The entropy of N-dimethylaminodiborane at 271.60°K was calculated for this modified assignment using Mann's values of moments of inertia, etc. The entropy of translation, rotation, and free internal rotation is 75.66 erg-deg⁻¹-mole⁻¹. The total entropy determined calorimetrically by Furukawa et al.4 is 72.25±0.14

Table I. Infrared spectrum of N-dimethylaminodiborane (KBr prism: 635–596 cm⁻¹, CsBr prism: 432–261 cm⁻¹).

Frequency (cm ⁻¹)	Assignment
635 w	$236 + 396 = 632 (A_1)$
616 w	$236 + 379 = 615 (B_2)$
611 w	$1011 - 396 = 615 (A_1)$
596 w	$269 + 325 = 594 (B_2)$
432 m	$\nu_{41}(b_2)R$
427 m	$v_{41}(b_2)O$
424 m	$\nu_{41}(b_2)\tilde{Q}$
416 m	$\nu_{41}(b_2)\tilde{P}$
396 W	$\nu_{13}(a_1)$
379 w	$\nu_{42}(b_2)$
269 w	$\nu_{30}^{42}(02)$
261 w	$\nu_{31}(b_1)$; $\nu_{30} - \nu_i + \nu_i$

* 1011 + 396 = 1407 (A₁) has been observed at 1414 cm⁻¹ in the NaCl

erg-deg⁻¹-mole⁻¹. A barrier to internal rotation of 3.7 kcal/mole is necessary for agreement. A methyl torsional oscillator with a sinusoidal potential of amplitude 3.7 kcal/mole has a fundamental frequency of about 250 cm⁻¹, in support of the assignment of 260 and 236 cm⁻¹ to methyl torsion oscillations.

- D. E. Mann, J. Chem. Phys. 22, 70 (1954).
 D. E. Mann, J. Chem. Phys. 22, 762 (1954).
 R. G. Breene, Jr., J. Chem. Phys. 23, 97 (1955).
 Furukawa, McCoskey, Reilly, and Harman, J. Research Natl. Bur. Standards (September, 1955).

Effect of V₂O₅ on Nickel-Zinc Ferrite Formation

D. M. GRIMES, L. THOMASSEN, C. F. JEFFERSON, AND N. C. KOTHARY* Engineering Research Institute, University of Michigan, Ann Arbor, Michigan

(Received September 7, 1955)

T is well known that certain minor components greatly alter L the rate of a solid state reaction. We have found that the addition of V₂O₅ has such an effect upon ferrite formation from a mixture of NiO, ZnO, and Fe₂O₃. For a fixed firing time the vanadium acts to decrease the necessary firing temperature.

Similar effects have been sought unsuccessfully (at least in degree) using Li₂CO₃, KCl, BeO, FeCl₂, B₂O₃, As₂O₃, Sb₂O₃, P₂O₅, K₂Cr₂O₇, CrO₃, and MoO₃.

The measured temperature decrease is dependent upon the percent of V₂O₅ added and the characterizing criteria. 0.75 mole percent V2O5 decreases this temperature as much as 400°C for Ni_{0.4}Zn_{0.6}Fe₂O₄.

The following data were taken on material fired four hours. The average size of the oxide particles used were¹

$\mathrm{Fe_2O_3}$	0.26 micron
NiO	0.64 micron
ZnO	0.58 micron.

The Fe₂O₃ was a calcinated ferric sulfate.

We consider five methods of determining reaction completeness. (1) Color. Ferrites not containing vanadium shade gradually from a red at 1000°C to a bluish at around 1200°. Those containing the vanadium went suddenly from red to a dark black between 800 and 850°. (2) Grain Size. The mean grain size of the cores containing vanadium and fired at 950° is approximately the same as that for cores without vanadium fired at 1350° (see Fig. 1). (3) Density.

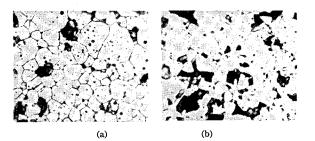


Fig. 1. Comparative photomicrographs of a Ni-Zn ferrite fired at 1350°C and a Ni-Zn ferrite containing V₂O₅ fired at 950°C. (a) Specimen A-112 (250 X). Plain Ni-Zn ferrite core, fired for four hours at 1350°C. (b) Specimen B-2018-1 (250 X). Nickel-zinc ferrite core containing V₂O₅ and fired for four hours at 950°C.

The density of the material not containing vanadium went from slightly greater than the green density at 1050° to about 0.95 the x-ray density when fired at 1250°. The material containing vanadium had a density very nearly equal to the green density but slightly less at 800°, and were approximately 0.95 of the x-ray density when fired at 950°C. (4) X-ray diffraction photographs of the material fired at 850°C containing V₂O₅ showed sharp lines in the back reflection region. To obtain the same line sharpness, the material not containing vanadium must be fired at a temperature several hundred degrees higher. (5) Magnetic Properties. Figure 2

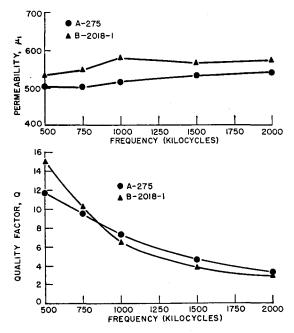


Fig. 2. Comparative measurements of μ and Q vs frequency for cores-275 and B-2018-1. A-275 Ni-Zn ferrite core fired at 1250°C for four hours. A-275 and B-2018-1. A-275 Ni-Zn ferrite core fired at 1250°C for four hours. B-2018-1 Ni-Zn ferrite core containing vanadium, fired at 950°C for four

shows comparative measurements of the permeability and Q or inverse loss tangent, for a vanadium containing material and for material not containing vanadium.

A more thorough study of this phenomenon is being made.

*This work was done by the Engineering Research Institute of the University of Michigan under the sponsorship of the U. S. Army Signal

Corps.

1 These data were obtained by the Carboloy Corporation, Detroit, using an electron microscope.