Two-point characteristic function for the Kepler–Coulomb problem

S. M. Blinder

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104
(Received 10 March 1975)

Hamilton's two-point characteristic function \(S(q_1, t_1, q_2, t_2) \) designates the extremum value of the action integral between two space–time points. It is thus a solution of the Hamilton–Jacobi equation in two sets of variables which fulfills the interchange condition \(S(q_1, t_1, q_2, t_2) = - S(q_2, t_2, q_1, t_1) \). Such functions can be used in the construction of quantum-mechanical Green's functions. For the Kepler–Coulomb problem, rotational invariance implies that the characteristic function depends on three configuration variables, say \(r_i, r_j, r_k \). The existence of an extra constant of the motion, the Runge–Lenz vector, allows a reduction to two independent variables: \(x = r_1 + r_2 + r_3 \) and \(y = r_1 - r_2 - r_3 \). A further reduction is made possible by virtue of a scale symmetry connected with Kepler's third law. The resulting equations are solved by a double Legendre transformation to yield the Kepler–Coulomb characteristic function in implicit functional form.

The periodicity of the characteristic function for elliptical orbits can be applied in a novel derivation of Lambert's theorem.

1. INTRODUCTION

Hamilton's two-point characteristic function can be defined as the action along a real trajectory connecting two space–time points:

\[
S(q_1, t_1, q_2, t_2) = \int_{t_1}^{t_2} L(q, \dot{q}, t) dt.
\]

By Hamilton's principle, the value of the integral between two fixed points represents an extremum wrt variations in path. The function \(S(q_1, t_1, q_2, t_2) \) might not exist for certain pairs of points or might be multivalued for others. The two-point characteristic function is a solution of the Hamilton–Jacobi equation in two sets of variables:

\[
\frac{\partial S}{\partial t_1} + H(q, \frac{\partial S}{\partial q_1}, t_1) = 0
\]

(2)

and

\[
\frac{\partial S}{\partial t_2} + H(q, \frac{\partial S}{\partial q_2}, t_2) = 0
\]

(3)

The second equation follows from the first by virtue of the interchange condition

\[
S(q_1, t_1, q_2, t_2) = - S(q_2, t_2, q_1, t_1)
\]

(4)

implied by the integral structure of the characteristic function. Initial and final momenta are given by relations of the form

\[
p_1 = - \frac{\partial S}{\partial q_1}, \quad p_2 = \frac{\partial S}{\partial q_2}.
\]

(5)

The two-point characteristic function finds utility in the construction of quantum-mechanical Green's functions and density matrices. An example is the kernel \(K(q_1, t_1, q_2, t_2) \) which represents a solution of the time-dependent Schrödinger equation

\[
\left\{ \frac{\partial^2}{\partial t_1^2} - H_1 \right\} K(q_1, t_1, q_2, t_2) = 0
\]

subject to the initial condition

\[
K(q_1, t_1, q_2, t_2) = \delta(q_1 - q_2).
\]

(7)

This Green's function can be structured in the form

\[
K(q_1, t_1, q_2, t_2) = F(q_1, t_1, q_2, t_2) \exp \left(\frac{i}{\hbar} S(q_1, t_1, q_2, t_2) \right)
\]

(8)

exponentially dependent on the two-point characteristic function. The exchange condition (4) is thus consistent with the Hermitian property

\[
K(q_1, t_1, q_2, t_2) = K(q_2, t_2, q_1, t_1).
\]

(9)

The preexponential function \(F \) in (8) is determined such as to fulfill Eqs. (6) and (7). For the free particle and harmonic oscillator, this is relatively straightforward.

The Coulomb Green's function \(K(r_1, t_1, r_2, t_2) \) has not yet been worked out in closed form, although the time-independent function \(G(r_2, r_1, E) \) is known. We have attempted to construct the time-dependent function via the representation (8) and have thereby been led to evaluation of the corresponding characteristic function.

2. KEPLER–COULOMB PROBLEM

The Hamilton–Jacobi equation for the attractive Coulomb system reads

\[
\frac{\partial S}{\partial t} + \frac{1}{2m} (\nabla S)^2 - \frac{Ze^2}{r} = 0.
\]

(10)

This pertains as well to the Kepler problem under the substitution \(Ze^2 = GMM \). We are, of course, in the nonrelativistic domain and are assuming \(M \gg m \) [or else reading \(m \) in Eq. (10) as the reduced mass]. For compactness we shall employ atomic units, setting \(m = e = 1 \) in Eq. (10). Equivalently, \(r \) is to be expressed in units of \(a_0 = \hbar^2/m\epsilon^2 \), \(t \) in units of \(\hbar^2/m\epsilon^2 = \alpha a_0/c \), and \(S \) in units of \(\hbar \).

Accordingly, Eqs. (2) and (3) for the Kepler–Coulomb characteristic function take the form

\[
\frac{\partial S}{\partial t_1} + \frac{1}{2} (\nabla S)^2 - \frac{Z}{r_1} = 0,
\]

(11)

\[
\frac{\partial S}{\partial t_2} + \frac{1}{2} (\nabla S)^2 - \frac{Z}{r_2} = 0.
\]

The Hamiltonian is, of course, a constant of the motion, which implies
E = -\frac{\partial S}{\partial t} = \frac{\partial S}{\partial t_1}.

Thus \(S \) must depend on \(t_1 \) and \(t_1 \) only through their difference \(t = t_2 - t_1 \), and

\[
E = -\frac{\partial S}{\partial t}.
\]

The angular momentum is likewise a constant:

\[
L = r_1 x p_1 + r_2 x p_2 = -r_1 \times \nabla_1 S = r_2 \times \nabla_2 S.
\]

Every trajectory is thus confined to the plane normal to the angular momentum vector. One can write

\[
\nabla_1 S = u_1 \frac{\partial S}{\partial r_1} + u_{12} \frac{\partial S}{\partial r_{12}},
\]

\[
\nabla_2 S = u_2 \frac{\partial S}{\partial r_2} + u_{12} \frac{\partial S}{\partial r_{12}},
\]

in terms of the nonorthogonal unit vectors

\[
u_1 = r_1/r_1, \quad u_2 = r_2/r_2, \quad u_{12} = -u_{12} = r_{12}/r_{11},
\]

\[
L = \frac{r_1 \times r_1}{r_1} \frac{\partial S}{\partial r_1} = u_1 \times u_1 \frac{\partial S}{\partial r_1} + u_{12} \frac{\partial S}{\partial r_{12}}.
\]

Thus far, \(S(x_1, y_1, t) \) has been shown to depend on the four variables \(r_1, r_2, r_{12}, \) and \(t \). A further reduction is made possible by the existence of an additional constant of the motion for the Kepler-Coulomb problem, namely the Runge-Lenz vector.\(^2\)

\[
A = (Ze^2m)^{-1}L x p + u.
\]

We find thereby

\[
A = \frac{L}{r_1} x \frac{\partial S}{\partial r_1} + \frac{L}{r_2} x \frac{\partial S}{\partial r_2} + \frac{L}{r_{12}} x \frac{\partial S}{\partial r_{12}}.
\]

Thus, \(S(x_1, y_1, t) \) is, in fact, the same variables which appear in Lambert's theorem [cf. discussion following Eq. (64)]. The Coulomb Green's function \(G(r_1, r_2, E) \) was also found to depend on just \(x \) and \(y \). Hostler\(^7\) showed that this is likewise a consequence of the "hidden symmetry" associated with the Runge-Lenz vector.

3. Solution of the Hamilton-Jacobi Equation

We turn next to the Hamilton-Jacobi equations (11)

\[
E = -\frac{\partial S}{\partial t},
\]

for the characteristic function \(S(x, y, t) \). Using (15) and (22), we find, in terms of the variables \(x \) and \(y \),

\[
\frac{1}{2} (\nabla_1 S)^2 = \left(\frac{\partial S}{\partial x} \right)^2 + \left(\frac{\partial S}{\partial y} \right)^2 + u_1 \cdot u_{12} \left[\left(\frac{\partial S}{\partial x} \right)^2 - \left(\frac{\partial S}{\partial y} \right)^2 \right],
\]

\[
\frac{1}{2} (\nabla_2 S)^2 = \left(\frac{\partial S}{\partial x} \right)^2 + \left(\frac{\partial S}{\partial y} \right)^2 + u_2 \cdot u_{12} \left[\left(\frac{\partial S}{\partial x} \right)^2 - \left(\frac{\partial S}{\partial y} \right)^2 \right].
\]

Noting that

\[
u_1 \cdot u_{12} - u_2 \cdot u_{12} = (u_1 + u_2) \cdot u_{12} = r_1 - r_2 \frac{x y}{r_{12}},
\]

the difference between Eqs. (11) reduces to

\[
\frac{1}{2} \left(\frac{\partial S}{\partial x} \right)^2 - \frac{Z}{x} \left(\frac{\partial S}{\partial y} \right)^2 = 0.
\]

With the help of (25), the sum of Eqs. (11) works out to

\[
\frac{\partial S}{\partial t} + \left(\frac{\partial S}{\partial x} \right)^2 - \frac{Z}{x} \left(\frac{\partial S}{\partial y} \right)^2 = 0.
\]

Equations (25) and (26) are equivalent to the symmetrical relations

\[
\left(\frac{\partial S}{\partial x} \right)^2 - \frac{Z}{x} \left(\frac{\partial S}{\partial y} \right)^2 = 0.
\]

which have precisely the form of the original Hamilton-Jacobi equations (11) for \(L = 0 \) and \(r_1, r_2 \) replaced by \(x/2, \ y/2 \).

In accordance with Eq. (4), \(S \) must fulfill the time-reversal condition

\[
S(x, y, t) = -S(x, y, t)
\]

which rules out solutions to (27) obtained simply by separation of variables.

A further symmetry property makes possible a closed-form solution of these coupled equations. This is the invariance of (25)-(27) under the scale transformation: \(x, y \to \ell^2 x, \ell^2 y; t \to \ell^2 t; S \to \ell S \). Thus

\[
S(x, y, t) = \xi S(x_1, y_1, t_1),
\]

showing that \(S \) is a linear homogeneous function of the variables \(x^{1/2}, \ y^{1/2}, \ t^{1/2} \). The condition (28) is, in fact, a special case of (29), for \(\xi = 1 \). By virtue of this homogeneity property, the characteristic function can be represented in the following form: \(t^{1/2} x \) function of \(x^{1/2}/t^{1/2} \) and \(y^{1/2}/t^{1/2} \).

Specifically, the following definition of variables is convenient:

\[
S = (32 Z^2 t^{1/2} f(u, v)), \quad u = (x^3/16 Z t^{1/2})^{1/6}, \quad v = (y^3/16 Z t^{1/2})^{1/6}
\]

for \(t > 0 \), \(0 < u < u \). Equations (27) thereby transform to

\[
\frac{1}{2} (f - u f_x - v f_y) + v^2 (f^2 - 1) = 0,
\]

\[
\frac{1}{2} (f - u f_x - v f_y) + v^2 (f^2 - 1) = 0.
\]

These equations are most readily solved by a double Legendre transformation, whereby

\[
F = u f_x + v f_y - f, \quad U = f_x, \quad V = f_y.
\]
\[F_y = u, \quad F_y = v. \]

We find thereby
\[F_y = \left(\frac{3}{4} \right)^{1/2}, \quad F_y = \left(\frac{3}{4} \right)^{1/2}. \] (33)

The positive square roots are appropriate since \(u, v > 0 \). Some further inequalities are required in order to precisely characterize the solution. Equation (25) implies, since \(x > y \), that
\[\frac{\partial S}{\partial y} > \frac{\partial S}{\partial x}. \] (34)

Since the angular momentum vector is directed parallel to \(u \times u \), Eq. (17) implies that
\[\frac{\partial S}{\partial y} = \frac{\partial S}{\partial x} > 0. \] (35)

The last two inequalities show that \(\partial S/\partial y < 0 \). Thus, in all cases,
\[f_x < 0. \] (36)

For \(E > 0 \), \(\partial S/\partial t < 0 \) and
\[f_x - u f_y - v f_y \leq 0. \] (37)

Since \(f_x > 0 \),
\[u f_x + v f_y < 0, \quad u f_x - v |f_y| \geq 0. \] (38)

Thus
\[f_x > 0 \quad \text{for} \quad E > 0. \] (39)

Inequality (38) further implies, in conjunction with (31), that
\[|f_x| > |f_y| > 0. \] (40)

Combining with (36) and (39),
\[0 < f_x < \infty, \quad -\infty < f_y < \infty. \] (41)

In terms of the transformed variables (32),
\[F > 0, \quad 0 < U < \infty, \quad -\infty < V < \infty. \] (42)

It is convenient therefore to define
\[U = \cosh \lambda, \quad V = -\cosh \mu \quad (0 < \mu < \lambda < \infty). \] (43)

(One might also define a second branch of the function with \(0 > \lambda > -\infty \) corresponding to points \(r_1, r_2 \) re­flected wrt the axis of the Runge–Lenz vector.) Integration of Eq. (33), with the appropriate choice of constant, now gives
\[\frac{8}{3 \sqrt{3}} \left(\frac{3}{4} \right)^{1/2} = \sinh \lambda \cosh \lambda - \lambda - \sinh \mu \cosh \mu + \mu = \sinh \lambda \cosh \lambda + 3 \lambda - \lambda - \mu. \] (44)

Reversion to the original variables is effected by the inverse transformation:
\[f = UF_y + VF_y - F_y, \quad u = F_y, \quad v = F_y. \] (45)

After some algebra we obtain
\[f(u, v) = u J(\lambda) - v J(\mu) \] (46)

where
\[J(\lambda) = \frac{\sinh \lambda \cosh \lambda + 3 \lambda}{4 \sinh \lambda} \] (47)

and
\[\sinh^3 \lambda \mu = \frac{\sinh^3 \mu}{\nu^3} = \sinh(\lambda - \mu) \cosh(\lambda + \mu) - (\lambda - \mu). \] (48)

By virtue of (30) and (48), the characteristic function can be expressed in the form
\[S(x, y, t) = (4Zx)^{1/2} (\lambda) - (4ZY)^{1/2} (\mu). \] (49)

Alternatively,
\[S(\lambda, \mu, t) = F\left(\frac{2}{x} \right)^{1/2} \sinh(\lambda - \mu) \cosh(\lambda + \mu) + 3(\lambda - \mu). \] (50)

In verification that the preceding represents the solution to Eqs. (25), (26), and (27), it is shown that
\[\frac{1}{2} S = \left(\frac{Z}{x} \right)^{1/2} \sinh \lambda = -\left(\frac{Z}{y} \right)^{1/2} \sinh \mu. \] (51)

Since \(\partial S/\partial t = -E \), it follows that \(E > 0 \) (hyperbolic orbits) is associated with real \(\lambda \) and \(\mu < 0 \) (elliptical orbits) with pure imaginary \(\lambda \) and \(\mu \). The case \(E = 0 \) (parabolic orbits) is obtained with \(\lambda = \mu = 0 \). Equation (48) becomes indeterminate but (49) reduces to
\[S(x, y) = (4Zx)^{1/2} - (4ZY)^{1/2}. \] (53)

This solution does not, however, fulfil the time-reversal condition (28).

When \(\mu = 0 \), then \(v = 0, y = 0 \) and either \(r_1 \) or \(r_2 \) is real. The characteristic function reduces to \(S(r, 0, t) \). As \(\lambda + \mu = 0, S \to 0 \).

The asymptotic region \(u, v \to \infty \) pertains to any of the limits \(Z \to 0, x, y \to \infty, \) or \(t \to 0 \). The asymptotic form of the characteristic function is obtained in the limit \(\lambda, \mu \to \infty \), whereby
\[S = -\left(\frac{Z}{2} \right)^{1/3} \left(\frac{e^{3a} - e^{3b}}{4} \right)^{1/3}, \quad u \to 2 \left(\frac{e^a - e^{3a}}{4} \right)^{1/3}, \quad v \to 2 \left(\frac{e^b - e^{3a}}{4} \right)^{1/3}. \] (44)

Thus
\[S = -\left(\frac{Z}{2} \right)^{1/3} \left(a^2 - b^2 \right)^2 = \frac{(x - y)^2}{2} = \frac{y^2}{2t} \] (55)

which represents the free-particle characteristic function.

4. ELLIPTICAL ORBITS

Negative-energy solutions are most directly obtained by continuation of the variables \(\lambda \) and \(\mu \) on the imaginary axis. Defining
\[\lambda = i \alpha / 2, \quad \mu = i \beta / 2 \] (56)

(the factors 1/2 for \(2\pi \)-periodicity), we obtain
\[S(\alpha, \beta, t) = (4Zx)^{1/2} F(\alpha) - (4ZY)^{1/2} F(\beta), \] (57)

\[F(\alpha) = J(i \alpha / 2) - \frac{3 \alpha + \sin \alpha}{8 \sin \alpha / 2} \] (58)

\[\sin^3 \alpha / 2 = \sin^3 \beta / 2 = \frac{\alpha - \beta}{2} \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha + \beta}{2}. \] (59)
Also, in analogy with (50),
\[
S(\alpha, \beta, t) = \left(\frac{2^{1/2}}{[(\alpha - \beta)/2] - \sin[(\alpha - \beta)/2] \cos[(\alpha + \beta)/2]} \right)^{1/3} \times \left[3 \left(\frac{\alpha - \beta}{2} \right) + \sin \left(\frac{\alpha - \beta}{2} \right) \cos \left(\frac{\alpha + \beta}{2} \right) \right].
\]
(60)
The characteristic function representing an elliptical orbit should exhibit a periodic structure of the form
\[
S(\alpha + n\alpha_0, \beta + n\beta_0, t + n\tau) = S(\alpha, \beta, t) + nS(\alpha_0, \beta_0, \tau), \quad n = 0, 1, 2, \ldots,
\]
where \(\tau \) is the period of the orbit. For Eqs. (60) and (61) to be consistent, two conditions must be met:
\[
3 \left[\left(\alpha - \beta \right) + n(\alpha_0 - \beta_0) \right] + \sin \left(\frac{\alpha - \beta}{2} + n(\alpha_0 - \beta_0) \right) \times \cos \left(\frac{\alpha + \beta}{2} + n(\alpha_0 + \beta_0) \right) \]
\[
= 3 \left(\frac{\alpha - \beta}{2} \right) + \sin \left(\frac{\alpha - \beta}{2} \right) \cos \left(\frac{\alpha + \beta}{2} \right) + n \left[3 \left(\frac{\alpha_0 - \beta_0}{2} \right) + \sin \left(\frac{\alpha_0 - \beta_0}{2} \right) \cos \left(\frac{\alpha_0 + \beta_0}{2} \right) \right],
\]
(62)
and
\[
\frac{t}{\pi} \left(\frac{\alpha - \beta}{2} \right) - \sin \left(\frac{\alpha - \beta}{2} \right) \cos \left(\frac{\alpha + \beta}{2} \right) \]
\[
= \frac{\tau}{2\pi} \left(\alpha - \sin \alpha \right) - (\beta - \sin \beta). \quad (64)
\]
This is, in fact, a classical result known as Lambert's theorem. In the original form of the theorem, \(\alpha \) and \(\beta \) are defined by
\[
\sin \alpha = \left(\frac{x}{2a} \right)^{1/2}, \quad \sin \beta = \left(\frac{y}{2a} \right)^{1/2},
\]
(65)
\(a \) being the semimajor axis of the ellipse. By virtue of (51), (13), (56), and the relation \(E = -Z/2a \), our definitions of \(\alpha \) and \(\beta \) are shown to coincide with (65).

Very similar in form to (64) is Kepler's equation
\[
l = \frac{\tau}{2\pi} \left[\left(\theta_1 - \theta_0 \right) - \left(\theta_1 - \theta_0 \right) \right] = \frac{\tau}{\pi} \left[\left(\theta_1 - \theta_0 \right) - \left(\theta_1 - \theta_0 \right) \right] \cos \left(\frac{\theta_0 + \theta_1}{2} \right)
\]
(66)
in which \(e \) is the eccentricity and \(\theta_1, \theta_0 \) the eccentric anomalies at \(r_1 \) and \(r_2 \), respectively. Comparing (66) with (64) we can identify
\[
\alpha - \beta = \theta_2 - \theta_1, \quad \cos \left(\frac{\alpha + \beta}{2} \right) = e \cos \left(\frac{\theta_2 + \theta_1}{2} \right).
\]
(67)
Setting \(\alpha - \beta = 2\pi \), \(l = n\pi \) in Eq. (60), we obtain the characteristic function for \(n \) complete cycles
\[
S = \frac{3}{8n} \left(2\pi n \right)^{1/2} e^{-1/3}.
\]
(68)
This is related to \(W \), the corresponding solution of the time-independent Hamilton-Jacobi equation, by
\[
S = W - E \tau.
\]
(69)
Since for elliptical orbits
\[
\tau = 2nZ (-2E)^{-3/2},
\]
we find
\[
W = nJ, \quad J = (2\pi Z)^{3/2} e^{-1/3},
\]
(70)
in agreement with the value of the canonical action
\[
J = \frac{p_r}{m} - \left(p_\theta \right) \cos \theta + p_\phi \sin \theta.
\]
(72)
This is equivalent to the more familiar result that
\[
E = -2\pi Z^2 / J^2 = -2mZ^2 e^4 / J^3
\]
(73)
which for \(J = nh \) \((n = 1, 2, 3, \ldots)\) gives the Bohr energy levels.

5. Repulsive Coulomb Potential

For a repulsive Coulomb potential, an analogous calculation leads to the characteristic function
\[
S(x, y, t) = (4\pi Z)^{1/2} \left(\lambda - (4\pi Z)^{1/2} \right) \left(\mu \right),
\]
(74)
\[
\frac{\sin \lambda \cos \lambda}{4 \cosh \lambda} = \frac{\sinh \lambda \cos \lambda}{4 \cosh \lambda},
\]
(75)
\[
\frac{\sinh \lambda \mu}{\cosh \lambda} = \frac{\sinh \lambda - \mu \cosh \lambda + (\mu - \lambda)}{(0 < \mu < \lambda < \infty)}.
\]
(76)

L. Hostler, J. Math. Phys. 5, 581 (1964). The two Green's functions are related by Fourier transformation as follows:
\[
K(Q_1, r_1, t) = \lim_{\epsilon \to 0} \int dE \left[\left(\frac{d}{dE} \right) \left(\frac{d}{dE} \right) \right] e^{i(\epsilon + \epsilon)} dE.
\]
(77)

The properties of the Runge-Lenz vector can be developed as follows. Start with Newton's second law for a particle in a Coulomb field:

\[K(Q_1, r_1, t) = \lim_{\epsilon \to 0} \int dE \left[\left(\frac{d}{dE} \right) \left(\frac{d}{dE} \right) \right] e^{i(\epsilon + \epsilon)} dE. \]
\(\frac{d}{dt} \left(\frac{Ze^2}{r^3} \right) = - \frac{Ze^2}{r^3} \).

Then

\[L \times \frac{d}{dt} \left(\frac{Ze^2}{r^3} \right) = - \frac{Ze^2}{r^3} \left(\frac{r \times dr}{dt} \right) \times r. \]

This works out to

\[\frac{d}{dt} \left(L \times p + Ze^2 \mu r \right) = 0, \]

showing that \(A \) is a constant of the motion. The equation of the orbit is obtained from

\[A \cdot r = Ar \cos \theta = (Ze^2 \mu)^{-1} L^2 + r, \]

\[r = (Ze^2 \mu)^{-1} L^2 / (1 - A \cos \theta), \]

which represents a conic section. The vector \(A \) is directed towards the aphelion of the orbit; its magnitude equals the eccentricity.

8This also applies w.r.t. the original position variables:

\[S(\xi^2 r_1, \xi^2 r_2, \xi^2 \theta) = \xi S(r_1, r_2, \theta). \]

Newton's second law for a Coulomb force is likewise invariant under the substitution \(r \rightarrow \xi^2 r, \ t \rightarrow \xi^2 t \). This implies Kepler's third law of planetary motion, that the period of an orbit is proportional to the three-halves power of its linear dimension.
