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of -1.4 atmospheres. Naturally, the value for I1pl 
calculated using the formula for the change in vapor 
pressure with applied pressure, 

dP/dpl= VI/V (6) 

(where P is the equilibrium pressure above a liquid on 
which a pressure pI is exerted, while V and VI are, 
respectively, the molar volumes of vapor and liquid), 
is also -1.40 atmospheres. This is obvious, since Eq. 
(4) is the two-dimensional analog of Eq. (6). Both of 
these values are in excellent agreem.ent with the value 
of -1.3 atmospheres calculated from the shift in 
lambda-point of bulk helium. The inflection in the iso­
therm appears, therefore, as a result of a rather abrupt 
change in surface density on going from the second to 

the third layer as calculated by means of the lambda­
point shift. 

This last result is given as evidence for the conten­
tion that the first few layers tend to complete them­
selves before starting to build new layers. It assumes 
that the effective density of the film is equal to that of 
the completed films. This means that the film consists 
largely of regions of the surface completely filled as 
predicted by Halsey.!S 
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I. The accurate expression for the individual frequencies of a linear crystal of any number of particles 
is derived. . 

II. It is shown that, for an isotropic three-dimensional array of uniform masses, the root-mean-square 
frequency is easily evaluated and the maximum square must always be less, but not much less, than twice 
the mean square. For two commonly studied simple cubic systems, the maximum square is evaluated and 
shown to be twice the mean square. The Debye expression for the frequencies in terms of standing wave 
components is modified empirically to give the correct maximum and mean squares by substituting linear 
crystal frequencies for the components and introducing a second force constant. 

The resulting expression, a simplified form of the factored secular equation, should yield a more realistic 
and probably therefore a more widely useful distribution function than the Debye equation. 

I. 

I N connection with the normal frequency distribution 
in solids, it has proved to be useful and instructive 

to examine the frequencies of a so-called one-dimen­
sional crystal. This has been done by Born and von 
Karman! and is discussed by Mayer and Mayer.2 For 
N point masses m with a restoring force k for unit 
relative displacement of neighbors, the nth normal fre­
quency is given by the equation 

approximation is exactly evaluated, and the new result 
is valid for all N down to the diatomic molecule and 
may find application in future studies of limited chains 
of particles. 

P n =(k/1I·2m)!sin[mr/2(N-1)]; (lZnZN-2). (1) 

Since the equation expresses N - 2 frequencies for a 
model which must have N -1 vibrations, the result is 
an approximation which is claimed to approach ac­
curacy only for large values of N. 

The accurate solution, with this restriction removed, 
is readily obtained. As might be expected, the correc­
tion, for large N, is negligible; but the effect of the 

1 M. Born and Th. von Karman, Physik. Z. 13, 297 (1912). 
2 J. E. Mayer and M. G. Mayer, Statistical Mechanics (John 

Wiley and Sons, Inc., New York, 1946), p. 248. 

For the model, as described, the kinetic energy is 
m"L,XN2 and the potential energy is k"L,(Xi -Xi- 1)2/2. 
With the substitution, u(=4T,rm/k)-2, the secular 
equation takes the form 

u+l 1 

1 u 1 

1 1(--, 
DN = I 1 =0, (2) 

l __ ·U 1 

1 u 1 

1 u+l N 

with N denoting the number of rows or columns in 
the determina..nt, 
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The translation, u+2=0, can be factoted'out. Let 
EN be defined as -

u 1 

1 u 1 

1 u 1 

1 UN 

Then, by means of expansion by minors, we obtain 

DN= (u+l)2EN_2-2(u+l)EN_3+EN_4 

(3) 

= (u2+2u)EN_2- (u+2)EN- 3= (u+2)EN_1• (4) 

From Eq. (4) it is seen that the normal frequencies for 
the N-particle chain are the roots of the equation 
EN - 1 = O. To factor this equation it is assumed that 
Eq. (1) has the correct form except that the angle may 
be wrong. The frequency is then taken to be (k/rm)l 
sin8/2, so that (47r2v2m/k)-2= -2(1-2 sin28/2), lead­
ing to the substitution u= -2 cos8. 

For N=2, E1=-2cos8=-sin28/sin8, and, for 
N=3, E 2=4cos28-1=sin38/sin8. Now, through ex­
pansion by minors, 

and 

sin8E3 = - 2 cos8 sin38+sin28 
= - 2 cos8 sin38+sin38 cos8- cos38 sin8 
= -sin38 cos8-cos38 sin8= -sin48 

sin8E4= 2 cos8 sin48- sin38 
=2 cos8 sin48-sin48 cos8+cos48 sin8 
=sin48 cos8+cos48 sin8=sin58. (5) 

Since this operation can be extended indefinitely with 
increasing values of N, the general secular equation for 
the internal motions takes the form, for N particles, 

EN - 1 = (_1)N-l sinN8/sin8= O. (6) 

As an alternative, it is readily shown that if EN-l 
= ±sinN8/sin8 and EN= =t= sin (N + 1)8/sin8, then EN+1 
=±sin(N+2)8/sin8, which, in conjunction with the 
known values of El and E 2, leads to the same conclusion. 

Equation (6) is satisfied when sinN8=0 and sin8~0, 
for which the condition is that 8=mr/N, where n must 
not be zero nor a multiple of N. Although the number 
of such angles is infinite, they yield only N -1 values 
of u, which lie between - 2 and + 2 and are all en­
countered in the range 0<8<7r, for which 1 <:n<:N-1. 
Since the secular equation EN-l = 0 can have only 
N -1 roots, there are no other values of u, real or 
imaginary, which will satisfy it. It follows from the 
definition of 8 that the nth frequency is 

v,,= (k/7r2m)1 sin(n7r/2N). (7) 

Evidently, the approximation involved in deriving 
Eq. (1), namely, the arbitrary· restriction of the ter­
minal masses to zero amplitude, has given an equation 
for the N-particle chain which is actually correct for 
N -1 particles. In the same way, if, instead of factoring 
out the translation, the end corrections of Eq. (2) had 
been neglected by replacing each element u+ 1 by u, 
the resulting frequency distribution would be correct 
for N + 1 instead of N particles. Since, for N sufficiently 
large, the distribution function is independent of the 
chain length, it is .evident that under this condition 
the end corrections are negligible. It is reasonable, 
then, to assume that they will also be negligible in 
two- and three-dimensional systems. 

In deriving Eq. (7), no end corrections have been 
neglected, nor have any approximations other than 
those implied in the potential energy function been 
introduced. Consequently, Eq. (7) must yield correctly 
the frequency of a symmetrical diatomic molecule, for 
which n= 1 and N = 2. The frequency becomes v= (k/ 
rm)t sin7r/4 or (1/27r)(2k/m)t, which is the familiar ex­
pression for this case. By Eq. (1), as well as by inspec­
tion, this is also the frequency for a single mass m con­
nected to two fixed points by bonds of force constant k. 

II. 

In solving for the distribution of lattice frequencies 
in a solid, it is necessary to work with a particular 
model involving a defined distribution of atoms and an 
assumed potential energy function. The formidable 
features of the derivation may lead to approximations 
which widen the gap between the model and physical 
reality. 

When the problem has been solved for a particular 
model, it is of interest to ask if the result is applicable 
to other models as well, that is, if the distributions of a 
representative set of models are similar enough to per­
mit the substitution of one for another. To obtain an 
adequate number of derived distributions to resolve 
this question appears at present to be too difficult, 
but the general usefulness of a particular distribution 
can be judged by the number and variety of solid sub­
stances for which the thermal properties can be calcu­
lated successfully. 

Frequency distributions, or partial descriptions of 
the distribution, have been proposed by Debye,3 Born 
and von Karman,I Blackman,4 Houston,6 Leighton,6 
Montroll,1 and others. Of these, the relatively simple 
Debye description has been most widely tested and used. 
The Debye theory stands out from the others because 
of the highly simplified model, an isotropic continuum 
which can represent reality only in the limit for very 
low frequencies. Since the Debye distribution cannot 

3 P. P. Debye, Ann. Physik 39, 789 (1912). 
4 M. Blackman, Proc. Roy. Soc. (London) A159, 416 (1937). 
• W. V. Houston, Revs. Modern Phys. 20, 161 (1948). 
6 R. B. Leighton, Revs. Modern Phys. 20, 165 (1948). 
7 E. W. Montroll, J. Chern. Phys. 15, 575 (1947). 
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be accurate in the higher frequency range, the use of 
his equations to predict thermal properties at higher 
temperatures must be regarded as empirical. Each of 
the other distributions is likewise a property of a par­
ticular model. Most of the available distributions are 
incomplete because of difficulties of computation, but 
the application of a complete accurate one to the pre­
diction of thermal properties of other models would, 
like the Debye theory, have to be made upon an em­
pirical basis. 

It would seem, therefore, that, for success in pre­
dicting thermal properties, it makes little difference 
whether the distribution is merely set down empirically 
or is arrived at in some more elegant and complicated 
fashion. In either case, a proposal that the function is 
generally usable must be validated empirically. 

That the frequency distribution, for the calculation 
of thermal properties, does not have to be accurate 
throughout the range is evident from the success of the 
Debye theory in predicting the entire heat capacity 
curve for some simple crystals with fair accuracy in 
spite of the unreal model upon which the theory is based. 

It is further evident, from the Einstein function, the 
Nernst-Lindemann equation, and the recent calcula­
tions of Raman8 and his collaborators, that consider­
able success is possible even with a severely over­
simplified function. The sensitivity of the thermal 
properties to the frequency distribution has been 
analyzed in detail by Katz.9 

The present purpose is to modify the Debye dis­
tribution empirically in the direction indicated by the 
study of more realistic models than the Debye con­
tinuum. To effect an improvement, it is necessary only 
to make changes in the right directions and clearly 
unnecessary to include specific features of any par­
ticular distribution, 'such as, for example, the "in­
finities" of the Montroll function. 

For a cubic Debye model, three sets of standing waves 
which can be set up parallel to the edges of the cube 
are recognized. The propagation vector of a character­
istic standing wave of the model is taken to be the sum 
of three component propagation vectors, one taken from 
each of the sets parallel to the edges. The components 
are combined in all possible ways. Since the propaga­
tion vector is proportional to the frequency, the char­
acteristic frequencies can be expressed by the vector 
summation 

(8) 

in which V x , etc., are the frequencies of the component 
standing waves. Equation (8) defines spherical sur­
faces of constant frequency and sets the number of fre­
quencies between v and v+dv proportional to the vol­
ume of a spherical shell of radius v. If this 
proportionality is assumed to persist all the way to an 

8 C, V. Raman and others, J. Indian Acad. Sci. A14 (1941); 
A15 (1942). 

9 E. Katz, J. Chern. Phys. 19,488 (1951). 

arbitrarily imposed maximum frequency Vo, the distri­
bution function z becomes 

(9) 

which is the original Debye relation, used subsequently 
without change in most published discussions. 

In this form, however, the function does not properly 
represent the model. The assumption of a maximum 
frequency requires, for the vector additions, that each 
component be limited to a maximum value. All of the 
vectors of Eq. (8) must then terminate within a cube 
and the number of frequencies in the interval v to v+dv 
will be proportional to the part of the area of a spherical 
shell which lies within the cube. Equation (9) can be 
valid only for frequencies less than the maximum com­
ponent. The distribution function should contain two 
discontinuities, at (t)ivo and (i)ivo, with the function 
diminishing to zero at the maximum frequency. These 
features have been discussed in detail by Slater/o along 
with related interpretations. It is surprising that they 
have been rather generally ignored in publications of 
later date than Slater's discussion. 

The use of the simple Debye distribution over the 
whole range sets the mean frequency too high by neg­
lecting the discontinuities and consequently including 
a large number of extraneous high frequencies. The 
well-known success of the function in certain cases 
must then mean that at least one compensating factor 
has been included which tends to lower the mean fre­
quency. The nature of this second factor can be in­
ferred from a comparison of the linear crystal distribu­
tion with that of a continuous rod. In the continuous 
one-dimensional model, the standing wave frequencies 
are equally spaced, with the numerical mean at half 
the maximum and the root mean square at v(max)/v'J. 
In the linear crystal, by Eq. (7), for each frequency 
proportional to sin(mr/2N) there is always another 
proportional to sin[(N -n}1I/2NJ or cos(mr/2N), un­
less n=N /2, which is trivial. The sum of the squares 
of these two frequencies is the square of the maximum 
frequency, the mean square is half the maximum square, 
and the root mean square is v(max)/v2, showing that 
the mean frequency of the continuous model is too low. 
This property will certainly appear in the continuous 
two- or three-dimensional model, at least to some de­
gree, and will account qualitatively for a cancellation 
of inadequacies in the Debye distribution in favorable 
cases. 

In deference to the considerable success of the Debye 
equation, it seems to be in order to retain the form of 
Eq. (8), but to attempt to find a set of components V x, 

etc., which will give a more realistic mean frequency. 
Equation (8) represents a factored form of the secular 
equation which is undoubtedly severely oversimplified, 
since in certain cases the secular equation has been 
reduced to a cubic in v2 which is not readily factored 

10 J. C. Slater, Introduction to Chemical Physics (McGraw-Hill 
Book Company, Inc., New York, 1939), pp. 225fJ. 
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in any general way to give the individual frequencies 
explicitly. It could still be true, however, that Eq. (8) 
with the right set of components would give a distribu­
tion which could be used for more than one model. 

At this point, it will be useful to examine the secular 
equation for an isotropic array of uniform masses. In 
any such array, if end corrections are neglected, each 
particle is symmetrically surrounded by neighbors, and 
the restoring force for unit displacement of a single 
particle when the entire model is motionless will be 
independent of the direction of the displacement. With 
any specified potential energy function and any chosen 
cartesian coordinates, the secular determinant must 
contain the unknown squared frequency in a uniform 
element which appears at every point on the principal 
diagonal. For any reasonable potential energy function, 
it should always be easy to express this diagonal ele­
ment. All other elements of the determinant will be 
potential constants. If every element is divided by the 
principal force constant k, the diagonal element will be 
u= (47r2112m/k)- A, in which A is a dimensionless 
quantity made up of the sum of ratios of potential 
constants. The secular equation has the degree n = 3N 
for N particles and the first term in the polynomial 
form is un. There can be no term in un-I, however, 
since in a term by term expansion it is not permissible 
to accept at any time two elements from the same row 
or column and the selection of u, (n-1) times, blocks 
out all elements except the remaining u. 

As a consequence the sum of the roots Ui is zero, the 
mean value of X/(4TlIlm/k) is A and the average 
squared frequency is kA/47r2m. This evidently gives 
the frequency with which a single particle would vibrate 
if the rest of the model was motionless. 

There are some models in which it is possible to vi­
brate all the particles simultaneously in this same 
manner against the same set of forces. If the displace­
ment has a component directed toward a neighbor, 
the neighbor will have a like component directed back 
toward the particle. If, however, ther.e is no component 
toward a particular neighbor, the two can move in the 
same direction. Evidently, all the relative displace­
ments are twice as large as they were when the particle 
was moving alone, and the restoring force must also 
have been doubled for unit displacement of the particle. 
Consequently, the squared frequency of the general 
motion is twice that of the individual particle which 
has been evaluated from the diagonal element. For such 
models, then, the squared maximum frequency is twice 
the numerical mean square. 

Two simple cubic models which have been studied 
extensively fulfill this condition. In Houston's5 model, 
a unit relative displacement of neighbors along their 
line of centers is resisted by a force k, while a displace­
ment perpendicular to the connecting line sets up a 
force ka, where a is a fraction. The two squared fre­
quencies, by inspection, are X' (mean) = 2+4a and 
X'(max)=4+8a. Each row of particles, at the maximum 

frequency, executes the highest frequency motion of 
the linear crystal, but any two neighboring rows are 
always out of phase. For the central force model in­
troduced by Born and von Karman1 and used by Black­
man4 and Montroll,7 a restoring force k is assigned to 
the unit displacement toward a nearest neighbor, and 
a force ka to the displacement toward a second neighbor 
across the diagonal of a square. Here again, by inspec­
tion, the squared frequencies are X' (mean) = 2+4a and 
X'(max)=4+8a; but, for motion parallel to an edge 
of the cubical model, while each row again executes the 
motion of maximum frequency of the linear crystal, 
the rows are now all in phase when the frequency is at 
the maximum. 

If only forces between nearest neighbors were im­
portant, it would be generally true that the mean 
square is half the maximum square, and it should always 
be true that the contribution of the principal force 
constant to the mean square frequency is half its con­
tribution to the maximum square in an isotropic array. 
Every force constant must contribute to the mean 
square, but there will be second and more distant 
neighbors in some models which suffer no relative dis­
placement in the highest frequency motion. This can 
be seen by examining the linear crystal with an addi­
tional force ka introduced for the relative displacement 
of second neighbors, resulting in X' (mean) = 2+2a and 
X'(max)=4. It is concluded, for isotropic arrays, that 
the mean square frequency is at least half the maxi­
mum square and may be larger, but not much larger. 

With a reasonable potential energy function, it will 
always be possible to write the diagonal element of the 
secular determinant which evaluates the root mean 
square frequency, and it will usually also be possible 
to find the maximum frequency. An acceptable dis­
tribution function and simplified secular equation should 
express these two frequencies with reasonable accuracy 
in a nearly correct ratio. 

In the first approximation the maximum square is 
twice the mean square. A wide variety of distributions 
will meet this condition, from something like the linear 
crystal distribution at one extreme to a heavy concen­
tration about two principal frequencies at the other. 
The latter extreme is suggested by Montroll's7 "in­
finities," but the former, intuitively, seems more in 
line with the widely variable situations presumably 
represented by the normal coordinates. It is possible 
that the distributions for real systems may vary all 
the way from one extreme to the other, and still pos­
sible also that the representation of thermal properties 
may not be sensitive to the particular distribution 
chosen within the prescribed limits. 

The limiting value of the required ratio can be im­
posed upon the Debye distribution py interpreting the 
components of Eq. (8) as linear crystal frequencies, 
according to Eq. (7). Since the one-dimensional fre­
quencies are arranged in complementary pairs which 
meet the requirement, it is obvious that the sums can 
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be arranged as similar complementary pairs. At the 
same time the expected discontinuities appear in the 
distribution. The vector additions still outline a cube 
whose geometry requires the discontinuities, but the 
density of frequencies within the cube is no longer 
constant, but instead varies with the coordinates. This 
change alone should effect an improvement in the De­
bye distribution by introducing some features re­
quired of a real system, and the resulting distribution 
might very well fit the thermal properties of a wider 
selection of models without further modification. 

In this form, however, Eq. (8) as an approximation 
to the secular equation is too highly simplified, since 
it implies a potential energy function with only the 
one constant introduced through Eq. (7), and no one 
would attempt to describe a reasonable approximation 
to a real system without at least two constants. A 
further modification is therefore suggested, in order to 
bring Eq. (8) into line with the common maximum fre­
quency of the Houston· and central force models of the 
simple cubic system without altering the ratio of the 
maximum to the mean square. This can be done by 
rewriting Eq. (8) in the form 

(9) 

with the components still taken from Eq. (7). 
Equation (9) is still an oversimplified secular equa­

tion in respect to real systems and presumably also 
most mathematical models, but it should now be 
markedly better than the Debye equation and should 
be usable to express the thermal properties of a wide 
variety of isotropic models adequately. The equation 
implies a potential energy function, and therefore a 
model, without specifying what they are. There are 
preliminary indications that Eq. (9) is the exact form 
of the factored secular equation for Houston's· model; 
but the proof requires further development, and, if 
achieved, will be reported ata later date. 

To obtain all the normal frequencies, Eq. (9) must 

be applied three times, once with each set of compo­
nents in the leading term. For a cube of fV3 particles, 
there will be N3 vector additions each time, leading to 
the correct total of 3N3 frequencies. The first set of fre­
quencies is obtained by adding the vectors Px, a1py and 
alp •. All of the vectors must terminate within a rec­
tangular parallelipiped of square cross section, a con­
struction which will introduce four discontinuities into 
the distribution curve, at aipimax), (2a) ip,,(max), 
p,,(max) and (1 +a)lpimax). The density of frequencies 
within the parallelipiped increases with the distance from 
each of the coordinate reference planes. Surfaces of con­
stant frequency are still spherical, with the pertinent sur­
face area increasing rapidly up to the first discontinuity, 
more slowly from the first to the second, than decreas­
ing slightly from the second to the third, decreasing 
more sharply between the third and the fourth, and 
dropping rapidly to zero between the fourth discon­
tinuity and the maximum frequency. Such a distribu­
tion has more acute discontinuities than the Debye 
distribution, but will not show the extreme "infinities" 
indicated by Montroll's analysis. The result deviates 
from the Debye distribution in the direction of the 
Montroll type of curve and should be an improvement 
over the Debye function which is probably about as 
near as one can expect to come to a general function 
for isotropic crystals. 

At very low frequencies, and therefore for thermal 
properties at very low temperatures, with the com­
ponents P'" etc., in the region where (J= sin(J, it is evi­
dent from Eq. (7) that the distribution follows the 
Debye quadratic form. How low the temperature must 
be, however, depends upon the value of a which, if 
small enough, would lead to a linear crystal .distribu­
tion in the limit. Such a distribution appears at present 
to be extremely unlikely for any real system. Conse­
quently, no change in the commonly used method of 
extrapolating low temperature thermal data has been 
suggested. 


