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A volume source sheet plus a uniform flow is used to represent the flow field of a flame propagating
in a channel. The unknown flame shape is determined by the requirement that the velocity normal
and relative to it, 1. e., the local flame speed is constant. The ratio of the propagation speed of the
flame as a whole to the local flame speed appears as the important parameter. Five flow fields for the
values 1.05, 1.20, 1.50, 2.00, and 4.00 of the parameter are computed. These give generally correct
flame shapes and flow fields. The detailed results of the analysis are compared with two observed
flow fields. Subject to the inherent limitations of the theory, the comparison is favorable.

INTRODUCTION

ONSIDER the steady propagation of a de-

flagration wave or simply a flame in a two
dimensional channel full of stagnant combustible
gases of uniform composition and density p,. The
flow may be taken steady when viewed from co-
ordinate axes moving with the flame (see Fig. 1).
We attempt to analyze the flow field under the
assumptions: (1) The thin zone of combustion is
replaced by a surface of discontinuity across which
the density drops from p, to p.. (2) The velocity
component of the unburned gases normal and rela-
tive to the flame or simply the local flame speed

CONCAVE
CURVATURE

v

NP 777 7 i e A7 el 2T 2 7 7 77 7

CONVEX
CURVATURE

LI L7 77

Fic. 1. Schematic representation of the problem, where w is
the vorticity.

uy, 1s constant. It follows that p, is constant since
p1 is assumed constant. (3) The viscosity is neg-
lected everywhere. The flames travel with subsonic
speed and potential disturbances exist in front of
it. Even in absence of viscosity the flow of the burned
gases is rotational and therefore the equations of
motion are nonlinear in addition to the difficulty
that the unknown flame shape must be determined
together with the flow field. One such flow has been
numerically computed by using relaxation method.'
However, it was later shown that no solution exists
under the above apparently reasonable assump-
tions.” The problem has been oversimplified. At the
concave part of the flame it is necessary to allow
for diffusive effects. The increase of the flame speed
at the tip of the Bunsen flame must be taken into
account, and if the concave curvature occurs near
a solid surface, then the wall boundary layer must
be taken into account. The latter amounts to an
inwards displacement of the walls in the region of
the burned gases. The situation is as if no solution
for the flow field around a body existed if both com-
pressibility and viscosity are neglected.

Recently Maxworthy® has studied flame propaga-
tion in tubes taking into account flame speed varia-
tion, the gravity and viscous effect within the fluid
but not at the walls. He has only qualitatively dis-
cussed the diffusive effects near the walls and in
the opinion of the present author these effects are
essential to any theory which aims agreement with
observations. He states that Ball’s calculations for

1 G. Ball, Harvard University Combustion Tunnel Lab.
Report (1951).

2 M. S. Uberoi, Phys. Fluids 2, 72 (1959). M. S. Uberoi,
A. M. Kuethe, and H. R. Menkes, Phys. Fluids 1, 150 (1958),

3 T. Maxworthy, Phys. Fluids 5, 407 (1962).
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the case where the ratio of the propagation speed
of the flame as a whole to the local flame speed is
2.5 qualitatively agree with experiments. Further-
more, any value of this ratio from unity to infinity
would have allowed the calculation of the flame
shape and flow field satisfying the equations and
the boundary conditions, while in fact, as stated
above, no solution exists under the conditions as-
sumed by Ball.

We look for a set of self-consistant assumptions
that permit a solution which exhibits some salient
features of the actual flow. Inclusion of the flame
speed variations and viscosity raise a host of diffi-
culties and the detailed analysis is not feasible.
Only the over-all properties may be predicted which
has been done.” The present analysis leans heavily
on these general results. We now further simplify
the problem by assuming that the flame may be
replaced by a volume source sheet of uniform
strength across which the normal velocity jumps
from one constant value to another.* The tangential
velocity is, of course, continuous. A uniform flow
U_o 1s superimposed on the flow of the source sheet.
The strength and the shape of the source sheet and
the intensity u.. of the uniform flow are so ad-
justed that the velocity normal to the source sheet
or the ‘“flame” is constant. The density is, of course,
uniform everywhere. Such a flow may be called
flame like. Of course, this does not show all the
features of a flow associated with a flame any more
than the inviscid flow around a body completely
resembles actual flow of a viscid fluid. Except for
the flow near the wall and the phenomena which
depend on this part of the flow, it gives the generally
correct flame shapes and the flow fields.

ANALYSIS

Let the two-dimensional channel be along the
z axis with the walls at y = Za (see Fig. 1). The
stream function for two point sources of strength
(total rate of volume flow/27) p ds each placed
symmetrical at (x,, %o) and (x,, —y,) is (see Ap-
pendix)

. ™ . T . N
sin s sinh = (z — z,)
a a

dy, = pdstan™ )
cos"—rycosh’i (x — xo) — cos T
a a 0 a

(1)

Consider a source sheet of strength x per unit length
placed symmetrically in the channel along a curve

¢ R. A. Gross and R. Esch, Jet Propulsion 24, 95 (1954).
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given by the parametric equations
Zo = Zo(s) and yo = yols) )

where s is the distance along the source sheet meas-
ured from the center of the channel. The stream
funection for the source sheet is

LMY T
sin —~~ sinh — (x — 2
as (1( 0)

8t
-1

8 = tan
v K -[) wy s 7o
cos ~* cosh —~(x—x,) — cos —

a a a
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where s, is the length of the flame measured from
the center to the wall of the channel. The source
sheet gives a velocity smus,/a in 2 direction at
r = £ «. We superimpose a uniform flow of in-
tensity #-- <+ wps./a on the source sheet flow so
that the velocity in z direction is u_. at z =
and u_. + 27us;/a at * = + o. The stream func-
tion for the combined flow is

—
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or, in nondimensional form,
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aQU_ » U.x Jo
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The stream function is discontinuous across the
source sheet and for an arbitrary location s on it

¥a(s) = 2mus + ¥i(s). (6)

Here and in the following the subscripts 1 and 2
denote the regions to the left and right of the source
sheet respectively or the regions of unburned and
burned gases. In Eq. (5) the flame shape is unknown,
and the task is to find it subject to the condition
that u,, the velocity normal to the source sheet or
simply the flame speed is constant everywhere on
the source sheet, i.e., for (z, y) — (2o, Yo)

Y, = U, 8 Or Y = Up,S. (7)
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F16. 2. Computed flow fields.

From the volume flow considerations

Sy, = U.o0 and s, = u_.0 + 2rus,
or ®
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where the infinitesimal quantity ¢ has been in-
corporated to denote that the equation applies to
the region 1. The solution of this nonlinear equation,
ie., the determination of the flame shape, is a
hopeless task. We note that s./a and u/u%.. appear
as parameters and from Eqs. (8) the first quantity
is the ratio of the flame propagation speed to the
local flame speed and the second quantity is de-
pendent on the velocity jump across the flame.

We know the over-all shape of the flame from
earlier general considerations.” The flame is convex
when viewed from the unburned side, and it is
tangent to the walls. Instead of solving the nonlinear
integral equation, we choose a value of s./a, assume
a flame shape and compute the stream function at
the flame. The parameter p/u_.. is chosen so that
Eq. (7) is satisfied as closely as possible along the
entire flame. The shape of the assumed flame shape

is modified, and the process repeated. Instead of
Eq. (7) the more stringent condition

dyy(8)/ds = U, (10)

was satisfied for five flame shapes or five values of
the parameter s,/a. The error was less than 29
for shallow flames and rose to 209, for some points
along the longest flame since here a small change
in the local slope of the flame causes large error
in u;,. If ¢, and ¢ are the stream functions for an
observer moving with the flame then

ot =
vt =

'Pl - U_Y, (11)

and
Y — U_oY

are the corresponding quantities for an observer
stationary with respect to the stagnant fluid far
in front of the flame. The computed streamlines are
shown in Fig. 2. The flame is tangent to the walls
although it may not be apparent in the figures.
Numerical calculations show that the slope of the
flame monotonically decreases to zero at the walls.
It was found that for a given value of the parameter
s./a only one value of u/u_. leads to a solution
of the equation (9). The relationship between the
two parameters is shown in Fig. 3. The value of
u/u_= for s,/a = 3.0 is approximate since the flame
shape for this case was not accurately determined.

COMPARISON WITH EXPERIMENTAL
OBSERVATIONS

Only those features of these “flamelike” flows
may be compared with actual flames which do not
depend strongly on viscosity and vorticity. For the
cases s,/a = 1.5 and 2.0 the flame shapes and the
velocity fields have been measured by taking
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Fig. 2 (continued)

stroboscopic photographs of small particles sus-
pended in the combustible gases as shown in Fig. 4
(see reference 2 for the details of the experiments).
The dotted lines are the measured and the solid
lines the theoretical streamlines. As explained in
the reference 2, the effective flame shape lies a little
ahead of the visible flame. The computed flame
shape agrees with the observed effective flame shape
except near the wall where the effect of viscosity
and the variations in the flame speed are important.
In the unburned gases the calculated streamlines
agree with those observed except near the wall.
In the burned gases the calculated streamlines show
some deviations from those observed. Firstly, for
s./a = 1.5 and 2.0, respectively, the measured value
of us,/u;,, = 5 while the computed values are 2.8
and 4.0, respectively, so that the computed stream-
lines do not bend toward the normal to the flame
as much as observed. Secondly, the vorticity here
has an influence on the flow field of the burned gas.

In conclusion those features of the flame shapes

and the flow fields which do not depend strongly on
viscosity and rotation are well represented by the
flamelike flows.
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F1c. 3. The relation between u/u—o and si/a.
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Fra. 5. The transformation from ¢ to z plane.

b)

Fra. 4. Comparison be-
tween theory (solid line)
and actual (dotted line)
flow fields of flames for
(a) si/a = 1.5; and (b)
si/a = 2.0.
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APPENDIX
Let
2=
and
{ — g + ’1,17 — pe1(0*2n1r)
where
pf=E 4+, 8 =rtan(/n),
and n is a zero or a positive integer. Consider the
transformation
z = (a/7) In ¢
or
x + iy = (a/m) In pe’ 05T
Le.,

{a/m) In p
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and
y = ab/m & 2na.

A point in { plane is transformed into a series of
points spaced periodically a distance 2a parallel to
to the y axis (see Fig. 5). The lines AB and CD in
¢ plane are transformed into a series of lines in the
z plane. The complex potential for two sources
placed at ¢, and {, and a sink at the origin of strength
(total rate of volume flow/2x7) m each in ¢ plane is

¢+ =mnE~ &) +In@E - ) —Ingl
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In the z plane this becomes
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A previously developed perturbation-theory-to-all-orders formalism is applied to the oscillations
of a “collisionless’ electron plasma which is bounded by perfectly reflecting walls. The long-time
damping rate is the same for the nth order electric field as for the first order. This result generally

does not apply to the unbounded plasma.

I. INTRODUCTION

IT has recently proved possible to give a full
solution’ to the problem of the linearized motions
of a ‘“collisionless” electron plasma which is con-
fined by perfectly reflecting walls. The walls could
be infinite parallel plates, for the one-dimensional
case, or a rectangular parallelipiped. The device was
similar to the method of images; it was possible to
find a uniquely defined unbounded situation which
reduced to the desired result within the boundaries,
and which automatically satisfied the reflection con-
ditions for all time and all velocities. The tech-
niques of Landau® could then be applied to the
equivalent unbounded situation.

It is also possible, as was shown some time ago,*’
to give a perturbation-theory-to-all-orders solution
to the problem of the nonlinear oscillations of the
unbounded electron plasma. The main result of
reference 4 was to show that the phenomenon of
Landau damping, if present in first order (the linear
Landau theory), will persist to all orders.

4

1 D, Montgomery and D. Gorman, Phys. Fluids 5, 947
(1962). See also 8. Gartenhaus, Phys. Fluids 6, 451 (1963).

2 L., D. Landau, J. Phys. (USSR) 10, 25 (1946).

3 D. Montgomery, Phys. Rev. 123, 1077 (1961).

4 D. Montgomery and D. Gorman, Phys. Rev. 124, 1309
(1961) [Erratum, Phys. Rev. 126, 2261 (1962)].

A natural question to ask, and one which could
not be answered previously, is: How does the nth-
order damping rate compare with the first-order
rate? This question is very involved for the un-
bounded case, but becomes almost trivial for the
bounded situation, by virtue of the lower bound
on absolute value of allowed wavenumber which
is introduced by the walls. The result, as will be
seen below, is that the damping of the nth order
charge density (nof distribution function) goes at
the same rate as for the first order for long times.

In Sec. II, the contents of reference 4 are sum-
marized, and what we hope is a more lucid and
graphic demonstration of the principal result of
reference 4 is provided. The previously stated result
for the nth order damping rate is proved in Sec. III.
Section IV discusses the result, and also contains
gome comments on an alternative procedure which
has recently been put forward.

II. THE PERSISTENCE OF DAMPING

We restrict ourselves for simplicity to a one-dimen-
sional system. A “collisionless” electron (charge —e,
mass m) plasma is assumed to move through a uni-
form immobile background of positive charge of
density eN,. The electron distribution function



