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The particle density of a simple model of the exosphere is obtained by solving eractly the collisionless
Boltzmann equation. The main point of the solution is that it is a discontinuous, multivalued function
of the constants of motion. Results, of course, agree with those of other methods based on Newtonian

mechanics.

I. INTRODUCTION

E consider the following simple model of the

planetary exosphere: Exterior to a sphere of
radius r, we have a gas so rarified that collisions
may be neglected. The only force acting on the
particles then is the gravitational force due to the
total mass M within r,. Within, the sphere collisions
are so frequent that particles emerging from r = r,
have a Maxwell-Boltzmann velocity distribution.
The problem is to determine the particle density
in the region » > r, subject to the condition that
there are no particles present which have not come
from within the sphere.

This problem has been treated by Opik and
Singer' and Brandt and Chamberlain.® The first
authors find particle densities by straightforward
kinetic-theory calculation of the numbers of particles
which reach a given point in space. The second
author starts from the collisionless Boltzmann (i.e.,
Liouville) equation. Since the latter is merely a
statement of Newton’s laws of motion, the two
approaches should agree. However, there seems to
be some confusion on this point.

In order to clarify the situation we construct a
simple explicit solution of the Boltzmann equation
subject to the given boundary conditions. From this

1 E. J. Opik and 8. F. Singer, Phys. Fluids 2, 653 (1959);
3, 486 (1960); 4, 221 (1961).

?J. C. Brandt and J. W. Chamberlain, Phys. Fluids 3,
485 (1960).

the particle density is trivially obtained by quad-
ratures.

II. CONSTRUCTION OF THE SOLUTION

The distribution function ¢(r, v) in the exosphere
is to satisfy the collisionless Boltzmann equation

<v-V, + n%-vv)lp(r, W) =0, W

where

F = —GMmr/r*. (2)

(Here, m is the mass of the gas molecules and r
is the radius vector from the center of the sphere.)
At r = r, we have the boundary condition that
the emerging distribution has the Maxwell form, i.e.,

¥(ro, v) = N(mB/2m)? exp (—3Bmv’)
for vr, >0 (3)
B = 1/kT).

Further we have the condition that all particles
exterior to the sphere shall have come from within it.

Since the problem has spherical symmetry we
know that

Y, v) = Y(r,v, w), 4
where
and u = (r-v)/r. (5)

r=lrl, v=1v],
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In terms of these coordinates, Eq. (1) becomes

[v 8 _GMp3d
“ or r 8y

+ (”3- ey
wr

»

Ja - Bﬂw, nw)=0.

The method of characteristics® shows that the
only content of Eq. (6) is that ¢ is to be an arbitrary
function of E and L°. Thus ¢ = y¢(&, L), where

E = imv’ — GMm/r )

and
L* = m%"r'(1 — 47, (8)

i.e., ¥ depends only on the constants of motion—
which are the enérgy and the angular momentum,

We still have to fit the boundary conditions. To do
" this we note there is no reason for ¢ to be a con-
tinuous or single-valued function of its arguments.
Consider, therefore, the funection

¥, v, w) = N(mg/2m)" exp [—BGMm/ro + E)]
-0 + GMm/r, — L*/2mr)[1 — 6E)8(—w]. (9)

Here

1 >0

0 z<0

The significance of the 8 functions is readily seen.
Consider first a particle at r, with energy E. We have

L/2mry = (E + GMm/r)(1 — 4. (11)

6(z) = (10

Hence,
L?/2mr; < (B -+ GMm/ry). (12)

Thus, for p > 0, the function of Eq. (9) does
reduce to that of Eq. (3). Further, the factor
8E + GMm/r, — L?/2mr;) guarantees that we
have no particles whose orbits do not intersect
the sphere of radius r,. The remaining factor
[1 — 6(EY8(—p)] arises from the requirement that
there be no particles incident from infinity. For
E < 0 the particle orbits do not reach to infinity
and the factor is 1. However, for those orbits which
reach to infinity, the factor 8(—g) guarantees them
to be outgoing.

The function of Eq. (9) thus satisfies all the
boundary conditions. It only remains to see whether
it satisfies the Boltzmann equation. Except for the
dependence on p this is trivial (since it is a function

3 See, e.g., A. G. Webster, Partial Differenticl Equation

of Mathematical Physics (G. E. Stechert and Company, Ine.,
New York, 1933), 2nd Ed.
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of the constants of motion). Thus, on inserting the
function of Eq. (9) into Eq. (6), we need only worry
about terms arising from differentiation of (—u).
Using the result

90(—u)/ou = —8(u), (13)

where § denotes the Dirac delta function, we obtain

(v~v, + %-vv)w

- N(é”f)g exp [—ﬁ(-@f—m 1 E)]o(E)

. 2
o(p 4 GMm _ .,L_)
Ta 2mry
v GMN.
(2~ ) - 0. (19

We note the identity

2
5(:) 6(E) a(E + @;4;"1 - 2;&)

S I S

But for r > r, the argument of the second step
function is negative (for E positive). Hence the
funetion of Eq. (15) is identically zero and the
Boltzmann equation is satisfied.

We conclude that Eg. (9) does indeed yield a
function satisfying all requirements.

III. PARTICLE DENSITY

The caleulation of the total position density in
the exosphere is now straightforward.

o0) = [ dv vz, v)
= 27 fl du fw v dv Ylr, v, u). (16)

The result is

2N 1
pr) = - exp a(l - 5)

o ‘Xg
{j; y* dy exp (—y*) + fu y* dy exp (—3°)
-1 - xz)*[ f dyy’
{az/(1+z))}

exp (—yz)(l - 17(_11%?)»

+ dy y° exp (=)

(az/{1+2)}}

(-mZ) ] o



DENSITY IN A SIMPLE MODEL OF THE EXOSPHERE

where
a = fGMm/r, T = rofr.

This agrees (up to constants) with the ‘ballistic
density”’ calculated by Opik and Singer' in the 1961
reference (p. 226, formula 31). The expression can
be considerably simplified and written in terms of
error functions,

s@ = () [[emra, a9

as

p(r) = 3N exp a(l — 1/7)
-{1 + &) — (1 — 29}

cexp [—az/(1 + 2)][1 + /(1 + 2)H)]
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+ (=)o — 2 - 1

1v. CONCLUSION

(19)

It has been shown, as might be expected, that
there is no difficulty in writing down the solution
of the collisionless Boltzmann equation for our
simple model of the exosphere. This method, while
completely equivalent to any other solution of the
problem based on Newtonian mechanics, is probably
the quickest and possibly most elegant approach.

Note added in proof. We have recently found that
a similar approach to this problem (with similar
results) has been taken by J. Herring and L. Kyle,
J. Geophys. Research 66, 1980 (1961).
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