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The reflection of electrons by standing light waves, i.e., the stimulated Compton scattering proposed by
Kapitza and Dirac, has been treated by applying the Born approximation. The probability that an electron
will be reflected is derived, for light waves that are not too intense, as a function of the electron beam orien-
tation and of the coherence properties of the light waves. It is shown, among other things, that the original
formula of Kapitza and Dirac is not directly applicable to representative studies using lasers. More general
formulas are given along with a discussion intended to serve as a practical guide in the design of experi-

ments.

INTRODUCTION

HE Compton effect,! in which photons are scattered

inelastically by collisions with electrons, is a familiar
example of the interaction between radiation and
matter. A decade after the discovery of the inelastic,
or ordinary, Compton effect, Kapitza and Dirac
predicted the existence of a stimulated Compton
effect? in which electrons exchange momentum es-
sentially elastically with photons in a standing wave.
Before the advent of the laser, the Kapitza-Dirac
effect lay hopelessly outside the realm of direct ob-
servation. Current technology has dramatically changed
the situation, however, and we may confidently expect
the phenomenon to be studied in detail.® Unfortunately,
the interaction probability derived by Kapitza and
Dirac is applicable to conditions which are not easily
met in the laboratory. Therefore it seems worthwhile
to rederive the result of Kapitza and Dirac by a very

* This research was supported by a grant from the National
Science Foundation.
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There is now no doubt in this author’s mind that the low-
resolution observations in both preliminary reports were obser-
vations of laser-induced noise. On the other hand, experiments
in the author’s laboratory have improved by several orders of
magnitude in laser power and time discrimination and by several-
fold in angular resolving power. Repeated observations of elec-
tron reflection roughly consistent with the theory described in
the present paper have now been made.

The separation of stimulated Compton signals from the ac-
companying noise in current experiments is not an easy matter,
and various explanations have been proposed for the phenomena
sometimes observed. A suggestion has recently been advanced
to the effect that the electron-reflection probability may be aug-
mented by several orders of magnitude in comparison with Eq.
(25) in the text when photons in the standing wave make several
passes between the end mirrors before being lost from the laser
cavity. This cannot be correct. The electron-reflection probability
depends only on the magnitude of the perturbing potential in
Eq. (1). This is determined in a straightforward way by the
vector potential of Eq. (2) and hence, by thelight intensity,
as shown above. The lower the losses from the cavity, the higher
will be the intensity, to be sure, but this does not alter the Ka-
pitza—~Dirac relation.

different scheme and to extend the treatment to a
variety of experimental conditions.*

NATURE OF STIMULATED COMPTON
SCATTERING

Kapitza and Dirac suggested that a standing light
wave can serve as a diffraction grating for a beam of
electrons. According to this wave picture, the planes of
maximum photon density can presumably reflect an
electron beam, provided that Bragg’s law is satisfied.
Kapitza and Dirac proposed an alternative particle
picture as an aid to calculating the probability for
reflection. It was, of course, the particle picture which
led Kapitza and Dirac to designate the phenomenon as
“stimulated Compton scattering.”

The significance of the standing wave in the particle
description is apparent from the following consider-
ations. A standing wave can be viewed as the super-
position of a running wave A propagating in one direc-
tion and a wave B running in the opposite direction.
In the ordinary Compton effect, scattering may be
interpreted as the absorption of a photon by an electron
to some virtual state followed by the spontaneous
emission of the photon in an arbitrary direction. By
contrast, stimulated Compton scattering may be en-
visioned as the absorption of a photon from wave
train A followed by a re-emission at 180° induced by
the influence of the stimulating beam B. The trajectory
of the recoiling electron satisfies Bragg’s law as a con-
sequence of energy and momentum conservation. If the
intensity of the stimulating beam is sufficiently high,
stimulated Compton scattering can take place with a
probability as high as or higher than that of the spon-
taneous, or ordinary, scattering.

Kapitza and Dirac derived the probability for inter-
action by coupling the khown probability for ordinary
Compton scattering with the ratio of Einstein coef-
ficients for stimulated emission and spontaneous
emission. We shall, instead, return to the diffraction
grating picture and obtain the stationary-state solu-

4 Various other treatments to stress different aspects of stimu-
lated Compton scattering have appeared. See H. Dreicer, Phys.
Fluids 7, ?35 (1964); J. H. Eberly, Phys. Rev. Letters 15, 91
(1965) ; I. R. Gatland, Phys. Rev. 143, 1156 (1966).
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tion to the Schrédinger equation. The method to be
described exactly parallels standard theoretical studies
of the diffraction of electrons by matter. The con-
ventional notation of electron diffraction is followed
wherever possible.

THEORETICAL TREATMENT

We treat stimulated Compton scattering in terms of
the interaction of an electron plane wave with the
periodic perturbing potential corresponding to a
standing light wave. For a small perturbing field the
solution to the Schrédinger equation is given by the
Born approximation®

9(p) =9o(2xm/H*R)? /exp(is-r)V(r)dr 2, (1)

where 4y is the incident electron intensity, m is the
electron mass, R the distance between the scatterer
and point of detection, r the position in the scattering
medium, and V(r) the potential energy of an electron
in the scattering medium. If ny and n are unit vectors
in the direction of the incident and scattered electron
beams, s is a vector of direction (n,—n) and of mag-
nitude (4w/A,) sin(¢/2). Equation (1) expresses the
scattered electron intensity 9(¢) as a function of
scattering angle ¢.

For the purposes of the problem, V(r) is given
adequately by the potential energy of an electron in a
classical radiation field, or®

V(t)=—(e/mc)A-p+(e*/2me?) |A ]2, (2)

where A is the vector potential. In conventional one-
photon processes involving bound electrons (absorp-
tion, emission, etc.) the A:p term is overwhelmingly
the leading term. Two-photon processes with bound
electrons (two-photon absorption, one-photon ab-
sorption to virtual state followed by emission, etc.)
result in first order from the | A |? term and second
order from the A-p term. In the case of a free electron,
however, to second order the only contributor is the

A [? term ®

In the following sections we apply the above treat-
ment to several situations, starting with the simplest
case, the scattering of electrons by a perfectly coherent
light wave.

1. Standing Wave of Monochromatic Light

Let us assume that the light waves are plane waves
moving along the z axis with no spread in wavelength.
The vector potentials of the components in the standing
wave may be written as

A(z, t) = Ay cos(kz+wl) (3a)

5 M. Born, Z. Physik 38, 803 (1926); N. F. Mott and H. 5. W.
Massey, The Theory of Atomic Collisions (Oxford University
Press, London, 1949), 2nd ed.

¢ W. Heitler, The Quantum of Rediation (Oxford University
Press, London, 1947), 2nd ed.
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and

A'(z, 1) = A cos(kz—ot), (3b)

in which k= 27/, and w=27». Here and later, symbols
for wavetrains running upward are primed whereas
symbols for wavetrains running downward are left
unprimed. We assume that both wavetrains are plane
polarized in the same direction, but the particular
direction is immaterial in the problem. The expression
for | A |2 to be inserted into Eq. (2) is

(A +A,)2=‘ 2AOAQ, COSZkZ—*—%(AQ‘— A()/) 2
+ A4y cos2wi+1 A2 cos(2kz+2uwt)
+1 402 cos(2kz—2wt). (4)

Of the terms in Eq. (4), the latter three are time de-
pendent and, for bound electrons, could contribute to
two-photon absorption or emission. Since such tran-
sitions for free electrons are not consistent with the
conservation of energy and momentum, the terms are
of no concern in the present problem. The second
term corresponds to a featureless dielectric which may
refract an electron but which cannot give rise to an
interference pattern. The first term corresponds to a
stationary diffraction grating with a cosine squared
density of ‘“‘scattering matter” and a repeat distance
of #A,. It is the only term of relevance in this study.

The relationship between the vector potential and
intensity of a component running wave is®

Ty=m? A/ 2, (5)

where I, is the energy per unit area per unit time.

All quantities required for calculating 9(¢) by Eq.
(1) are now at hand. For V(r), the perturbing po-
tential inside the standing wave may be taken as

V(r) = (¢&/mc?) Ao Ay’ costkz
=7V, coskz. (6)

The scalar product s-r in Eq. (1) may be represented
by

ser=s2+S8,y-5,2=s¥ sinf cosy
+sy sing siny+sz cosB, (7)

where 8 and v are the spherical coordinate angles
representing the orientation of s. For representative
conditions 8 and v are so small that we may replace
sz, Sy, and s, by 8s, Bys, and s, respectively.

In the experimental arrangement of Fig. 1 let us
assume the electron beam has a breadth of ¥ in the y
direction (perpendicular to the plane of the figure)
and Z in the z direction with Z>>\,. The integral of
Eq. (1) becomes, then,

/ exp(is-1) V(1) dr=Vofofyfss (8)
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where

fom [ expisa)ae= (2/89) sin(ast/2),

—1/2

(9a)

Y/2
fo= [ eplisg)dy=(2/s) sin(s¥/2), (9b)

Z/2
f= / exp(is.3) costkzds,

—z2
=f++f0+f—:
in which fo= (1/s) sin(sZ/2) and
fo=sin[ (s£2k)Z/2]/2(s2k).

(9¢)

The factor f, expresses the requirement that the z-
axis Laue condition be satisfied. Its components fo,
f+, and f_ have appreciable values only at scattering
angles with s=0 and s=-2k, the zeroth-order and
first-order reflections from the standing wave. The
cosine-squared form of the density of the scatterer
rules out higher-order reflections according to Eq.
(9¢). This may be interpreted in terms of the maximum
momentum exchange, 24/\,, which a scattered photon
can impart. Such an exchange corresponds to a first-
order reflection.

The factors f, and f, increase the severity of the
restriction to the full Bragg condition, if / and ¥ are
not too small, by requiring that the reflection be
specular., According to Eq. (9a), if AJ/A2&K3, the
factor f, is no longer very restrictive and the scattering
is said to be in the “Raman-Nath” region. Under these
not uncommon conditions the orientation of the inci-
dent electron beam with respect to the Bragg planes is
not critical but the variable s is still limited to 0 or
+2k.

The intensity of scattered electrons is then

9 (¢, ¢:) =90(2am/BR)*V* | fuf f: 2,

where ¢, and ¢, are the angles of scattering in the
horizontal and vertical directions. At the small scatter-
ing angles encountered ¢, and ¢. may be taken as

(¢/S) = (¢‘y/sy) = (¢‘z/sz) N/ 2w (11)

by virtue of the definition of s. For experimental reasons
the integrated intensity of the Bragg reflection is of
more practical interest than the angular profile of
Eq. (10). The integrated intensity for a first-order
reflection

(10)

V= [ 5.(6,, 9. Reit i,

() (B v =) [ Ut [ Lot s
(12)
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Fic. 1. Diffraction of
electron beam by standing
light wave.

MIRROR

yields the probability N/N, that an electron in the
incident beam will be reflected. Since f, is virtually
constant over the range where f, is appreciable, it is
easily seen that Eq. (12) reduces to

N/No= (wlmVoho/2h%)*g(B), (13)

where
g(8) =[sin?(2wBl/\;p) 1/ (2mBI/A )2

The angle §=0—0g is the deviation between the
actual angle @ of entry of the electron beam and the
correct Bragg angle 8s. Consequently, the function
g(B), which is unity at perfect alignment, expresses
the allowable latitude in setting the angle of incidence
in a stimulated Compton experiment with an ideal
standing wave. Note that even if 8 is allowed to vary,
the total angle of scattering continues to be governed
by the Bragg formula

Ae=2(\p/2) sin(¢/2).

Inserting the deBroglie relation \,=#%/mv and Egs.
(5) and (6) into Eq. (13), we find that the probability
P(B) of reflection of electrons is

P(B)=N/N,
= (le*/m2chiv) - (1/0) - Il g(B)
= PMg(B) ) (14)

where Py represents the maximum probability of
reflection that can be obtained with the light intensities
Iy and I, This expression differs from the Kapitza-
Dirac relation for =0,

N/Ny= (let/2m2ch*) « (Ll / Av).

In Eq. (15) the intensities

(15)

Io=/ I(v)dv

are integrated intensities and Ay is defined by
oIy Av= / 1G)T (v) dv,

in which I(v) and I’(v) are energies of the component
light waves per unit area per unit time per unit fre-
quency range. Equation (15) lacks the 2/2? dependency
of Eq. (14) and formally blows up as the frequency
spread goes to zero. A closer comparison may be made
if it is recognized that there is an effective lower limit
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Fic. 2. Orientation of effective
n Bragg planes (parallel to dashed
line) when angles and frequencies
are different in the absorbed and
stimulating light waves.

of Av imposed by the uncertainty principle Ap,-At>1
where A¢ is the length of time, /v, that an electron
experiences the light wave, or

Av> /. (16)

For 1-kV electrons passing through a light beam
1 cm wide, v/ is 2)X10° sec™. This corresponds, in a
ruby laser, to AN=20.03 A. If the derivation leading
to Eq. (15) had been based on plane-polarized rather
than unpolarized radiation, the factor of 2 in the
denominator would have been absent.

2. Distribution of Frequency and Direction of
Propagation

When the frequency spread Av is small compared
with v/ and when the angular divergence of the light
waves is small compared with Ap/J, Eq. (14) suffices.
Since these conditions are usually not satisfied it is
helpful to derive expressions for the effects of fre-
quency spread and angular divergence of the light.

Let us suppose that an electron encounters two
superposed light waves. One, with frequency », is
moving downward in the xz plane at an angle of 3
with respect to the z axis. The other is moving up at an
angle 7/, in the same plane, with a frequency »’ slightly
different from v. We may still use the approach of
Sec. 1 if we construct a moving coordinate system in
which, by Doppler shifts, the two frequencies are
identical. In the moving frame of reference, the two
light waves form a standing wave, the Bragg planes of
which can reflect electrons according to Eq. (14).

BARTELL

If the electron trajectories in the moving frame which
satisfy the Bragg relation are transformed back into
the laboratory frame, the trajectories can be interpreted
in terms of reflections from inclined Bragg planes
parallel to the dashed plane in Fig. 2. If (»'—n) and
(»’—v) are small, the angle of inclination £ is given by

t=L("—v)c/2v0]+3(n"—n)
=Ev+£m (17)

in which the Doppler correction and mean tilt of light
rays are evident.

A. Case with Ay0, Av7#0

Let us first consider the case in which the distribu-
tion of £ values, according to relation (17), is derived
principally from the distribution in light frequencies
and not from a spread in ray angles n. This is not the
representative case for the output of a ruby laser but it
turns out to be the case corresponding to the treatment
of Kapitza and Dirac.?

In Eq. (14) we express the reflection probability
P(B) as a function of the Bragg misalignment angle
B=60—0g. To extend the treatment let us continue to
reckon 8 from the effective Bragg planes but let us
refer our results to the laboratory angle 8y, the value
of 6—68s for hypothetical horizontal Bragg planes.
Thus, if the two frequencies » and »' are different,
it is apparent from Eq. (17) that

Bo=B+&
=B+ (' —v)c/2m, (18)

and hence that the distribution of N/N, with angle of
entry is
Pug(B) = Pug(Bo—&»)

= P(Bo). (19)

This result is readily extended to the case in which
waves of two frequencies »; and v, descend and are each
reflected vertically by a mirror, giving

Pv(ﬁo)=PM

where the I; are intensities of the ith waves and

(11[1"|“12[2') g(ﬂo) +1112’g (Bo— £19) +12[1'g(180+512)
LI+ LI+ LI+ ILIY ’

(20)

El2= (V2'—' Vl) 6/21/7).

This result, in turn, may be extended to the case of a continuous distribution of frequencies reflected by a mirror,

for which

PV(BO)=PM( / f 1) () g(Bo— 1) dvds’ / / I(u)I’(u’)dudv’).

The denominator of Eq. (21) can be written as
[1wa [ronar=1ay,

the product of total incoming and outgoing intensities.

(22)

(21)

Equation (21) is the general result for vertically
running waves involving a frequency distribution. In
the event that the frequency spread is much wider than
the limit Av; of Eq. (16), the distribution P,(8y) is
much wider (and lower) than the P(8) of Eq. (14).



REFLECTION OF ELECTRONS BY STANDING LIGHT WAVES

Accordingly, we may treat the function g(g8)=
g(Bs, », v') as a Dirac delta function. From Eq. (18)
we see that a frequency »* will give constructive
electron interference when paired with frequency » at
the angle B if the requirement »'=v+4218y/c is met.
Therefore, we may set

g(ﬁ% v, Vl) =K6(V"—V0’)7 (233)

where vy =v+2y18y/c, and where the proportionality
constant K is determined from the normalization
relation

1=/ 8 —w)dv'

=K f g(Bo— ' —vJc/2m)dv’

- [ e
=9/IK,
or

g(ﬁos vy V,) = ('U/l) S(V’—VOI) .
We may now express Eq. (21) as

Po(8o) = (Py/ 1Y) f f TGV - (8/1) 80— ) dods’

(23b)

= (vPy/ILIY) / 1) () do, (24a)
or, inserting the value of Py from Eq. (14),
[t 2
Po(B) = —r [ I(v)I’(v-l— ”"’B“)dy. (24b)
mc ity ¢

At the mean Bragg angle of 8,=0, the reflection proba-
bility is at a maximum, and for this special case Eq.
(24) becomes

P,(B=0) = (le*/ mechivis) f IG)I (v)dv.  (25)

This is exactly the result derived by Kapitza and
Dirac? if allowance is made for the fact that Eq. (25)
pertains to polarized radiation. If unpolarized radia-
tion is used, the x component cannot stimulate emission
of a virtually absorbed y component and vice versa
and, accordingly, the reflection probability for a given
light intensity is half as great as given by Eq. (25).
The polarized case is more appropriate in practice since
lasers generate polarized light and since it is unthink-
able, at present, to study the phenomenon without
lasers.
It is useful to note that the area

[ P80 do= v 20) P

is independent of the frequency spread as long as
AyKy. Therefore, provided the standing wave is
perfectly undirectional and provided Av>>Av,, the
effect of doubling A» is to double the range of 8 over

(26)
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which reflections may be observed but at the cost of
halving the maximum value of N/N,.

A feature of the standing waves of Sec. 1 not shared
by those of Sec. 2 is that the coherence of the purely
monochromatic waves in Sec. 1 guarantees that the
Bragg planes extend indefinitely along the z axis.
The Bragg planes in Sec. 2 are clearly defined only
close to the mirror which generates the nodal plane
common to all frequencies. Further away from the
mirror the waves of different wavelength begin to get
out of phase with each other, causing a washing out of
the Bragg planes. The Kapitza-Dirac relation (25),
then, is an upper limit appropriate, at most, when the
distance from the mirror is small compared with
A2/ AN,

B. Case with Av~0 and Ag=0

For giant pulse lasers and representative electron
velocities, the values of Av; and A» may be roughly
comparable. Therefore, the correct order of magnitude
may be calculated from either Eq. (14) or Eq. (24)
in the case of standing waves exhibiting no divergence.
On the other hand, the principal assumption of Sec. 4
is not valid for many or most lasers of high power.
If AX for a ruby laser is taken as 0.03 &, for example,
the corresponding range in angle of incidence Af=
cAv/2vv is only about 3X107% rad for 1-kV electrons.
This is much smaller than the characteristic divergence
of several milliradians in laser output. Therefore, it is
clear that neither Eq. (14) nor the Kapitza-Dirac
equation (24) are likely to be suitable as they stand
for interpreting experimental studies with typical
lasers. In practical cases, then, the term &, in Eq. (17)
arising from the angular divergence of the light waves
will often be dominant. The relative tilts of incoming
and outgoing waves about the axis of the electron
beam (i.e., the tilt components in the yz plane) are of
little consequence but the tilt angles which alter the
electron’s angle of incidence to the effective Bragg
planes are vitally important.

Let us now neglect Av and take the laboratory angle
Bo to be

Bo=B+4&,
=B+3(n"—n), (27

where n and n’ refer to projections in the xz plane. If
we assume that the waves encountering the mirror
may be regarded as a distribution of independent plane
waves with different directions, we may write equations
exactly analogous to Egs. (18)-(25). The general
result for electron reflection probability close to the
mirror is

Py = (Pu/Told) [[ IV T G g(Bo—t) dnin’ (28)
where
1= [ 1y [ r@ar

If the spread in 7 is large compared with the breadth
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of g(B), Eq. (28) reduces to
Po(8) = o Pu/IE) [ IG)I (1280 (29)
or, at the mean Bragg angle of incidence with 8,=0
Py(8=0) = O Pu/IIY) [ 1) (m)dn. (30)

If, for sake of argument, we assume that 7(»n) is of
the form

I(n)=1Io/2n,,
= ()’

|7 |<ne
{7 [ >0,

the maximum probability (8,=0) becomes

Pn(ﬁo) = Py ()\p/l) * (1/2770)

= (let/m?c*h**) - (\p/20m0) Loly'. (31)
That is, if the divergence of the light waves is two orders
of magnitude broader than the natural diffraction
latitude g(8), the probability of electron reflection is
depressed two orders of magnitude below the maximum
probability Py for the given light intensity. A not
insignificant compensation for this disadvantage, how-
ever, is that the problem of aligning the electron beam
with respect to the light beam may be two orders of
magnitude easier!

3. Bragg Planes with Nonuniform Densities

In the above sections we have dealt with light waves
which were considered to have featureless wavefronts.
Standing waves in a laser cavity, however, as a rule
possess nodal surfaces parallel to the laser axis in
addition to the principal nodal planes perpendicular
to the axis. The mathematical modification required to
treat such a case is self-evident; it simply involves a
modification of the form of V(r) to be inserted into
Eq. (1). Since the forms encountered in typical high-
power lasers are complex and irregular it does not seem
profitable at present to give details of integrations for
nonuniform densities of wavefronts. Nevertheless, it is
worthwhile to discuss one aspect of axial nodes.

A standing wave in an ideal cavity with a rectangular
cross section has a periodicity in three rather than just
one dimension. The principal planes are populated, as
it were, with ‘“atoms” of localized photon density
(i.e., antinodes) in a regular array. Families of Bragg
planes can be constructed to pass through these
“atoms” in many different directions. As a conse-
quence, it is possible to satisfy the Bragg condition
by certain planes which are tilted with respect to the
principal planes. The allowed reflections, according to
an analysis of Eq. (1), are from planes in which the
Miller indices are zero or unity. Since the wavelength
perpendicular to the axis of a standing wave is ex-
tremely large compared with the wavelength along
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the axis, the total angle of electron scattering is virtually
the same for 001, 011, 101, and 111 reflections.

The existence of the nodes parallel to the laser axis
signifies, of course, that the photons have a nonzero
component of momentum perpendicular to the axis.
Indeed, in a cavity b units across spanned by #, trans-
verse waves, we may consider the standing wave to be
generated by crisscrossing running waves slanting
off axis by a definite angle 4 where m=Apn,/b.
For a ruby laser with =1 cm and #,~50, the value of
7 i3 about 3 mrad, a not atypical value. A point to
note, however, is that if the standing wave consists of
a single such mode it is inappropriate to invoke Eq.
(30) just because the output exhibits a divergence.
Even though slant 4 may be enormous compared with
the breadth of g{8), the electron reflection probability
is undiluted by the light divergence if the light is fully
coherent. Allowed reflection angles are not spread over
a continuous range of 8, as they are in the model of Sec.
2B; they are concentrated sharply in the allowed
Bragg reflections. The principal (001) reflection for our
ideal single divergent mode case (rectangular cross
section) is as intense as that for a nondivergent mode
of the same photon intensity. The higher index (101,
101) reflections are tilted by B, values of #£mn and are
one-fourth as intense.

CONCLUSION

The probability that an electron will undergo
stimulated Compton scattering by a standing light
wave has been derived for several well-defined con-
ditions. It is shown, among other things, that the
original formula of Kapitza and Dirac requires modi-
fication before it can be compared with experimental
studies with lasers.

Since the present calculations are based on a per-
turbation approach, they must obviously fail as cal-
culated probabilities approach unity. Giant-pulse
lasers now available have intensities high enough to
induce saturation of first-order Bragg reflections. At
such high intensities, however, unless conditions of
extreme coherence of light waves are attained, electron
reflection angles are no longer restricted to first-order
angles because multiple reflections can take place with
high probability. At such intensities the kinematic
treatment applied above must be replaced by a dynamic
treatment. The search for a completely satisfactory
dynamic treatment of electron scattering by matter
has occupied the attention of many theorists in recent
years. The treatment of electron scattering by intense
radiation fields will surely add new and interesting
challenges.
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