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Bounds are derived for the space–time averaged temperature^T& of a fluid layer in
the Boussinesq approximation between fixed-temperature horizontal boundaries
subject to uniform heatingH throughout the volume. The analysis is carried out for
both finite and infinite Prandtl number fluids. While the average temperature^T&
;H in the purely conductive state, convection enhances the heat transport beyond
static conduction reducing the temperature. Lower bounds to the average tempera-
ture of the layer scale with the magnitude of the imposed heat flux, with one scaling
exponent for the arbitrary Prandtl number case and another for the infinite Prandtl
number model. Specifically, it is proven here that at large heating rates where
convection is important,̂ T&>c1H2/3 for finite Prandtl number fluids and̂T&
>c2H5/7 for infinite Prandtl number fluids. Explicit prefactorsc1 and c2 for the
scaling bounds are computed as well. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1760845#

I. INTRODUCTION

Turbulent transport of mass, momentum, and heat remains one of the most important prob-
lems for modern theoretical physics and applied mathematics. For incompressible fluid flows,
fundamental models such as the Navier–Stokes and related equations are believed to quantita-
tively describe these phenomena. However the complexity of the dynamics in these systems of
nonlinear partial differential equations prohibits exact solutions, and the wide range of length and
time scales in turbulent solutions makes direct numerical simulation extremely challenging and
expensive. One mathematical approach to the analysis of these systems is to derive rigorous
bounds on physically relevant quantities.12,3,8 This approach is of more than just mathematical
interest because it turns out that in some cases the bounds tend to capture aspects of the turbulent
scaling of the quantities with respect to the control parameters~e.g., the Reynolds or Rayleigh
number!. In the case of Rayleigh–Be´nard convection, for example, where a fluid layer between
horizontal plates is heated from below, the enhancement of the heat flux due to convection, usually
measured by a Nusselt number, can be bounded from above in terms of the temperature drop
across the layer11,1,9,6,10,14expressed in terms of the Rayleigh number.

In this paper we consider the problem of convective heat transport in a fluid layer between
fixed-temperature horizontal boundaries with uniform heating throughout the volume. This prob-
lem is motivated by geophysical applications;7,17 the Earth’s plate tectonics is a result of convec-
tion in the mantle which is predominantly driven by uniform heating due to radioactive decay of
elements distributed throughout the mantle. Mantle dynamics is generally modeled as the flow of
a high ~infinite! Prandtl number fluid with strongly temperature dependent viscosity. The models
we focus on here are simpler, with constant material parameters. The boundary conditions for
mantle convection are complicated—especially on ‘‘top’’—but we restrict the investigation here to
rigid no-slip isothermal boundaries in order to make progress. In principle, if all the relevant
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materical and boundary effects could be included, the kinds of bounds derived here could be used
to put limits on the thermal history of the Earth. A distinct engineering application of this kind of
analysis is to the problem of nuclear reactor meltdown.4

The rest of this paper is organized as follows: in the next section we present the details of the
models we will analyze. In a brief Sec. III we apply the ‘‘background’’ method9 to the arbitrary
Prandtl number problem to derive a scaling lower bound on the space–time averaged temperature
of the layer along with an explicit prefactor. In the following Sec. IV we apply a multiple
boundary layer asymptotic theory1 to sharpen the estimate, increasing the prefactor in the lower
bound by a factor of 4. Section V is concerned with the infinite Prandtl number problem, and the
background method utilizing a recently derived inequality10 results in a scaling lower bound with
a smaller exponent. In the concluding Sec. VI we summarize our results in the context of direct
numerical simulations, and discuss some possible areas for further development of this approach.

II. GOVERNING EQUATIONS

The fluid layer is confined between two parallel plates of horizontal extentLx andLy sepa-
rated by vertical (z) distanced. The no-slip upper and lower plates are held at fixed temperatures
T0 andT1 , respectively; the temperature differenceDT5T02T1 which will eventually be taken
to be zero for the work presented here. A uniform volumetric heat fluxH ~with units power/
volume! is pumped into the layer. The governing equations for the velocity fieldu, the pressurep
and the temperatureT in the standard Boussinesq approximation are

]u

]t
1u•¹u52¹p1n¹2u1 k̂gaT, ~1a!

]T

]t
1u•¹T5k¹2T1g, ~1b!

¹•u50, ~1c!

with the boundary conditions

uuz50,d50, Tuz505T0 , Tuz5d5T1 , ~1d!

wheren is the viscosity,g is the acceleration of gravity along thez axis ~in the 2 k̂ direction!, a
is the thermal expansion coefficient,k is the thermal diffusion coefficient andg5 H/rc, wherer
is the density andc is the specific heat capacity of the fluid. We impose periodic boundary
conditions in the horizontal directions with periodsLx andLy .

Usingd2/k as the unit of time,d as the unit of length, andgd2/k as the unit of temperature,
the governing equations are put into the nondimensional form

Pr21S ]u

]t
1u•¹uD1¹p5¹2u1RTk̂, ~2a!

]T

]t
1u•¹T5¹2T11, ~2b!

where Pr5 n/k is the Prandtl number andR5 gad5g/k2n is the heat Rayleigh number.16 We
considerR, proportional to the internal heating rate, to be the control parameter. The boundary
conditions in nondimensional form are

uuz50,150, Tuz505T̃, Tuz5150, ~2c!
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whereT̃5 (k/gd2) DT; this shows thatRT̃ is the usual Rayleigh number Ra5 gaDTd3/nk for
bottom heating.

In the following discussion, we only consider the special case where both boundaries are held
at the same temperature, i.e.,DT50 or T̃50. With this boundary condition, the static conduction
solution has a quadratic profile:

T5 1
2 z~12z!, ~3!

which becomes unstable for sufficiently largeR.19 Once convection sets in, the flow tends to lower
the average temperature of the fluid, so the estimate of interest is the minimum possible bulk
average temperature for a given valueR. We define the space–time average of a functionf (x,t)
as

^ f &5 lim
t→`

1

t E0

t

ds
d2

LxLy
E dxdydz f~x,s!. ~4!

In the following discussion, we apply the background and multiple boundary layer methods to
derive lower bounds for the bulk average~nondimensional! temperature with respect toR in the
form ^T&>cRa asR→`.

III. BACKGROUND METHOD FOR FINITE Pr

To apply the background method, first we decompose the temperature fieldT(x,y,z,t) into a
time-independent background profilet(z) and a fluctuating partu(x,y,z,t):

T~x,y,z,t !5t~z!1u~x,y,z,t !. ~5!

The boundary conditions ofT(x,y,z,t) are contained int(z):

t~0!5t~1!50 ~6!

and the fluctuating partu(x,y,z,t) satisfies homogeneous boundary conditions

u~x,y,0,t !5u~x,y,1,t !50. ~7!

The velocity fieldu is divergence-free with no-slip boundary conditions:

¹•u50, uuz50,150. ~8!

With this decomposition the governing Eqs.~2! become

Pr21S ]u

]t
1u•¹uD1¹p5¹2u1t k̂1Ru k̂, ~9a!

]u

]t
1u•¹u5¹2u1t9112wt8. ~9b!

Then taking the space–time average ofu•(9a) yields

^u¹uu2&5R^wu&, ~10!

and averagingu•(9b) andt•(9b) yield, respectively,

^wut8&52^u¹uu2&2^uzt8&1^u&, ~11!

2^wut8&52^uzt8&1^t&2^t82&. ~12!
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The difference of the above two identities is

~^u&2^t&!5^u¹uu2&12^wut8&2^t82&. ~13!

Since^T&5^t&1^u&, we have

^T&5^u¹uu2&12^wut8&12^t&2^t82&. ~14!

The identity~10! can also be written as

05
a

R
^u¹uu2&2a^wu&, ~15!

wherea is a positive number~a ‘‘balance parameter’’! to be adjusted to yield the best prefactor.13

Adding Eq.~15! to Eq. ~14! enables us to express the average temperature as follows:

^T&52^t&2^t82&1H, ~16!

where

H5^u¹uu2&1^~2t82a!wu&1
a

R
^u¹uu2&. ~17!

If the functionalH is positive semidefinite among the fieldsu andu satisfying

¹•u50, uuz50,150, uuz50,150,

then we have a lower bound for^T&:

^T&>2^t&2^t82&. ~18!

So the goal is to choose a background profilet satisfying the boundary conditions~6! guaranteeing
that H is positive semidefinite while making the lower bound in~18! as large as possible.

If we could take a linear background profile with the slopea/2.0, then 2t82a would vanish
and thus the functionalH would clearly be non-negative, but this choice can not allow botht~0!
and t~1! to vanish simultaneously. However, the indefinite term inH is proportional towu that
vanishes at the boundaries. This suggests that we can take 2t85a in the middle while introducing
two boundary layers to enforcet’s boundary conditions. These considerations lead us to focus on
the family of piecewise linear background profiles

t~z!55
S a

2
1

b

d1
D z, 0<z,d1 ,

a

2
z1b, 12d1<z<12d2 ,

2Fa

2 S a

d2
21D1

b

d2
G~z21!, 12d2<z<1,

~19!

whered1 (d2) is the thickness of the boundary layer atz50 (z51) introduced to satisfy the
boundary conditions~see Fig. 1!. Then

^T&>2^t&2^t82&5
a

2
~12d2!1b~12d12d2!2H a2

4 S 1

d2
21D1b2S 1

d1
1

1

d2
D1

ab

d2
J , ~20!

provided the quadratic functionalH in ~17! is positive definite. Before estimating the size ofH,
we can maximize 2̂t&2^t82& over a andb, and this procedure yields
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^T&> 1
4 ~12d1!~12d2!~d11d2! ~21!

with

H a5d22d1

b5
d1

2
~12d2!.

~22!

Then using the inequality9

U E
0

1

wu U<S c

4
iui2

21
1

c
iui2

2D ~23!

for any c.0, the term^(2t82a)wu& can be estimated by

u^~2t82a!wu&u<
bd1

2 Fc1

4
^u¹uu2&1

1

c1
^u¹uu2&G1

~a12b!d2

4 Fc2

4
^u¹uu2&1

1

c2
^u¹uu2&G

5
d1

2~12d2!

4 Fc1

4
^u¹uu2&1

1

c1
^u¹uu2&G1

d2
2~12d1!

4 Fc2

4
^u¹uu2&1

1

c2
^u¹uu2&G .

Then

H>F12
d1

2~12d2!

4c1
2

d2
2~12d1!

4c2
G^u¹uu2&1F a

R
2

d1
2~12d2!c1

16
2

d2
2~12d1!c2

16 G^u¹uu2&.

ThusH is positive semidefinite if

12
d1

2~12d2!

4c1
2

d2
2~12d1!

4c2
>0 ~24!

and

a

R
2

d1
2~12d2!c1

16
2

d2
2~12d1!c2

16
>0. ~25!

We can choosec15c25c and then it is sufficient to require

FIG. 1. The background profile for finite Prandtl number.

2971J. Math. Phys., Vol. 45, No. 7, July 2004 Bounds on convection driven by internal heating



@d1
2~12d2!1d2

2~12d1!#25
64~d22d1!

R
, ~26!

and

c5
a

4
. ~27!

Now the lower bound of̂ T& in ~21! can be maximized overd1 andd2 subject to condition
~26!. But before fully optimizing the bound in~21! we consider the special case where there is
only one boundary layer in the background field atz51, i.e., the choiced150. Although this will
not give us the optimal bound, it is still a rigorous lower bound which is easier to compute and
which can be compared with the optimal bound later.

For d150 we should setb50 in the general background profile~19!. Thus~21! becomes

^T&> 1
4 ~12d2!d2 , ~28!

and the constraint~26! is simplified to be

d2
35

64

R
. ~29!

We can now write down the estimate

^T&>R21/3~124R21/3!. ~30!

So asR→`, ^T&>R21/3 with prefactor 1.
To fully optimize the bound, we need to maximize the right-hand side of the inequality~21!

subject to the constraint~26!:

^T&>max
d1 ,d2

H 1

4
~12d1!~12d2!~d11d2!J , ~31!

with d1 andd2 satisfying

@d1
2~12d2!1d2

2~12d1!#25
64~d22d1!

R
. ~32!

This is easily done numerically and the result is shown in Fig. 2. It is seen from the graph that
this better bound follows the same scaling as in~30!, i.e.,;R21/3 asR→`. The prefactor can be
measured from the graph, showing that the asymptotic prefactor is improved slightly:

^T&>1.09R21/3 as R→`. ~33!

IV. MULTIPLE BOUNDARY LAYER METHOD FOR FINITE Pr

In this section, we will derive the lower bound of the bulk average temperature using the
homogeneous ratio approach introduced by Howard11 and the multiple boundary layer method due
to Busse.1 First we decompose the temperature and velocity fields into their horizontal average and
fluctuating parts:

T5T̄1u, with ū50 and ū50, ~34!
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where overline denotes the horizontal average. We will assume that the flow is statistically sta-
tionary so that the horizontal average is time-independent and the fluctuating part has vanishing
horizontal mean. This is most easily justified in the limit of a horizontally infinite layer, so we take

f̄ ~z!5 lim
Lx ,Ly→`

1

LxLy
E f ~x,y,z,t ! dxdy. ~35!

The horizontal average of the temperature Eq.~2b! is

dwu

dz
5

d2T̄

d2z
11. ~36!

Integrate once to obtain

wu5
dT̄

dz
1z1c. ~37!

The integration constantc here is determined by integrating above equation over@0,1#, yielding

dT̄

dz
5wu2^wu&2S z2

1

2D . ~38!

Using the decomposition~34! along with ~36!, Eq. ~2b! can be written

]u

]t
1w

dT̄

dz
1u•¹u5¹2u1

d2T̄

d2z
115¹2u1

dwu

dz
. ~39!

Multiplying both sides byu and integrate over the bulk, we deduce

K wu
dT̄

dzL 52^u¹uu2&. ~40!

Together with Eq.~38!, we find the ‘‘power integral’’

FIG. 2. The solid line is the fully optimized lower bound of the bulk average temperature compared to the estimate~30!
~the dotted line!.
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K S z2
1

2Dwu L 5^u¹uu2&1^~wu2^wu&!2&. ~41!

Another power integral is derived by multiplying Eq.~2a! by u and integrating over the bulk:

^u¹uu2&5R^wu&. ~42!

Finally, we derive an expression for the average temperature by multiplying Eq.~38! by z and
integrating over@0,1#:

^T&52 K S z2
1

2Dwu L 1
1

12
. ~43!

In summary we have the following balances:

^u¹uu2&5R^wu&, ~44!

^~z2 1
2!wu&5^u¹uu2&1^~wu2^wu&!2&, ~45!

^T&52^~z2 1
2!wu&1 1

12. ~46!

Now rewrite ~45! as

15
^u¹uu2&1^~wu2^wu&!2&

K S z2
1

2Dwu L ~47!

and multiply the 1
12 in ~46! so disguised to find

^T&5

^u¹uu2&1^~wu2^wu&!2&212K S z2
1

2Dwu L 2

12K S z2
1

2Dwu L . ~48!

Let

h~z!5A12~z2 1
12!. ~49!

Notice that

^h&50, ^h2&51. ~50!

Then

^~wu2h^hwu&2^wu&!2&5^wu2&2^wu&22^hwu&2. ~51!

Thus together with~44!, the average temperature can be expressed as

^A12RT&5R
^u¹uu2&1^~wu2^wu&!2&2^hwu&2

^hwu&

5
^u¹uu2&^u¹uu2&

^wu&^hwu&
1R

^~wu2h^hwu&2^wu&!2&

^hwu&
. ~52!
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The variational problem can be formulated as follows:
Givenm5R^hwu&, find the minimum of the functional

F5
^u¹uu2&^u¹uu2&

^hwu&^wu&
1m

^~wu2h^hwu&2^wu&!2&

^hwu&2 ~53!

among theu, u fields with

¹•u50, uuz50,150, uuz50,150, ~54!

where

w5u"k̂, h~z!5A12~z2 1
2!. ~55!

Since the functionalF is homogeneous in bothw and u, we can impose two normalization
conditions

^hwu&51, ^w2&5^u2&. ~56!

We are seeking the minimum of the functionalF as m→`. This implies thatwu5h
1^wu& @here and in the following discussion the normalization conditions~56! have been as-
sumed# throughout most of the interval 0,z,1, which makes the second term in the functional
vanish in this interval. Only near the boundaryz50,1 the boundary conditions prevent a close
appoach ofwu to h1^wu&. And the contribution to the functional is thus from possible boundary
layers atz50,1. ~Note: the boundary layers are distinct in this problem, as is the case for a similar
analysis of circular Couette flow where the inner and outer cylinders must be handled seperately.2!
Sinceh(1)1^wu&5)1^u¹uu2&.0 @from Eq.~44! and definition~49!# there must be a boundary
layer atz51. At z50, h(0)1^wu&52)1^wu& is indefinite. Thus the existence of a boundary
layer atz50 depends on whetherh(0)1^wu& is zero. Without loss of generality we assume there
are two boundary layers atz50,1 respectively, and make the ansatz

w5( wnfn1wn* fn* , u5( unfn1un* fn* , ~57!

wherefn andfn* satisfy

D2fn52an
2fn , D2fn* 52an*

2fn* . ~58!

We introduce the following boundary layer variables:

w5H m2pnŵ~zn! for 12z5O~m2r n!,

m2snw̃~zn21! for 12z5O~m2r n21!,
~59!

u5H mpnû~zn! for 12z5O~m2r n!,

msnũ~zn21! for 12z5O~m2r n21!,
~60!

w* 5H m2pnŵ* ~zn* ! for z5O~m2r n!,

m2snw̃* ~zn21* ! for z5O~m2r n21!,
~61!

u* 5H mpnû* ~zn* ! for z5O~m2r n!,

msnũ* ~zn21* ! for z5O~m2r n21!,
~62!
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where

zn5~12z!m r n, zn* 5zm r n. ~63!

The boundary layer structure is such that in the interior

w̃1ũ11w̃1* ũ1* 'h1^wu&, ~64!

and in the boundary layers

w̃nũn1ŵn21ûn21'h11^wu&, w̃n* ũn* 1ŵn21* ûn21* 'h01^wu& ~65!

for n51, . . . ,N21, where

h05h~0!52), h15h~1!5).

With the boundary layer approximations, the functional becomes

F̂N5
1

^wu& H(1

N

m2pn1r nS E
0

`

ûn8
2dzn1E

0

`

ûn* 82dzn* D 1(
2

N

mqn2r n12snS bn
2E

0

`

ũn
2dzn21

1bn*
2E

0

`

ũn*
2dzn21* D 1mq1~b1

2^ũ1
2&1b1*

2^ũ1*
2&!J H(

1

N

m3r n22pn2qnS 1

bn
2 E

0

`

ŵn9
2dzn

1
1

bn*
2 E

0

`

ŵn* 92dzn* D 1(
2

N

mqn2r n2122snS bn
2E

0

`

w̃n
2dzn211bn*

2E
0

`

w̃n*
2dzn21* Dmq1~b1

2^w̃1
2&

1b1*
2^w̃1*

2&!J 1H m12r NS E
0

`

~ŵNûN2h12^wu&!2dzN1E
0

`

~ŵN* ûN* 2h02^wu&!2dzN* D J .

~66!

Balancing the exponents in the above expression yields

r n5
1242n

3242n , qn5
2242n

3242n , sn50, 2pn5
42n

3242n . ~67!

Then we have

F̂N5m2/3242N
FN , ~68!

where

FN5
1

^wu& H(1

N S E
0

`

ûn8
2dzn1E

0

`

ûn* 82dzn* D(
2

N S bn
2E

0

`

ũn
2dzn211bn*

2E
0

`

ũn*
2dzn21* D 1~b1

2^ũ1
2&

1b1*
2^ũ1*

2&!J H(
1

N S 1

bn
2 E

0

`

ŵn9
2dzn1

1

bn*
2 E

0

`

ŵn* 92dzn* D(
2

N S bn
2E

0

`

w̃n
2dzn21

1bn*
2E

0

`

w̃n*
2dzn21* D 1~b1

2^w̃1
2&1b1*

2^w̃1*
2&!J 1H E

0

`

~ŵNûN2h12^wu&!2dzN

1E
0

`

~ŵN* ûN* 2h02^wu&!2dzN* J . ~69!
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Now the Euler–Lagrange equations for the functionalFN can be written down:

1

^wu&

Du

bn
2 ŵn

(4)2m r N2r nûn~h11^wu&2ŵnûn2w̃n11ũn11!50, ~70!

1

^wu&
Dwûn91m r N2r nŵn~h11^wu&2ŵnûn2w̃n11ũn11!50, ~71!

n51, . . . ,N, ~72!

bn11
2

^wu&
Duw̃n112m r N2r nũn11~h11^wu&2ŵnûn2w̃n11ũn11!50, ~73!

bn11
2

^wu&
Dwũn112m r N2r nw̃n11~h11^wu&2ŵnûn2w̃n11ũn11!50, ~74!

n51, . . . ,N21. ~75!

And for w̃1 , ũ1 ,

Du

^wu&
b1

2w̃12 ũ1H DuDw

2^wu&2 ~h^wu&11!1m r N~h1^wu&2w̃1ũ12w̃1* ũ1* !1hS E
0

`

~ŵNûN2h1

2^wu&!2dzN1E
0

`

~ŵN* ûN* 2h02^wu&!2dzN* D J 50, ~76!

and

Dw

^wu&
b1

2ũ12w̃1H DuDw

2^wu&2 ~h^wu&11!1m r N~h1^wu&2w̃1ũ12w̃1* ũ1* !1hS E
0

`

~ŵNûN2h1

2^wu&!2dzN1E
0

`

~ŵN* ûN* 2h02^wu&!2dzN* D J 50. ~77!

The same set of equations are also satisfied by the starred quantitiesw̃n* ,ũn* ,ŵn* ,ûn* .
From Eqs.~76! and ~77!, we have

Duw̃1
25Dwũ1

2 , ~78!

Duw̃1*
25Dwũ1*

2 . ~79!

Adding these two identities yields

Du^w̃1
21w̃1*

2&5Dw^ũ1
21 ũ1*

2&. ~80!

Hence the normalization condition̂w2&5^u2& implies

Du5Dw5D. ~81!

This identity together with Eqs.~76! and ~77! yields

w̃1
25 ũ1

2 , b15b1* . ~82!
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Equation~73! together with Eq.~75! gives

Duw̃n11
2 5Dwũn11

2 .

The same identity holds forw̃n11* and ũn11* . Therefore

w̃n11
2 5 ũn11

2 , w̃n11* 2 5 ũn11* 2 for n51, . . . ,N21. ~83!

Substituting the above identity back into Eq.~73!, we have

h11^wu&2ŵnûn2w̃n11ũn115m r n2r Nbn11
2 D

^wu&
, ~84!

h01^wu&2ŵn* ûn* 2w̃n11* ũn11* 5m r n2r Nbn11* 2 D

^wu&
~85!

for n51, . . . ,N21. Then Eqs.~70! and ~72! become

1

bn
2 ŵn

(4)2bn11
2 ûn50, ~86!

ûn91bn11
2 ŵn50, n51, . . . ,N21. ~87!

The above equations hold in the region whereŵnûnÞh11^wu&. When the equality holds, then
from Eq. ~70! and Eq.~72! we can derive

ŵn
(4)

bn
2 52

ûnûn9

wn
5~h11^wu&!2

ŵn9ŵn22ŵn8
2

ŵn
5 . ~88!

With the following change of variables,

H z5bn
1/3bn11

2/3 zn ,

V̂5bn
21/3bn11

1/3 ~h11^hwu&!21/2ŵn ,

Q̂5bn
1/3bn11

21/3~h11^hwu&!21/2ûn ,

~89!

Eqs.~86!, ~87!, and~88! become

5
V̂ (4)2Q̂50,

Q̂91V̂50,

V̂ (4)5
V̂9V̂22V̂82

V̂5
.

~90!

Starred quantities satisfy the same equations withh1 replaced byh0 . This set of differential
equations has been studied in Ref. 1, where the constantb is defined

3b5E
0

`

V̂92dz1E
0

`

~12V̂Q̂!dz51.847 ~91!

and the following integrals are evaluated:
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E
0

` wn9
2

bn
2 dzn1E

0

`

bn11
2 w̃n11

2 dzn53b~h11^wu&!bn
21/3bn11

4/3 , n51, . . . ,N21. ~92!

Whenn5N, the differential equations forŵN and ûN are

D

^wu&bN
2 ŵN

(4)2~h11^wu&2ŵNûN!ûN50, ~93!

D

^wu&bN
2 ûN9 1~h11^wu&2ŵNûN!ŵN50. ~94!

Then with the following change of variables,

5
z5bN

1/3~h11^wu&!1/3S D

^wu& D
21/3

zN ,

V5bN
21/3~h11^hwu&!21/3S D

^wu& D
21/6

ŵN ,

Q5bN
1/3~h11^hwu&!22/3S D

^wu& D
1/6

ûN ,

~95!

Eqs.~93! and ~94! become

V (4)2~12VQ!Q50, ~96!

Q91~12VQ!V50. ~97!

In Howard’s paper11 the following result is given:

s5E
0

`

V92dz5E
0

`

Q82dz5 1
4E

0

`

~12VQ!2dz50.337. ~98!

Thus the following integrals can be expressed ins:

E
0

` ~ŵ(4)!2

bN
2 dzN5s~h11^wu&!5/3S D

^wu& D
22/3

bN
21/3, ~99!

E
0

`

ûN8
2dzN5s~h11^wu&!5/3S D

^wu& D
22/3

bN
21/3, ~100!

E
0

`

~h11^hwu&2ŵNûN!2dzN54s~h11^wu&!5/3S D

^wu& D
1/3

bN
21/3. ~101!

Putting the above integrals together, the functionalFN can then be expressed as

FN5
D2

^wu&
~102!

14s~h11^wu&!5/3S D

^wu& D
1/3

bN
21/314s~h01^wu&!5/3S D

^wu& D
1/3

bN*
21/3, ~103!

and
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D5 (
n51

N21

3bH Fbn11
4

bn
G1/3

~h11^wu&!1Fbn11* 4

bn*
G1/3

~h01^wu&!J 1sS D

^wu& D
22/3

$~h11^wu&!5/3bN
21/3

1~h01^wu&!5/3bN*
21/3%1b1

2^wu&. ~104!

Minimizing FN with respect tobn andbn* yields

]D

]b1
50⇒2b1^wu&5bF ~h11^wu&!S b2

b1
D 4/3

1~h01^wu&!S b2*

b1
D 4/3G , ~105!

]D

]bn
50⇒Fbn11

bn
G4/3

54F bn

bn21
G1/3

, ~106!

]D

]bn*
50⇒Fbn11*

bn*
G4/3

54F bn*

bn21* G1/3

, ~107!

]FN

]bN
50⇒FbN11

bN
G4/3

54F bN

bN21
G1/3

, ~108!

]D

]bN*
50⇒FbN11*

bN*
G4/3

54F bN*

bN21* G1/3

, ~109!

where

bN115S s

b D 4/3S ~h11^wu&!^wu&
D D 1/2

, ~110!

bN11* 5S s

b D 4/3S ~h01^wu&!^wu&
D D 1/2

. ~111!

From the above relations, thebn can be determined:

bn1154n21F S bN11

4N21D 1242n

•~4b1!42n242NG1/1242N

. ~112!

And bn11* has a similar form:

bn11* 54n21F S bN11*

4N21D 1242n

•~4b1!42n242NG1/1242N

. ~113!

It is clear from the above expressions thatbnÞbn* for nÞ1 sincebN @Eq. ~110!# is different from
bN* @Eq. ~111!#. Finally, b1 can be solved from~106! and the recursion relation

b15H b

25/3^wu& S s

b D 3/4(1242N)

@~h11^wu&!4/~1242N)/3242N

1~h01^wu&!4/(1242N)/3242N
#J 1242N/3242N

. ~114!

Putting all these together, the prefactorFN is a function of^wu& only:
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FN5
D2

^wu&

3242N

1242N

5~3242N!(1242N)224N42N/3242N
•S 25/3b3S s

b D 3/4(1242N)D 4(1242N)/3242N

3F ~h11^wu&!322•42N/2(1242N)1~h01^wu&!322•42N/2(1242N)

^wu&123•42N/4(1242N) G 4(1242N)/3242N

. ~115!

Now the value of̂ wu& can be determined by settingdFN /d^wu& to zero. The resulting equation
for ^wu& is

~a21!x~322c!/2(12c)2ax2ax1/~12c!1~a21!50, ~116a!

where

x5
)1^wu&

)2^wu&
, a5

322c

123c
, c542N. ~116b!

For general values ofN, the above equation has to be solved numerically:

N51, ^wu&50.4831,

N52, ^wu&50.9259,

N53, ^wu&51.0120,

]

WhenN→`, the above equation can be solved exactly:

^wu&`5
3)

5
51.039. ~117!

This shows that there indeed is a boundary layer atz50 since all^wu& ’s are less thanh05).
Now we can write down the scaling of^T& asN→`:

^T&5
1

A12R
F`m2/3510.285m2/3R21. ~118!

Recalling the identity~46!:

^T&52^~z2 1
2!wu&1 1

12 ,

we know that asm→`

m;
1

A12
R. ~119!

This leads to the scaling bound on^T& with respect toR:

^T&>4.421R21/3. ~120!
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The profiles ofw̃1 and ũ1 can be determined from the fact that in the interior of the interval
0,z,1,

w̃1ũ1'h1^wu&, and w̃15 ũ1 . ~121!

In the caseN→`, h52)z2 (2)/5). And then

w̃15AU2)z2
2)

5 U, ũ156AU2)z2
2)

5 U. ~122!

However, whetheru changes sign in 0,z,1 can not be inferred from the variational problem
since only the product ofw andu appears in the functionalF. Thus the possibility ofw changing
its sign cannot be excluded.

V. BACKGROUND METHOD FOR INFINITE Pr

As can be seen from the momentum equation~2a!, the velocity field is instantaneously slaved
to the temperature field in the limit Pr→`. Then it is straightforward to extract the equation
satisfied by the vertical velocityw for a given fluctuation fieldu:

D2w52RDHu. ~123!

The incompressibility condition on the velocity field combined with the no-slip boundary condi-
tions atz50 andz51 imply that bothw and]w/]z vanish at the rigid boundaries. To implement
the background analysis we decompose the temperature field as we did for the finite Pr case and
notice that identies~10! and ~14! still hold. This observation leads to the bound~18!:

^T&>2^t&2^t82&, ~124!

provided the functional~17!

H5^u¹uu2&1^~2t82a!wu&1
a

R
^u¹uu2& ~125!

is positive semidefinite among divergence free velocity fields satisfying Eq.~123! and no-slip
boundary conditions atz50,1, and temperature fieldsu(x,y,z,t) vanishing atz50,1. The con-
straint on the background fieldt(z) is the same:t(0)5t(1)50.

It is convenient to find the sufficient conditions for the non-negativity ofH in its Fourier series
representationH5(kHk , where

Hk$uk%5E
0

1F uDuku21k2uuku21S t82
a

2D ~wk* uk1wkuk* !1
a

R S 1

k2 uD2wku212uDwku2

1k2uwku2D Gdz, ~126!

wherewk(z) anduk(z) are the Fourier components ofw andu corresponding to wave numberk,
satisfying

~2D21k2!2wk5Rk2uk . ~127!

ThenH>0 iff eachHk is positive semidefinite for complex valued functionsuk of a single~real!
variable z where wk solves the fourth-order linear boundary value problem above with both
homogeneous Dirichlet and Neumann boundary conditions on@0,1#.
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We need to choose the background fieldt(z) before we can estimate the magnitude ofHk .
Since the expressions for the lower bound~18! and the functionalH ~17! have the same forms as
in the finite Pr case, we can choose the same background profile~19!. And consequently, after
maximizing the bound overa andb, we arrive at the same expression~21!:

^T&> 1
4 ~12d1!~12d2!~d11d2!. ~128!

This expression is invariant if we exchanged1 andd2 , and the estimate~132! is pointwise. This
suggests that the maximum of the right-hand side of~21! occurs whend15d25d. And then

H a50 ,

b5
d~12d!

2

~129!

by Eq. ~22!. The background profile becomes

t~z!55
12d

2
z , 0<z,d,

d~12d!

2
, 12d<z<12d,

12d

2
~12z! , 12d<z<1,

~130!

and the bound is

^T&>
d~12d!2

2
~131!

as long asd is chosen to ensureH is semipositive definite~see Fig. 3!.
In the following we will use the inequality, proved in Ref. 10, for solutions of~127!:

FIG. 3. The background profile for infinite Prandtl number.
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uwku<
1

2
z2

R

AC
kiuki ~132!

for zP@0,1
2#, whereC5 1

2(72A41). ~A similar estimate holds on the other end of the unit inter-
val.! Applying this estimate, we have

U E
0

1S t82
a

2D ~wk* uk1wkuk* !dzU
5U E

0

1

t8~wk* uk1wkuk* !dzU
<2

12d

2 E
0

d
uwkuuukudz12

12d

2 E
12d

1

uwkuuukudz

<~12d!E
0

d 1

2
z2S R

AC
kiuki DAzE

0

1/2

uDuk~z8!u2dz8dz1~12d!E
12d

1 1

2
~12z!2

3S R

AC
kiuki D 3A~12z!E

1/2

1

uDuk~z8!u2dz8dz

<~12d!
R

AC
kiuki

1

7
d1

7/2AE
0

1/2

uDuk~z8!u2dz8

1~12d!
R

AC
kiuki

1

7
d1

7/2AE
1/2

1

uDuk~z8!u2dz8

<~12d!
R

AC

d7/2

7

k

2 S kiuki2

&
1
&

k E
0

1/2

uDuk~z8!u2dz8D
1~12d!

R

AC

d7/2

7

k

2 S kiuki2

&
1
&

k E
0

1/2

uDuk~z8!u2dz8D
5~12d!

R

AC

1

7
d7/2

1

&
~k2iuki21iDuki2!. ~133!

Then

H>k2S 12
~12d!d7/2

7&

R

AC
D ~k2iuki21iDuki2!. ~134!

Choosingd such that

~12d!d7/2

14

R

AC
51, ~135!

the non-negativity ofH is ensured. Then asR→`, d;(7A2C/R)2/7 and thus

^T&>
1

2
d5

1

2 S 7A2C

R D 2/7

. ~136!
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VI. SUMMARY AND DISCUSSION

The preceeding sections we have proven that for the finite~or arbitrary! Prandtl number case,
in nondimensional units,

^T&>c1R21/3, ~137!

and for the infinite Prandtl number model,

^T&>c2R22/7. ~138!

In dimensional units of temperature and heat flux these results are

^T&> c̃1H2/3 ~139!

for arbitrary Pr~see Ref. 4 for a similar estimate in that case of an internally heated self-gravitating
sphere!, and

^T&> c̃2H5/7 ~140!

for the infinite Pr.
Recent numerical experiments18 on thermal convection with internal heating in a fluid layer

with infinite Prandtl number suggest that

^T&}R20.234. ~141!

The observed exponent 0.234 is smaller than the rigorous estimate derived here, 2/7'0.286, but
consistent with the bound. In the case of Rayleigh–Be´nard convection, the methods employed
here produce scaling~upper! bounds on the heat transport1,9,10 that are also consistent—but not in
total agreement—with observed high Rayleigh number scalings.

It is worthwhile to note that the ‘‘optimal’’ background profile that the analysis suggests~Fig.
1! is suggestive of the mean temperature profile one expects for the internal heating problem. That
is, the buoyancy force driving the convection will concentrate the warmer fluid near the top of the
layer. Interestingly, this is not the case for the infinite Pr problem where the ‘‘optimal’’ temperature
background maintains the symmetry of the conduction solution. It remains an open problem to
apply the multiple boundary layer analysis to the case of infinite Pr, as it has previously been
applied for the case of Rayleigh–Be´nard convection.5 A full ~numerical! solution of the optimal
background variational problem, as has recently been accomplished for Rayleigh–Be´nard convec-
tion with finite Prandtl number,15 could improve the estimates further.
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