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Projection operator techniques have been applied to study the diffusion of a test particle in a
classical many-particle system such as a liquid or a plasma. Particular attention has been directed
towards the calculation ot the Van Hove self-correlation function G,(r, t). This calculation proceeds
through the development of exact descriptions of Gi(r, t), both in configuration space (analogous to
generalized hydrodynamic equations) and phase space (kinetic equations) which are then suitably
approximated and solved using either perturbation or modeling methods. These results compare
quite favorably with molecular dynamics computer experiments.

1. INTRODUCTION

Perhaps one of the most intensively studied
phenomena in nonequilibrium statistical mechanies
has been the motion of a test particle through a
many-body system. When the mass of the test
particle is much larger than the masses of the sur-
rounding particles, then this problem can be identi-
fied as just that of Brownian motion. Of comparable
interest, however, is the case in which the test
particle is identical to the particles in the surround-
ing system. This latter problem is of particular
concern to the theory of dense fluidlike systems
such as liquids and plasmas.

Of principal concern in both of these problems
is the calculation of time correlation functions in-
volving the dynamical variables characterizing the
test particle, since these quantities can frequently
be related to direct experimental investigations.
Two such correlation functions are particularly
significant in this regard. The momentum auto-
correlation funetion (p,(0)-p,(¢)) plays the funda-
mental role in the development of the transport
equation’ characterizing the test particle motion
(e.g., the Langevin or diffusion equations) and can
be directly related to the corresponding transport
parameters (e.g., the friction constant or the co-
efficient of self-diffusion). Of ecomparable significance
is the Van Hove self-correlation function G,(r, t)
which characterizes correlations between fluctuations
in the test particle density and is directly related to
the incoherent scattering cross section for thermal
neutrons from the system.’

The calculation of both of these quantities has

received considerable attention in the past.’* In
recent years an effort has been made to calculate
such correlation functions directly by utilizing non-
equilibrium statistical mechanics. By and large,
all such approaches can be classified into one of
two general schemes: either a perturbation solution
of the Liouville equation, or a semiphenomeno-
logical modeling approach. In the former approach,
one utilizes the powerful techniques of modern
perturbation theory® to directly attack the many-
body problem involved in self-diffusion.®”® The
latter approach generally utilizes one of the recent
formalisms of nonequilibrium statistical mechanics,
e.g., the Kubo’~Kadanoff-Martin'® formalism or
the Zwanzig''~Mori'? projection operator formalism,
to recast the Liouville equation into a form which
depends on a quantity which can then be “guessed”’
or modeled. These approaches'™*® have been suec-
cessful in describing self-motions in liquids, par-
ticularly, when compared with molecular dynamics
computer experiments.'”

This work will attempt to develop some new
ideas concerning the topie of self-diffusion in liquids
by employing the projection operator methods of
Zwanzig and Mori. While it is readily admitted
that the application of these methods to the problem
of test particle motions in many-body systems is
not new, it is felt that the full potential of these
methods has yet to be exploited. In particular, the
connection between a hydrodynamic-like description
of the test particle motion (involving only dynamic
variables defined in configuration space) and a
kinetic equation approach will be developed and
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applied to the calculation of G,(r, ) [or, more par-
ticularly, its Fourier transform S,(k, w)].

First, however, let us review the projection
operator formalism developed by Zwanzig and
Mori for the study of irreversible processes. As one
of several specific illustrations of projection methods,
Zwanzig'" derived an exact integrodifferential equa-
tion for the autocorrelation function of a dynamical
variable. This approach was subsequently general-
ized and extended by Mori,”* who utilized pro-
jection operators similar to those of Zwanzig to
derive an exact ‘“‘generalized Langevin equation”
describing the time evolution of an arbitrary veetor
a(f) whose components a;(f) are dynamical vari-
ables of the phase (x', --- , x", p', ---, p") of a
many-body system:

a—iQ-all) + ‘/: dro(r)-a(t — 7) = £(¢). (1)

Here, the state vector, a(t), is defined such that it
has no time invariant part, i.e.,

a(t) = AQ) — (A®)), @)

where (- - - ) denotes an average over the equilibrium
canonical ensemble, p = exp (—BH)/Z. Notice
that Eq. (1) can be regarded as a generalized form
of the Langevin equation familiar from the sto-
chastic theory of Brownian motion.> However,
unlike the Langevin equation, Eq. (1) is an exact
equation for a(f), and hence is equivalent to the
equations of motion for the many-body system.

In the generalized Langevin equation (1), the
“frequency matrix” Q is defined by

®3)

where a denotes a(0); the “damping matrix”’ ¢ is
given by

i1Q = (aa*)-(aa*)”},

o(r) = {M(0))-(aa*)™; 4)

and the “random foree”” f(r) is given by
f(r) = exp [ir(1 — P)L}i(1 — P)La. (5)

Here, a* is the row vector adjoint to a, P is a pro-
jection operator defined by its action on an arbi-
trary dynamical variable vector G as

PG = (Ga*)-(aa*) '-a, (6)

and L is the Liouville operator, L = 4{H, -}. The
matrix {(aa*)"" is the inverse of the static correlation
matrix, {aa*) = [(a@.a%)]. ‘

The generalized Langevin equation (1) can be
used either to study correlations among the vari-
ables in the set a, or to obtain equations of motion
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for the ensemble averaged components of a. In the
first instance, one proceeds by noting that'?

(f@a*) =0, t2=0. @

Hence by multiplying (1) by a*-(aa*)™' from the
right, and averaging, one can derive an equation
for the correlation matrix

R(t) = (a(t)a*)- (aa*)™’

which takes the form

®)

R — iQ-R(t) + fo dro(n)RE—17 =0. (9

If one wishes, instead, to obtain an equation of
motion for the ensemble average of a, then Eq. (1)
can be averaged over a constrained equilibrium
ensemble'?

p(0) = exp (—BH — a*-b)/Z, (10
to find an equation for a(z) = (a(t)),c:
i — iQ-a(l) + f dro()-at — 7 = 1(5). (1)

In the linear approximation of small departures
from equilibrium, f(f) = 0; but in the more general
case, f({) will introduce nonlinear terms in a into
the equation.

Since Eq. (9) and (11) are still exact, and hence
only formal identities with the equations of motion,
one must eventually resort to approximation in
order to obtain useful results. The frequency matrix
Q can usually be calculated explicitly in terms of
static quantities. However, the damping matrix ¢
requires the study of the modified propagator
exp [¢¢(1 — P)L] which, in turn, would involve
solving the many-body problem directly. The at-
tractive feature of equations such as (9) which are
generated by projection operator techniques is that
the “damping” or ‘“memory”’ terms are quite sus-
ceptible to approximation or modeling. That is,
the generalized Langevin equation is of value prim-
arily because it re-expresses the quantities of interest
(e.g., time correlation functions) in forms involv-
ing damping terms which can then be easily ap-
proximated.

In Mori’s formalism'? the choice of the set of
dynamical variables a was essentially arbitrary.
Different choices of a will lead to different, but
exact, descriptions of the system under considera-
tion. However, a given approximation of the damp-
ing term will yield results which may vary con-
siderably, depending upon the choice one makes for
a. Usually by increasing the number of components
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in the set a, one can improve the description of the
system within the framework of a given approxi-
mation.

In the past the generalized Langevin equation
has been applied to study the momentum auto-

correlation function’*''® by choosing a = p,, and
obtaining the equation
d
7 PO -p:())
[ 4 Ei0zexp 0.~ PILIF,O)
0 (®:(0)-p:(0))
(PO pt — 7)) =0 (12)

and then either modeling the ‘‘damping kernel”
¢(7) or investigating its properties using pertur-
bation methods.

We shall turn our attention instead to the calcu-
lation of the Van Hove self-correlation function

Q) = = Zj d5'(5[r + x%(0) — 1']
S8t — x*(9))), (13)

or, if we Fourier transform in configuration space,

Gk, §) = zlv 3 (exp (— k) exp [e-x())]). (14)

In analogy with Eq. (12), we might choose a =
exp (tk-x*). Such a “one-component”’ desecription
turns out to be inadequate within the context of the
particular approximations we will utilize in com-
puting the damping term ¢(r). Hence, an alter-
native choice of a is necessitated.

II. THE CONFIGURATION SPACE OR
¢“HYDRODYNAMIC” DESCRIPTION

Using symmetry, we can rewrite (14) as
G,(k, t) = (exp [tk-x*()] exp (—7k:x%)). (15)

Hence, it is obvious that one of our set of dynamical
variables a will be

o = exp (ik-x%). (16)
Additional eandidates would be
J =p = (Zk-p*/m) exp (sk-x%), 17
= J = [(k-F"/m)
+ (tk-p®/m)?] exp (¢k-x"). (18)
However, rather than choosing (o, J, 7) as the

appropriate set of dynamical variables, we shall
instead define a linear combination of p and = as

o =7 — {(mp*)/{pp*)p- (19)
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The vector a in Mori’s formalism will then be taken
to be

(20)

[We will accept it as understood that the invariant
parts of these variables have been subtracted out.
That is, pi, J4, and m, represent fluctuations, e.g.,
o = p — {p). For k # 0, p, = p, etc.] Notice that
the components of this vector are “orthogonal” in
the sense that

(pud %) = (pro%) = (Juo%) = 0.

Using these relations and the symmetry properties

a = col [p, Js, o]

(1)

of the set a, we can easily calculate the frequency
matrix
iQ = (aa*)-(aa*)”’
0 1 0
CIE)
—— 0 1, 22
oD 22
<¢7 x0'%)
0 RIAL) 0
where the static correlations can be calculated as
(prp¥) = 1
(J W = k*/mg, (23)
_E (') ]
9% = g [ sm 1 2 mp
where
W =nfdrS®. e

In a similar fashion, one can calculate the damping
matrix ¢o(r) to be

00 0]
o(r) = f(Nf*)-(@a*)" =10 0 0|, (25
0 0 ofn)
where
oe(r) = (1 — P)é% exp [ir(1 — P)L]
‘(1 — P)ép)/{or?). (26)

Hence, the generalized Langevin equation (1) be-
comes the set of equations

(27)

Jut) + (& /mB)pu(t) = au(d),
() + [{___2 + 2 _:IJk(t)
+ f dr (Dot — 7) = ().
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We can now take the correlation of this set with p*
to obtain an expression for

Gk, 1) = (pu(t)p%).

Actually, we are more directly interested in the
Fourier transform of G,(k, ) in time, S,(k, w), de-
fined in terms of the Laplace transform of G,(k, t) by

S,(k, w)

(28)

= }r Re [Iim dt exp (—iwt) exp (— )G, (k, ;)].
e—nt Jo

(29)

Hence, if we multiply the set (27) by p%, then en-

semble average, and take the Laplace transform of.

the resultant set in time, we can solve in a straight-
forward manner for

1k . K
S,k, w) = - W Re {[z(w — mﬁw)
(V°V)/3m 2k*/mB ]}
tw + @x(tw) + 1w + @ (1) ! (30)
where $,(s) is the Laplace transform of the damping
term ¢, (7).

It should be noted that (30) is still an exact ex-
pression for S,(k, »). All of the complexity of the
many-body problem is merely buried in the calcu-
lation of @,(s). Hence, we must provide some pre-
seription by which we can approximately calculate
#1(s). Of course, one could attempt a direct pertur-
bation calculation of the damping term. This ap-
proach will be deferred until the next section, how-
ever. We will instead introduce a “Markovian”
description'’ of the system by replacing &.(¢w) by its
zero frequency limit

+

ay(k) = lim ¢,(iw). (31)

w—0
But even the direct calculation of this zero frequency
form is a formidable problem. We will bypass this
problem by attempting to guess the relevant be-
havior of ay(k) as a function of k.
To this end, return to the exact expression for
S.(k, w) and evaluate it for w = 0O:

[ +200)

mgB
1rk2a H (k)

[Again, it must be stressed that this is an exact
relation. Our principal approximation is made only
when we neglect the frequency dependence of
#1(tw) in the calculation of S,(k, w).] We will now
utilize our knowledge of S,(k, 0) to infer the form
of ay(k). In particular, we know that as k¥ — 0,
S, (k, 0) reduces to the usual diffusion result

8.k, 0) =

32)
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lim [rk’S,(k, 0)] = D;",

k—0

where D, is the coefficient of self-diffusion. Hence,
ay(k) must behave for small % in such a manner that

ag(k) ~ 3B(V*VYD, as k—0. (34

For large &, S,(k, 0) must approach the ideal gas
behavior

(33)

8. (k, 0) ~ (mB/2xk?)""* (35)
which, in turn, implies
ay(k) ~ (8/7mB)"’k as k— w. (36)

Furthermore, az(k) must be an even function of k
(since we have a homogeneous system in which
quantities can only depend upon |k|). We shall
adopt the simplest functional form of az(k) con-
sistent with these requirements:

an(k) = [(DB(V*V)/3)" + (8K*/=mB))"*.  (37)

Recall the approximations we have introduced into
the caleulation of S,(k, w):

(1) A Markovian approximation of the damping
term ¢(7) in the three-component a = (p,, J,, o)
description.

(ii) A modeled description of the intermediate k
behavior of ay(k). Note further that there are no
“free” or adjustable parameters in this model.

We have employed this description [i.e., Egs. (30),
(31), and (37)] to calculate S,(k, w) for liquid argon
at T = 85.5°K, mn = 1407 g/em®, D, = 1.88 X
107° ecm?/sec, and (V°V)/3m = 45 X 10** sec™?,
and compared the results of this calculation with
the molecular dynamics calculation of Nijboer and
Rahman'” in Figs. 1, 2, and 3. It is evident that the

1.5
k=247
g— 10 AN V/Hydrodynamk
"8 \—Hinetic
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*
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1 |
o] | 20

0
w/l(zDs

Fie. 1. #D;*8.(k, ) vs w/k*D, for k = 2.0 A~L The
dashed curve represents the three-component hydrodynamic
description, the solid curve being the modeled kinetic equation
results, while the dots represent the molecular dynamics
caleulations of Nijboer and Rahman.!”
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the molecular dynamics results.

Fig. 3

three-component description (p:, Ji, o+) is certainly
adequate to yield agreement with the molecular
dynamics calculations, and hence will probably
suffice for the calculation of incoherent neutron
scattering cross sections. More refined configuration
space descriptions can be easily achieved by extend-
ing the set a.

IOI. THE PHASE SPACE OR ¢“KINETIC EQUATION”
DESCRIPTION

An alternative approach to the calculation of
G,(r, ©) is to develop a kinetic equation for the
correlation function

Guk,p,p'. ) = % Z; exp [ik-x*(?)] é[p — p*(V]
-exp (—ik-x%) §fp’ — p*])  (38)
and then to note
Gk )= [ &p [ @ gl p . (30
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Such a kinetic approach has been pioneered in the
work of Nelkin ef al."®'* in which an approximate
kinetic equation for G,(k, p, p’, t) was proposed and
solved to provide information about G,(r, t). More
recently, several workers” > have developed exact
(but formal) kinetie equations for phase space cor-
relation funections such as (38) which could then
be used to generate approximate descriptions more
amenable to investigation. In this section, we will
employ projection operators to achieve such a phase
space description.

It is straightforward to apply the Mori formalism
to the development of kinetic equations® by choos-
ing a to be the “vector’” whose “components”’ a; —
a(p) are indexed by a continuous parameter p and
defined by

a(p) = exp (tk-x") 6(p — p") — M(p) 6(k).  (40)
If we note that
Go(k, p, P, &) = (a(p, )a*(p))

+ M{P)M () sk),  (41)

then it is apparent that our objective is to develop
a kinetic equation for the correlation function

Ik, p, p', ©) = {alp, H)a*(p")).

The extension of Mori’s generalized Langevin equa-
tion (1) to vectors with continuous parameter
dependence is

(42)

Wi [ e ow, Do, 1

+ [Car [ @ o 0, e, 0 — 1) = f(o, 0).
f,, / (43)

The appropriate projection operator becomes
Pew = [ @ [ &p @) @' p)ak"),
(44)

where ¢ '(p’, p’/) is the inverse of the static cor-
relation function defined by

¢, p") = (a(p)a*(@’)) = M(p) 6(p — p')

— M(p)M (') 5k). (45)
By its definition, ¢~ '(p’, p’*) satisfies
[ & o@. 006760 9 = 360 — 0. (49)

But substituting the explicit form (46) into (45),
we arrive at an inhomogeneous integral equation
for ™' (p, p")
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M(p)¢ (0, p’") — 3(k)M(p)

[ ev uens @, v = 00 - vy @)
which yields, as its solution,
¢, p") = M@ 8 — p") + (k). (48)
To evaluate the frequency kernel
i20,0) = [ dp @ 0" p),  49)
we note
a(p) = (&k-p/m)a(p) + o(p), (50)
where we define
o) = o (kx)F 2 a ~ 9. 6D

Hence,

(d(p)a*(p"")) = (tk-p/m)a(p)a*(p’"))

+ @[ s 0 = 9 8" »)

- ) o0

af)a 5(p — p“>>]- (52)

But the average force on the test particle, (F*),
vanishes for an equilibrium system. Hence,

i, 0) = =2 [ 2y a@ar )6 0", p)
(53)
kp ,
==, 8@ —p).
Finally, we can simplify the damping kernel
oo, ', 1) = [ @i, A0, D)
(54)
= [M@")7 (@, Df*@))
+ 30(fe. 7 [ av 1w )
But if we note
@) = (L — Pp) = (1 — Palp) = o(p) (55)
and
[ @ oy = 0, (56)

then
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oD, 1/, 1) = [M ()] (c*(p') exp [it(1 — P)L]o(p)).
(57)

Summarizing, then, the generalized Langevin
equation for a(p, {) can be written as

da  ikep

+ f dr f dp’ ¢ulp, o', Da@’, t — 7)

= exp [¢¢(1 — P)L]o(p). (58)

Hence, by multiplying by oa*(p’’) and performing
the ensemble average, noting {f(p, Ha*(p’)) = 0
we find an exact kinetic equation for the correlation
function I'(%, p, p”, t)

T <¢kep

- =¥ 2
at m P(kY p’ p ¥ t)

t
+ [ ar [ a9 00,0
(1]

Tk, p’,p"',t — 7 = 0. (59)
It should be noted that a similar, exact kinetic
equation for T'(k, p, p”/, t) has been obtained using
a somewhat different approach by Lebowitz, Percus,
and Sykes.”” However, the projection operator
formalism we have utilized appears to yield a some-
what more explicit form (57) for the “damping”
or memory kernel ¢.(p, p’, 7).

Again, we have merely succeeded in disguising
the complexities of the many-body problem by
deferring them to the calculation of the damping
kernel ¢.(p, p’, 7). Just as before, there are essentially
two approaches one can take at this point: either
a direct perturbative calculation of ¢.(p, p’, 7), or
as in the hydrodynamic description, an educated
guess at the form of ¢,(p, p’, 7).

To demonstrate the perturbation approach, we
will ealculate the form of the kinetic equation in the
weak coupling limit; that is, we will caleulate

o.(p, p’, 7) only to lowest order in the interaction
strength X = O(V) = O(F). We first note that

(e*(p') exp [ir(1 — P)L]o(p))

= (a*(p") exp (irLo)o(p)) + O(NY), (60)
where
S
Ly = —i ; m.axﬂ- (61)

Hence, we can calculate
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na(’, ¢ — 7)

f dap’ ‘pk(pv p,,

= f &p' %—)_T)aa M(p’)-(F* exp (irLo))F*)

p
7k i)
-exp;<—%>-5 & — p)

2
+ £ pat, 1 -1 +009),

v 8
Ep, ) = ,3<F°‘F“ﬁ<x" - %+ .’;;T _ anI>>
XD (_ik;:1'>. ©3)

Hence to O(\%), the kinetic equation (59) takes the
form

14 9
~5 5"-::(1% T)°(5

where

aT
at

~EP g p,p7, 9

_ L9 NEa ﬁ)
Bfo dr ap 2.p, 7 <6p+ m P

Tk, p,p"",t — 1) =0. (64

Notice that if we take the Markovian limit"!
A—0,f{— o, x — o such that A\’ and A\’x remain
finite, then we find

or _i&-p ,,
Y, . Lk, p, P, 1)
10
- 55‘ &p)- ( ﬁp>1‘(k, p,p"”, ) =0, (65)
where ‘
© 8
(p =28 fo dT<F“F“5<x“ — %+ % — _p_m1>>

(66)

But Eq. (65) is just the usual linear Fokker-Planck
equation for a test particle,’”” with £(p) appearing
as a momentum-dependent friction tensor. This
weak-coupling result, while perhaps not too surpris-
ing, does serve as a verification of the more general
equation (59).

A similar perturbative calculation of ¢,(p, p’, 7)
can be performed using density » as the expansion
parameter. Similar calculations performed by Bixon
and Zwanzig”' and Van Leeuwen and Yip™ suggest
that one might expect such a scheme to yield the
linear test-particle Boltzmann equation as the
analog of Eq. (65).
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The above perturbative procedures for approxi-
mating ¢.(p, p’, 7) yield kinetic equations which,
while being very suggestive in appearance, are in
fact rather difficult to solve. To avoid these com-
plexities, we will now turn to a modeled calculation
of the damping kernel. In particular, we will assume
that the time behavior of ¢.(p, p’, 7) is exponential
such that

(Pk(p: p'7 T) = ‘Pk(P; P': 0) exp [_aK(k)T]; (67)
where ax(k) is a k-dependent relaxation constant
which will be specified momentarily. Such a “single-
relaxation time’”’ approximation has yielded a re-
markably good agreement with molecular dynamics
calculations, both for the momentum autocorrela-
tion funetion™ ™ and for current—current correla-
lations.”* Of course, a more general time dependence
could have been taken in the modeling (67) of
e, P, 7). Lebowitz, Percus, and Sykes™ have
developed and solved the kinetic equation (59)
for a slightly more general model ¢,(p, p’, 7) =
o:(p, 7', 0)g(r). However by choosing the particular
time dependence (67), we will be able to evaluate
ax(k) and hence obtain explicit results for G,(r, 7).

The calculation of ¢.(p, p’, 0) is straightforward

(e(@)o*(@))

9 aron &

§olc(pr P’y 0) = (68)

= (F°F%): 8p — 1)
which yields
fd3p’ ¢@, p’, OT(k, p', p"', ¢ — 7)

_(¥*V)

9 8 B, "oy
33 + p:ll‘(k,p,p,t 7).

[55°6p m 3p 69)

Hence our modeled kinetic equation becomes (in
Laplace transformed form)

. 15_'_12)“ ’?
<8 i 'k, p,p"”,9)

_(V?V)/38 {a ) g d } "
s + ax(k) \9p 9p + ap Tk, p. 2", 9
= I'(k, p, p”’, 0). (70)

But this equation is essentially just the usual
Fokker—Planck equation of Brownian motion, with a
frequency and wavelength dependent friction coef-
ficient. As such, it can readily be solved®** (e.g.,
by Fourier transforms in velocity), and the solu-
tion integrated to obtain (in the notation of Ref. 22)
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& P __,iﬂ.g..(ﬁ_)_ 2 2y— (34«2
G, (k,s) = ¥ smBg) {1 + exp (k) () :
“/"‘ du exp (__u)u(nx’)} , (71)
where
_(V*V)/3m _ A
O T a® s ta®m
_ S -k

T T
We can then compute

8.k, ) = }r Re {lim G.(k, ). (74)

At this point we can determine the relaxation
parameter ax(k) by comparing the known behavior
of S,(k, 0) at small and large k& with the form
obtained from (71)

S.(k, 0) = c$§>€§>

.|:1 + exp (ko) (x5) " fow du exp (—u)u‘"’:] , (75)

where
i= (Gl @
The small &k limit (33) demands
(AmB/a)[1 + O(«;)] — D a7
which implies
ag(k) — (mBD,)A as k — 0. (78)

To study the large k limit, first note that

1(¢, 2)

exp () ()~ Y f du exp (—uwyu***"
0

1/2
~ =)
T 12 9,2 + 2 _:—3 (_1)
+ (32) K +0 A

Hence it is apparent that if we choose (k) such
that

(79)

ax(k) — O as
then from (71) and (74)

1/2 2
steo~ () - G3)+ ]

as ko =,

k— e, (80)

(81)

which is the proper ideal gas behavior.
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Consistent with requirements (78) and (80),
we shall choose ag(k) to increase quadratically
in k as

ax(k) = (mBD,)All + k*/mBA]. (32)

When inserted into (75), such a choice yields
rather remarkable agreement with molecular dy-
namics data (see Fig. 4) for S,(k, 0).

We have again computed S,(k, w) for argon at
T = 85.5°K, mn = 1.407 g/em® using the modeled
kinetic description (71) with (82) and compared
these results in Figs. 1, 2, and 3 with the molecular
dynamics caleulations as well as with the earlier
hydrodynamic description (30). As one might
expect, the kinetic description is far superior to the
hydrodynamie results for large k[k > 3A™']. Neither
description accounts for the dip in w,,.(k) vs k
(Fig. 3) in the vicinity of 2A7!, which suggests
that this behavior is due to collective effects [i.e.,
dependent explicitly upon the peak in the static
structure factor S(k) at this value of k] which are
unaccounted for in our theory.

IV. CONCLUDING REMARKS

This work has attempted to develop expressions
for the space-time Fourier transform 8S,(k, w) of
the Van Hove self-correlation function G,(r, f).
In particular, the projection operator formalism
of Zwanzig and Mori has been used to develop
exact descriptions for S,(k, ), based either upon a
generalized hydrodynamie or kinetic equation
description.  Although  standard perturbative
methods can be used to study these descriptions,
a more useful approach involves guessing or modeling
the damping or memory terms in these equations.
This latter scheme lends itself particularly well
to the actual caleulation of S,(k, ) and may prove
of use in predicting and interpolating the results
of incoherent neutron scattering experiments. When

2
7K Dg Sk 0)

Fie. 4. #Dk2S.(k, 0) vs k (notation convention similar to
that of the first three figures).
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combined with earlier work®'** on the coherent

scattering law S(k, w), such schemes allow the
calculation of the total differential scattering cross
section for thermal neutrons from liquids (in this
regard, refer to the very comprehensive work of
Chung and Yip®).

It is hoped that these results once again demon-
strate the power and versatility of projection
operator methods. The Zwanzig-Mori formalism
allows one to develop rather sophisticated expres-
sions for quantities characterizing the dynamics
of many-body systems with a minimum of effort
and approximation; and while the appropriateness
of such expressions for facilitating perturbation
schemes is open to question,” their usefulness for
obtaining modeled results has been amply demon-
strated.
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