distributed. Here,
for mathematical convenience, we assumeu- to be uniform.
For T15T25Tw (Eb1

5Eb2
5Ebw

) and e15e25ew , Eqs.
~39! and ~40! yield, in terms of Eqs.~45!, ~46!, ~48!, and
considering the fact that nowqx

R5(u-/2)(2x2L) and
qx

R(0)52u-L/2,

Eb~x!2Ebw5
u-L

2 F 1

ew
2

1

2
1

1

2htM
1

3tMx

4hL S 12
x

L D G .
~58!

Then, Eq.~55! gives in terms of Eq.~58!

s-
u-Tw

5

3tM

8h S u-L

2Ebw
D S 1

2
2

x

L D 2

H 11S u-L

2Ebw
D F 1

ew
2

1

2
1

1

2htM
1

3tMx

4hL S 12
x

L D G J 5/4.

~59!

Figure 4 shows~for h51, ew51, and u-L/2Ebw
51! the

distribution of the entropy production versus the optic
thickness for two locations. Optical behavior of the foreg
ing two cases is now generalized by an order of magnit
analysis.

V. DIMENSIONAL ARGUMENTS

Consider the thermal part of Eq.~19!,

s-5
1

T F1

T S k
]T

]xi
1

1

3aR

]J

]xi
D S ]T

]xi
D G . ~60!

Introduce an entropy production number,

FIG. 3. Entropy production vs optical thickness and emissivity in a stagn
gas between two plates.
ly

l
-
e

Ps5s-l 2/k, ~61!

l being a characteristic length, and a heat transfer numb

H5
~]J/]xi !/3aR

k~]T/]xi !
5

qi
R

qi
K . ~62!

In terms of these numbers, Eq.~60! becomes

Ps5~11H !
l 2

T2 S ]T

]xi
D S ]T

]xi
D . ~63!

Also, from Eq.~26!, on dimensional grounds,

qR;~Jw2J`!/3aRd, ~64!

whered is the thickness of thermal boundary layer andJw

andJ` are the wall and ambient values ofJ, respectively. To
relate J to temperature, consider the radiative constituti
given by Eq.~28!. Using Fourier transforms, for example
exp(ikjxj), kj being the wave number vector,

¹252k0
2, k0

25k1
21k2

21k3
2

or, in view of k0;d21, ¹2;2d2, and Eq.~28! yields

~d2213aM
2 !J;12aM

2 Eb . ~65!

Then, in terms of the optical thickness,

t;aMd, ~66!

J;S 12t2

113t2DEb , ~67!

which, together with Eq.~64!, leads to the radiative heat flux

qR;4h@t/~113t2!#~Ebw
2Eb`

!, ~68!

which is valid for any optical thickness but excludes a
boundary effect. Forh51, Fig. 5 shows the radiative hea
flux versus emission and absorption, which, respectively,
the measures for the hotness and thickness of the gas.

To include any wall effect in Eq.~68!, first consider the
boundary-affected thick gas and thin gas approximati
with negligible scattering. For the thick gas, from Arpaci a
Larsen19

nt
FIG. 4. Entropy production vs optical thickness and location in a plas
between two plates.
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qy
R5

24

3aR
~12rwE32 3

2E4!
]Eb

]y
, ~69!

whererw is the wall reflectivity andE3 andE4 are the usual
exponential integrals of order three and four. On boundar

qy
RUw5

24

3aR
S ew

2 D ]Eb

]y U
w

. ~70!

However, near a boundary, the Rosseland gas gives

qy
R52

4

3aR

]Eb

]y
, ~71!

and the net radiative source, obtained from the differe
between Eqs.~70! and ~71!, is

]qy
R

]y
5

4

3aR
S 12

ew

2 D ]Eb

]y
~72!

whose integration yields, on dimensional grounds,

qw
R5

4h

3t S 12
ew

2 D ~Ebw
2E`!, ~73!

whereew is the wall emissivity.
For the thin gas, Arpaci and Troy18 show

]qy
R/]y54aPF ~Eb2Eb`

!2
ew

2
~Ebw

2Eb`
!E2G , ~74!

whereE2 is the exponential integral of order two. On boun
aries,

]qy
R

]y
U

w

54aPS 12
ew

2 D ~Ebw
2Eb`

! ~75!

whose integration yields, on dimensional grounds,

qw
R;4htS 12

ew

2 D ~Ebw
2Eb`

!. ~76!

Thus, the radiative heat flux, including a hot wall as well
the emission and absorption effects, is found to be

qR;4hS 12
ew

2 D S t

113t2D ~Ebw
2Eb`

!. ~77!

FIG. 5. Radiative heat flux vs emission and absorption.
s,

e

s

Furthermore, introducing a dimensionless number,

Rw5
Emission

Conduction
;

Ebw
2Eb`

k~Tw2T`!/d
, ~78!

and Eq.~62! may be rearranged as

Hw5
qw

R

qw
K ;4hS 12

ew

2 D S t

113t2D Rw . ~79!

Finally, Eq. ~63! yields, in terms of Eq.~79!,

Ps;@~Tw2T`!/T#2~11Hw!, ~80!

or, explicitly,

Ps;S Tw2T`

T D 2F114hS 12
ew

2 D S t

113t2D RwG . ~81!

The smallest value of this production is on the hot bounda
and its radiative part becomes, after some rearrangemen

Ps

4h~12ew/2!Rw
;S 12

T`

Tw
D 2S t

113t2D . ~82!

For a proportionality constant of unity@chosen arbitrarily for
a graphical representation of Eq.~82! and ew51#, Fig. 6
shows the boundary production of radiative entropy ver
the optical thickness and the temperature ratio.

VI. CONCLUSIONS

The present study is based on the original idea sugg
ing a First Law in terms of entropy flux rather than the we
known classical approach expressing the Second Law
terms of heat flux. Accordingly, heat flux is expressed by
product of temperature and entropy flux. A change in h
flux is identified as a combination of thermal displaceme
and thermal deformation. Only thermal deformation dis
pates~irreversibly transforms! into internal energy and pro
duces entropy. Using the concept of thermal deformation,
well-known thermodynamic irreversibility across a therm
discontinuity is replaced by actual irreversibility across
continuous thermal distribution. These considerations al

FIG. 6. Radiative entropy production vs temperature difference and op
thickness.



e
om
de

,

-

,

3100 J. Appl. Phys., Vol. 87, No. 6, 15 March 2000 V. S. Arpaci and A. Esmaeeli
a transition from ideal concepts introduced in classical th
modynamics to actual concepts utilized in transport phen
ena. The entropy production resulting from the thermal
formation is illustrated in terms of a radiative example.
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