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Bounds are derived for the space—time averaged tempefdatuia a fluid layer in

the Boussinesq approximation between fixed-temperature horizontal boundaries
subject to uniform heatingl throughout the volume. The analysis is carried out for
both finite and infinite Prandtl number fluids. While the average temper&ljre

~H in the purely conductive state, convection enhances the heat transport beyond
static conduction reducing the temperature. Lower bounds to the average tempera-
ture of the layer scale with the magnitude of the imposed heat flux, with one scaling
exponent for the arbitrary Prandtl number case and another for the infinite Prandtl
number model. Specifically, it is proven here that at large heating rates where
convection is important{T)=c,;H?? for finite Prandtl number fluids andT)
=c,H%" for infinite Prandtl number fluids. Explicit prefactocs andc, for the
scaling bounds are computed as well. 2004 American Institute of Physics.
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I. INTRODUCTION

Turbulent transport of mass, momentum, and heat remains one of the most important prob-
lems for modern theoretical physics and applied mathematics. For incompressible fluid flows,
fundamental models such as the Navier—Stokes and related equations are believed to quantita-
tively describe these phenomena. However the complexity of the dynamics in these systems of
nonlinear partial differential equations prohibits exact solutions, and the wide range of length and
time scales in turbulent solutions makes direct numerical simulation extremely challenging and
expensive. One mathematical approach to the analysis of these systems is to derive rigorous
bounds on physically relevant quantitfés'® This approach is of more than just mathematical
interest because it turns out that in some cases the bounds tend to capture aspects of the turbulent
scaling of the quantities with respect to the control paraméters, the Reynolds or Rayleigh
numbej. In the case of Rayleigh—Bard convection, for example, where a fluid layer between
horizontal plates is heated from below, the enhancement of the heat flux due to convection, usually
measured by a Nusselt number, can be bounded from above in terms of the temperature drop
across the layét'®61%Mexpressed in terms of the Rayleigh number.

In this paper we consider the problem of convective heat transport in a fluid layer between
fixed-temperature horizontal boundaries with uniform heating throughout the volume. This prob-
lem is motivated by geophysical applicatioh;the Earth’s plate tectonics is a result of convec-
tion in the mantle which is predominantly driven by uniform heating due to radioactive decay of
elements distributed throughout the mantle. Mantle dynamics is generally modeled as the flow of
a high (infinite) Prandtl number fluid with strongly temperature dependent viscosity. The models
we focus on here are simpler, with constant material parameters. The boundary conditions for
mantle convection are complicated—especially on “top”—but we restrict the investigation here to
rigid no-slip isothermal boundaries in order to make progress. In principle, if all the relevant
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materical and boundary effects could be included, the kinds of bounds derived here could be used
to put limits on the thermal history of the Earth. A distinct engineering application of this kind of
analysis is to the problem of nuclear reactor meltdéwn.

The rest of this paper is organized as follows: in the next section we present the details of the
models we will analyze. In a brief Sec. Ill we apply the “background” methtdthe arbitrary
Prandtl number problem to derive a scaling lower bound on the space—time averaged temperature
of the layer along with an explicit prefactor. In the following Sec. IV we apply a multiple
boundary layer asymptotic thedrio sharpen the estimate, increasing the prefactor in the lower
bound by a factor of 4. Section V is concerned with the infinite Prandtl number problem, and the
background method utilizing a recently derived inequéfitgsults in a scaling lower bound with
a smaller exponent. In the concluding Sec. VI we summarize our results in the context of direct
numerical simulations, and discuss some possible areas for further development of this approach.

IIl. GOVERNING EQUATIONS

The fluid layer is confined between two parallel plates of horizontal extgrindL, sepa-
rated by vertical £) distanced. The no-slip upper and lower plates are held at fixed temperatures
Ty and T4, respectively; the temperature differens& =Ty— T, which will eventually be taken
to be zero for the work presented here. A uniform volumetric heat Hufwith units power/
volume is pumped into the layer. The governing equations for the velocity fiettle pressure
and the temperatur€ in the standard Boussinesq approximation are

au .
—f Tu-Vu=—Vp+ vV2u+kgaT, (1a)
JT
E+U-VT=KV2T+ Y, (1b)
V-u=0, (10)

with the boundary conditions
u|z:0,d:0a T|z:O:T01 T|z:d:Tlv (1d)

wherev is the viscosityg is the acceleration of gravity along thzeaxis (in the —k direction, a
is the thermal expansion coefficiematjs the thermal diffusion coefficient ang= H/pc, wherep
is the density anct is the specific heat capacity of the fluid. We impose periodic boundary
conditions in the horizontal directions with periodg andL, .

Usingd?/ k as the unit of timed as the unit of length, angld?/ x as the unit of temperature,
the governing equations are put into the nondimensional form

Prt &—u+u-Vu +Vp=Vau+RTk (2a)
ot :
aT
—+u-VT=V?3T+1, (2b)

ot

where Pe v/« is the Prandtl number an@= gad®y/«?v is the heat Rayleigh numb&t.We
considerR, proportional to the internal heating rate, to be the control parameter. The boundary
conditions in nondimensional form are

u|Z:0,1:0v T|z:0:‘:|'—v T|z:l:01 (20
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whereT= («/yd?) AT; this shows thaRT is the usual Rayleigh number RagaATd%/ v« for
bottom heating.
In the following discussion, we only consider the special case where both boundaries are held

at the same temperature, i.AT=0 or T=0. With this boundary condition, the static conduction
solution has a quadratic profile:

T=3z(1-2), 3

which becomes unstable for sufficiently lafge'® Once convection sets in, the flow tends to lower

the average temperature of the fluid, so the estimate of interest is the minimum possible bulk
average temperature for a given vaReWe define the space—time average of a funcfipnt)

as

1t d?
(f)= Iim—f ds—j dxdydzfx,s). (4)
tﬂoot 0 I—xl—y

In the following discussion, we apply the background and multiple boundary layer methods to
derive lower bounds for the bulk averagendimensionaltemperature with respect ® in the
form (T)=cR* asR— .

IIl. BACKGROUND METHOD FOR FINITE Pr

To apply the background method, first we decompose the temperaturé fielg z,t) into a
time-independent background profit€z) and a fluctuating par@(x,y,z,t):

T(X,y,z,t)=7(2) + 6(X,y,Z,t). (5
The boundary conditions df(x,y,z,t) are contained in(z):
7(0)=7(1)=0 (6)
and the fluctuating par(x,y,z,t) satisfies homogeneous boundary conditions
0(x,y,0t)=6(x,y,1t)=0. (7)
The velocity fieldu is divergence-free with no-slip boundary conditions:
V-u=0, u|,—¢.=0. (8

With this decomposition the governing Ed8) become

prt| 4 V| + Vp=vau+t rk+ ReR (9a)
at P ’
0 o ,
—LFUVO=V2o+ 1w (9b)

Then taking the space—time averageuef9a) yields
(IVul?)=R{wb), (10

and averagind@- (9b) andr- (9b) yield, respectively,
(Wor')=—(|V o) —(6,7') +(6), (11

—(Wor")=—=(0,7")+(1)—(7"?). (12)
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The difference of the above two identities is
(O = (TN =(IV 1)+ 2Awor")—(7'?). (13)
Since(T)=(7)+(6), we have
(TY=(V o2y +2(wor"y+2(r)—(7'?). (14)
The identity(10) can also be written as
0= %<|Vu|2)—a<we>, (15
wherea is a positive numbefa “balance paramete)’to be adjusted to yield the best prefactor.
Adding Eq.(15) to Eq. (14) enables us to express the average temperature as follows:
(M=2(r)= (7% +H, (16)

where
a
H=(|V eI+ ((27' ~a)w)+ (| Vul?). (17

If the functionalH is positive semidefinite among the fieldsand 6 satisfying
V-u=0, U[;=01=0, 6]|;=0:=0,
then we have a lower bound QT ):
(My=2(r)—=(7"?). (18)

So the goal is to choose a background profigatisfying the boundary conditiori§) guaranteeing
thatH is positive semidefinite while making the lower bound(18) as large as possible.

If we could take a linear background profile with the sl@#2>0, then 2r' —a would vanish
and thus the functionat would clearly be non-negative, but this choice can not allow b6
and (1) to vanish simultaneously. However, the indefinite terntHins proportional towé that
vanishes at the boundaries. This suggests that we can tdkea2in the middle while introducing
two boundary layers to enforegs boundary conditions. These considerations lead us to focus on
the family of piecewise linear background profiles

((a b
§+5—l Z, O$Z<51,
a
7(Z)={ §z+b, 1-6<z<1-5,, (19
ala b
| — E 5_2_1 +5—2 (Z_l), 1—52$Z$1,

where §; (6,) is the thickness of the boundary layerzt0 (z=1) introduced to satisfy the
boundary conditiongsee Fig. 1L Then

2

(Ty=2(1)—( ’2>—E(1—5)+b 1-46 —5)—[a—(i—1
=&\ T, T _2 2 ( 1 2 4 52

1

2l 4
+b 51+52

ab
+§2 , (20

provided the quadratic functional in (17) is positive definite. Before estimating the sizetbf
we can maximize 2r)—(7'?) overa andb, and this procedure yields
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™(2)

z

FIG. 1. The background profile for finite Prandtl number.

(T)=3(1-61)(1— 82)(61+ 62) (21)
with
a=06,—0;
b=%(1—52). @)

Then using the inequality
c 1
ol Shetg) @

1
[wi] =
0

for any c>0, the term((27' —a)w#) can be estimated by

(a+2b) 5,
4

Cz

2 0 b51C1V2+1v02+
I __ = —|= — —
(27 —awe)|< =% | Z(VuP)+ (76l 3

Vol (Vo)

S(1-&)cy, oo 1 ] S(A-8)[e, o1
== | 7 {VuH+ C—1<|V9| MW= | 7 {VuH+ C—2<|V9| )|
Then
2(1-68,) 8(1-6) a 6&(1-68,)c, 65(1—6))c,
_ _ 2 _ _ 2
H=|1 ac, 1, |V 6]%) + R 16 16 (|Vul?).
ThusH is positive semidefinite if
H(1-8,) 5515y
— — =
! 4Ac, 4c, 0 (24)
and
a 6X(1—-58)c, 8%(1—48;)c
“_ l( 2 l_ 2( 1) 220. (25)

R 16 16

We can choose;=c,=c and then it is sufficient to require
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[6&(1—5z>+5§<1—51>]2=64(5+5“, (26)

and

a
C=Z. (27)

Now the lower bound of T) in (21) can be maximized oves; and 8, subject to condition
(26). But before fully optimizing the bound if21) we consider the special case where there is
only one boundary layer in the background fieldzatl, i.e., the choiceS; = 0. Although this will
not give us the optimal bound, it is still a rigorous lower bound which is easier to compute and
which can be compared with the optimal bound later.

For §,=0 we should seb=0 in the general background profi{@9). Thus(21) becomes

(T)=2(1-5,)5,, (29)
and the constrain26) is simplified to be

64
S=%- (29)

We can now write down the estimate
(TY=R Y(1-4R"13), (30)

So asR—x, (T)=R™ 3 with prefactor 1.
To fully optimize the bound, we need to maximize the right-hand side of the inequ2lity
subject to the constrair{26):

1
(Ty=max| 7(1=8:)(1= 8,)(81+8,) [, (31
61,02

with 6; and 8, satisfying

64(5,— 61)

[85(1= 85+ 83(1— 6P =—4

(32

This is easily done numerically and the result is shown in Fig. 2. It is seen from the graph that
this better bound follows the same scaling a$36), i.e., ~R~¥® asR—». The prefactor can be
measured from the graph, showing that the asymptotic prefactor is improved slightly:

(T)=1.0R ¥ as R—x. (33

IV. MULTIPLE BOUNDARY LAYER METHOD FOR FINITE Pr

In this section, we will derive the lower bound of the bulk average temperature using the
homogeneous ratio approach introduced by Howaardd the multiple boundary layer method due
to Busse' First we decompose the temperature and velocity fields into their horizontal average and
fluctuating parts:

T=T+6, with =0 andu=0, (34)
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— optimal
6p=0

S|

7 8
log R

FIG. 2. The solid line is the fully optimized lower bound of the bulk average temperature compared to the gStnate
(the dotted ling

where overline denotes the horizontal average. We will assume that the flow is statistically sta-
tionary so that the horizontal average is time-independent and the fluctuating part has vanishing
horizontal mean. This is most easily justified in the limit of a horizontally infinite layer, so we take

f_(z)= lim ff(x,y,z,t) dxdy. (35

Ly Ly—ee

LyLy

The horizontal average of the temperature &tp) is

dwg d’T ) a6

a9z d T (26
Integrate once to obtain

wo= d?+ + 3

w =4z z+c. (37

The integration constamt here is determined by integrating above equation ¢9gl, yielding
a7 — 1 -
E—WG—(WG}— z= 5] (38)
Using the decompositiofB84) along with (36), Eq. (2b) can be written

00 dT , dT , . dwe
—tW - +Uu-VI=VO0+ - +1=V-6+

at dz d?z dz - (39

Multiplying both sides byd and integrate over the bulk, we deduce

daT\ 5
WHE ——<|V(9| > (40

Together with Eq(38), we find the “power integral”
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1 _
<(z— E)W0>=<|V0|2>+<(W9—<W0>)2>. (41)
Another power integral is derived by multiplying E@®a by u and integrating over the bulk:
(IVu?)=R(wé). (42

Finally, we derive an expression for the average temperature by multiplying3Bgby z and
integrating oveff0,1]:

1 1
<T>:— zZ— E)Wg +1—2. (43)
In summary we have the following balances:
(IVul?)=R(wo), (44
(2= HWO)=(|V8°) +((Wo—(W0))?), (45)
(T)=—((z— YW+ 1z (46)

Now rewrite (45) as

(IV 612+ ((wo—(w6))?)

R

and multiply thess in (46) so disguised to find

(|V0|2>+<(W_6—<W6>)2)—12<(z— %>W0>2

(T)= 1 (48)
2] 2= 5w
Let
h(z)=\12z— 5). (49)
Notice that
(hy=0, (h?=1. (50)
Then
((WO—h(hw)—(w6))?) = (W6?) — (WB)2—(hwo)?. (51)

Thus together with44), the average temperature can be expressed as

(IV 612 +((wo—(w6))?)—(hwo)?
(VIRT)=R (hwo)

(VOD(VuD  (wh—h(hwe)—(wa))?)
N (woyhwe) R (hwe) . (52
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The variational problem can be formulated as follows:
Givenu=R(hw#), find the minimum of the functional

_(VA(VUP) - (wo—h(hwe) —(w6))?)

(hway(wgy T~ (hwo)? 3
among theu, 0 fields with
V-u=0, U|,—01=0, 6|,-01=0, (59
where
w=uk, h(z)=V12(z— ). (55)

Since the functionalF is homogeneous in bottv and 4, we can impose two normalization
conditions

(hwo)=1, (w?)=(6?). (56)

We are seeking the minimum of the functional as w—o. This implies thatwé=h
+(w#) [here and in the following discussion the normalization conditid® have been as-
sumed throughout most of the interval<0z<1, which makes the second term in the functional
vanish in this interval. Only near the boundary 0,1 the boundary conditions prevent a close
appoach ofv 6 to h+{w#). And the contribution to the functional is thus from possible boundary
layers az=0,1. (Note: the boundary layers are distinct in this problem, as is the case for a similar
analysis of circular Couette flow where the inner and outer cylinders must be handled sepgrately.
Sinceh(1)+(w@)=v3+(|Vu|?)>0 [from Eq.(44) and definition(49)] there must be a boundary
layer atz=1. At z=0, h(0)+(w6)=—v3+(w8) is indefinite. Thus the existence of a boundary
layer atz=0 depends on wheth&@(0)+(w#6) is zero. Without loss of generality we assume there
are two boundary layers at=0,1 respectively, and make the ansatz

W= Wodbn Wiy, 0=2 bt O bn (57)
where ¢, and ¢ satisfy
Aodn=—andn, Aoy =—a}’e} . (58)
We introduce the following boundary layer variables:

pPR(g,)  for 1-z=0(u ),
poW(L,q)  for 1—z=0(u 1),

(59

uPo(L,)  for 1—z=0(u "),

0:[ 0 (60)
MSna(gnfl) for 1—Z=O(qurn—1),

P (£r)  for z=O(u "),
oS (L5 for z=0(u 1),

(61)

pPng* (£h)  for z=0(u "),

6*:[ 0 (62)
uSne* ({n_y) for z=O(u ™ "n-1),
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where
{n=(1-2)un, LH=zu™ (63
The boundary layer structure is such that in the interior

10+ W07 ~h+(w8), (64)

=

and in the boundary layers
W O+ Wy 10y 1=hy+ (W), W} 05+Wh_ 1051 ~ho+(wo) (65)
forn=1,... N—1, where
ho=h(0)=—-v3, h;=h(1)=V3.
With the boundary layer approximations, the functional becomes

A 1

N N
}—N:W[; p2Pn +2 Mq”r”ﬂsn(bﬁf rdZn-1

2 0

fbrqzdgn+f o 2dzx
0 0

N
“n ~ ~ 1 (=
by fo O dihs +w<bi<0i>+bi2<0§2>)}[§ M3r”_2p“_q”(p fo Wi*dZ
n

N
+; qurnlzsn( bﬁfo Wﬁdgn_l-f— b:zfo Vv:zdiﬁ_l),uql(bﬂwb

1 OO'w\-r/Z *
+b*2 Wn dgn
n 0

+b’£2<Vv’£2>>]+ o0 [ i b woy g [ koo ||

(66)
Balancing the exponents in the above expression yields
1—-47" 2—47" 47"
=3z O=3-z77 S=0 2P=3—,= (67)
Then we have
~ _4—N
Fn=w?4 Ry, (68)
where
1 N o0 0 N o o
Ffw{; (fo 052d§n+f0 eﬁ’zdz’;); (bﬁfo 0ﬁd§nfl+b;‘2fo Or°deh 1| + (bi(e)

N 1 - 1 - N
+b*;2<e*;2>>H21 (2 [ o2 [ w3 |

by J T P
0 2

0

+(bH(WE) + by X(Wi?)) | +

+b:2f0 Wr2dgr f (WyBy—hy—(W6))2dEy

0

] e o woy s . 9
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Now the Euler—Lagrange equations for the functiofglcan be written down:

1 D,

W) b —zw“‘)—m 00Ny +(WO) — W By~ Wy 16n11) =0, (70
<W9>D 0H+'urN I’an 1+<W0>_wnbn_wn+1®n+1)zoa (79)
n=1,... N, (72

02 - L
<W0> DoWpyqg—p'N n0n+1(h1+<W9>_Wn0n_wn+l‘9n+1)zoy (73

bn+1 ~ [T P ~ ~
<W0> w‘9n+l_1“N an+1(h1+<W9>_Wn6n_wn+10n+1):01 (74)
n=1,... N—1. (75)

And for %, , 8,

D,D,, ~ © .
0

&bZW iy
(wey 1L 2(we)?

W)z J:<wmém—ho—<we>>2dgm)]=o, 79
and

Dy oDw ~
>2(h<W0>+l)+,u (h-+{(w)—W, 6, —&*6*)+h

<W0>b 101~ [2< P fo (Wy6On—hy

—(we)2den+ j0°°<wmém—ho—<wa>>2dgm)]=o. @

The same set of equations are also satisfied by the starred quakfiti@d ,w* , 8% .
From Eqgs.(76) and(77), we have

D,W2=D,, 03, (78)
D Wi?=D,0%°. (79

Adding these two identities yields
D (W5 + W} %) =D, (6 +67°). (80)

Hence the normalization conditigw?)=(#%) implies
D,=D,=D. (81)
This identity together with Eqg76) and (77) yields

W2="93, by=b}. (82)
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Equation(73) together with Eq(75) gives
Dﬁwﬁ+1: Dw79§+1-
*

The same identity holds fdk*, , and #*, , . Therefore

W§+l: 0ﬁ+1, W:El:~:fl fOf n:].,. .. ,N_l. (83)
Substituting the above identity back into E@3), we have

D

hl+<W0>_wnén_wn+lbn+1=/’vrnirNbﬁ+1Wa (84)
~k Dk gk PR — *2 D
ho+(W6) — W5 F — Wi, 165, 1= p'n ran-%—lm (89
forn=1,... N—1. Then Eqs(70) and(72) become
L a_p? 6,=0 (86)
bﬁ n n+1Yn '
0/ +b2, W,=0, n=1,...N—1. (87

The above equations hold in the region whérgd,+h,;+(w6). When the equality holds, then
from Eq.(70) and Eq.(72) we can derive

~ (4) ~ o AMA A2
Wi, 0,6, W W, — 2W),
— == ——=(h;+H(wh))>————. 88

With the following change of variables,

Q:b;ll%%fl(hﬁ(hwg»—l/?wn' (89
0=by, 2(h +(hwe)) "1,

Egs.(86), (87), and(88) become

O®-6=0,
0"+0=0, ©0
00 -20"?
Q@
NE

Starred quantities satisfy the same equations wwithreplaced byh,. This set of differential
equations has been studied in Ref. 1, where the congtatefined

38= f:()"zdﬁ f:(l—()@)dgzl.sw (91)

and the following integrals are evaluated:
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//2 »
f —fdzn f bj 1 Wrs1d¢n=3B(hy+(w6)b ¥, n=1,...N-1. (92

Whenn=N, the differential equations foky and 6y are

D
(w)by

WP — (hy+ (W) — Wy ) Oy =0, (93

D . -
W9ﬁ+(hl+<W0>—WN0N)WN=0. (94)

Then with the following change of variables,

[ (=i +<w0>)1’3( - )mz
! (wo) N

~1/6
¢ Q=by"3(h;+(hwe))~ 1’3(<W0>> Wy, (95)
D 1/6
=bi¥hy+(hwe 2’3< ) On,
Egs.(93) and(94) become
QO®—-(1-00)0=0, (96)
0"+(1-00)Q=0. (97
In Howard's papeé' the following result is given:
o= fo Q0"2d¢= fo @’ng“:%fo (1-00)%d;=0.337. (98
Thus the following integrals can be expressedrin
= (W*)2 ( D )2/3 B
d hy+(w@))%3 by 3, 99
bﬁ {n=o(hy < > < 9> N (99
D —2/3
f 62d L= o 1+<w0))5’3( W 0>) by 3, (100
D 1/3
J(h1+<hw9> Wy On)2dn= 4a(h1+<w9>)5/3(< 0>) by ™. (100

Putting the above integrals together, the functidaglcan then be expressed as

D2
FN:W (102
D 1/3 D 1/3
+40(h 1+<wa>)5/3( <W6>) by 3+ 40 h0+(W0))5/3( <W0>) by 2, (103

and
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N—-1 b4+1 1/3 *jl 1/3 —2/3
D=2, 33[ b, | (Mrwi)+4 (ho+<W0>)]+U W) {(hy+(wo)) Sy ™
+(ho+(wa)) >y % + bi(we). (104

Minimizing Fy with respect tab,, andb} yields

o i b2 23 42¢ 4/3
EZO:ZbKWé’):ﬁ (h1+<W0>)(b_ +(h0+<we>)(b_> }’ 1S
1 . ! '
dD [baia]* [ by }1/3
D » | 106
8bn | bn ] -bn*1 | )
dD -b:+1-4/3 by }1/3
— =0=| 2 =g : (o7
bk | by | b1
dFN -bN+1-4/3_ [ by ]*
M_():}_ bN | —4-bN71 (108)
dD -b§+1-4/3 _ by "
E—Oﬁ_ﬁ_ ‘4_b;§_1 ’ (109
where
o\ 3 (hy+(wo))(we)\ 2
bN”:(E) %) ’ o
o\ 3 (hg+(wo))(we)\ 2
L TR

From the above relations, thg, can be determined:

40 1/1-47N
_ -1 [ Pnea m 47N—4-N
by 1=4" | Zv71| - (4by) (112
And b}, ; has a similar form:
b% ., 1_4-"n ) 1/1-4"N
- + n_y-
bh,,=4" 1{(@) -(4bp)* 1 (113

It is clear from the above expressions that- b’ for n# 1 sinceby [Eq. (110)] is different from
bY [Eqg. (111)]. Finally, b; can be solved front106) and the recursion relation

34(1-4~N)
[(hy+ <W6>)4/(1—4*N)/3—4*N

B a
b1:{2573<w0> (E

1-4"Ni3—47N

+(ho+(wa)) -4 e-a (114

Putting all these together, the prefackg is a function of(w6) only:
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e D? 3-47N
NT(we)y 1-47N

B

(hy+ (WB))3’2'47N’2(1’47N)+ (ho+ (wa))3*2'47N/2(174’N)
X <W9>1—3~4*N/4(1—4*N)

3/4(1_4N)) 4(1-4"Ny;3—4~N

:(3_4—N)(1_4—N)2—4N4*N/3—4*N_ ( 25133

4(1-4"Ny3—4~N

(115

Now the value ofw#) can be determined by settirld-y /d(w6) to zero. The resulting equation
for (w#) is

(a—1)x37202(17¢) _ oy — ax 19+ (a—1)=0, (1163
where

_ V3+(wb) ~3-2c

X= . a= , c=47N 116
vi—(wg)' ° 1-3c (e

For general values dfl, the above equation has to be solved numerically:
N=1, (w#)=0.4831,
N=2, (w#)=0.9259,

N=3, (w6)=1.0120,

WhenN—oo, the above equation can be solved exactly:

3v3
<W9>m=?=1.039. (117)

This shows that there indeed is a boundary layer=a® since all{w#)’s are less tham,=v3.

Now we can write down the scaling ¢T) asN—o:

1
(Ty= —F., u?*=10.28u%*R 1. (118

JI2R
Recalling the identity46):

(Ty==((z= DwO) + 13,
we know that agu—

1
~—R. (119

V12

This leads to the scaling bound ¢m) with respect toR:

(Ty=4.42R™ 3 (120
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The profiles ofit; and'#; can be determined from the fact that in the interior of the interval
0<z<1,

W 0;~h+(we), and ®;=0,. (121

In the caseN— o, h=2v3z— (2v3/5). And then

2v3[ . 2V3
W= 2V3z— Rt 0,==* 2V3z— ek (122

However, whethem changes sign in €z<1 can not be inferred from the variational problem
since only the product ol and 8 appears in the functiongf. Thus the possibility ofv changing
its sign cannot be excluded.

V. BACKGROUND METHOD FOR INFINITE Pr

As can be seen from the momentum equat@a, the velocity field is instantaneously slaved
to the temperature field in the limit Preo. Then it is straightforward to extract the equation
satisfied by the vertical velocity for a given fluctuation field:

A?w=—RA6. (123

The incompressibility condition on the velocity field combined with the no-slip boundary condi-
tions atz=0 andz=1 imply that bothw anddw/dz vanish at the rigid boundaries. To implement

the background analysis we decompose the temperature field as we did for the finite Pr case and
notice that identie$10) and (14) still hold. This observation leads to the bou(id):

(M=2(1)—(7'?), (124

provided the functionall17)
a
H=(|V 61 +((27' ~a)wé) + o (|Vul?) (129

is positive semidefinite among divergence free velocity fields satisfying(E28) and no-slip
boundary conditions a=0,1, and temperature field¥x,y,z,t) vanishing az=0,1. The con-
straint on the background fiele(z) is the samexr(0)=7(1)=0.

It is convenient to find the sufficient conditions for the non-negativitilof its Fourier series
representatiotd ==, H,, where
= 3| o e was) + | D% 20w

1
Hid 0= fo [|D0k|2+ k?| 6| >+

+k2|wk|2> dz, (126

wherew,(z) and 6,(z) are the Fourier components wfand 6 corresponding to wave numbley
satisfying

(—D?+k?)2w,=RK 6. (127

ThenH=0 iff eachH, is positive semidefinite for complex valued functiofisof a single(rea)
variable z where w, solves the fourth-order linear boundary value problem above with both
homogeneous Dirichlet and Neumann boundary conditiongdi.
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z

FIG. 3. The background profile for infinite Prandtl number.

We need to choose the background fie{d) before we can estimate the magnitudetqf.
Since the expressions for the lower bou8) and the functionaH (17) have the same forms as
in the finite Pr case, we can choose the same background pit®lleAnd consequently, after
maximizing the bound oves andb, we arrive at the same expressi@1):

(T)=2(1-61)(1— 8)(8,+ 8,). (128

This expression is invariant if we exchangeand §,, and the estimatél32) is pointwise. This
suggests that the maximum of the right-hand sid€2dj occurs whens;= §,= 5. And then

a=0,
8(1—96) (129
b=—"3

by Eq.(22). The background profile becomes

(1-6 0 5
JR— <
5 z, z< 4,
8(1—96)
(z)=¢ 5 1-6<z=<1-6, (130
1-6
—((1-2), 1-6=z=<],
\ 2

and the bound is

5(1- 6)?

as long asd is chosen to ensurd is semipositive definitésee Fig. 3.
In the following we will use the inequality, proved in Ref. 10, for solutiongd1i#7):
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R
—=k| 64l (132

Jc

for ze[0,%], whereC= (7— \/41). (A similar estimate holds on the other end of the unit inter-
val.) Applying this estimate, we have

1
|Wk|s§z2

1 a
JO ( 7' = 5) (Wi O +w, 0 )dz

1
= f 7',(W’kc 0k+Wk0’|:)dZ
0

1—-6 (9 1-6 (1
sz—f |wk||ek|dz+z—f wi|0,]dz
2 Jo 2 Ji-s

“1- 5)f —z( k||ok||)\/f ID6O(2')|2dZ dz+ (1— 5)f —(1 2)?
R ! |2 ’
<[ gHlad X\/(l—z)J1/2|D0k(z)| dz'dz

R 1 712 1/2 2
s(l—&)\/—6k||0k|\751 JO |D6(z')]?dZ’

F(1-8)k6 ||357’2\/f1 IDO(2)|2d7
\/6 k 7 1 12 k

(1-5— ok k”gk”2+ﬁfmlw< )|2d
< — - _ Z/ Z,
Jc72 » k Jo k

f(1-5— ok k||0k”2+‘/7fllzloe( "|2dz’
-8 —=—15 — z z
727 T 1P

1
=(1-6)—= ol (K2 61>+ D 6 1?). (133

T

Then

_(1-9) 5" R

H=k?1- ———
7v2 |C

) k? 61>+ 1D 6l1®). (139

Choosingé such that

(1-6)8™" R _, 13
T \/_E_ 3 ( 5)
the non-negativity oH is ensured. Then 88—, §~(72C/R)?" and thus

(136)

(= 5o 512"
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VI. SUMMARY AND DISCUSSION

The preceeding sections we have proven that for the finitarbitrary Prandtl number case,
in nondimensional units,

(T)=c,R™15, (137)
and for the infinite Prandtl number model,

(T)=c,R™ 7. (139
In dimensional units of temperature and heat flux these results are

(T)=T,H?? (139

for arbitrary Pr(see Ref. 4 for a similar estimate in that case of an internally heated self-gravitating
spherg, and

(Ty=T,H" (140

for the infinite Pr.
Recent numerical experimeffton thermal convection with internal heating in a fluid layer
with infinite Prandtl number suggest that

(TyrR™023 (141

The observed exponent 0.234 is smaller than the rigorous estimate derived her@,28@, but
consistent with the bound. In the case of Rayleighadd convection, the methods employed
here produce scalin@ippel bounds on the heat transpott®that are also consistent—but not in
total agreement—with observed high Rayleigh number scalings.

It is worthwhile to note that the “optimal” background profile that the analysis suggegis
1) is suggestive of the mean temperature profile one expects for the internal heating problem. That
is, the buoyancy force driving the convection will concentrate the warmer fluid near the top of the
layer. Interestingly, this is not the case for the infinite Pr problem where the “optimal” temperature
background maintains the symmetry of the conduction solution. It remains an open problem to
apply the multiple boundary layer analysis to the case of infinite Pr, as it has previously been
applied for the case of Rayleigh-&a&rd convection.A full (numerica) solution of the optimal
background variational problem, as has recently been accomplished for RayléigireBenvec-
tion with finite Prandtl numbel® could improve the estimates further.
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