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A surprisingly simple expression in "closed form" for. the cross section ~a/ ~ for t~e scattering of 
thermal neutrons (including polarized neutrons) from an Ideal quantum gas IS denved. This re;;ult exte~ds 
the work of Van Hove on the quantum gas. An expansion is obtained for drr/dE. The case of elastic scattenng 
is treated separately. From these expressions is obtained a criterion for ignoring t~~ statistics of t~e scatte.rer 
in favor of classical (Boltzmann) statistics. This criterion should have so~e validIty f?r weakly mteracting 
systems. It is shown that the effects of statistics on the neutron cro~s sectl~n for a helium-4 gas range from 
5% or less for the noninteracting gas up to as much as 40% for the mteractlng system. 

I. INTRODUCTION 

In most theoretical analyses of slow-neutron-scatter­
ing experiments, the wavef~nctions of ~he scatt~ring 
system are neither symmetnzed nor anttsymmetnzed. 
The well-known exceptions to this rule are molecular 
hydrogen and liquid helium for which the statistics of 
the scatterer playa dominant role.! Also, recent calcu­
lations2 indicate that for neutron scattering from 
methane at lOOK, statistical corrections may be as 
great as 30%. For most scatterers, however, very ele­
mentary arguments show that the application of quan­
tum statistics yields only a small correction. However, 
such effects as the Kohn anomaly, crystal defects, and 
polarization effects in magnetic scatterir:g-which are 
being measured-may produce structure In the neutron 
cross section amounting to only a fraction of a percent 
of the total cross section. It then becomes important 
and interesting to determine exactly how small the 
effects of the quantum statistics of the scatterer are in 
determining the neutron cross section. 

The approximation made in ignoring :tatistics can 
be justified for many scatterers by notmg that the 
number of phase space cells available to an atom is 
much greater than the number of atoms. This conditi.on 
applied to an ideal gas can be expressed by the In­

equality '1«1, where the "figure of merit" '1 is defined 
by3 

'1 = [p/(2So+ 1) ] (h2/27rMkT) 3/2. ( 1) 

Here, p is the number of identical atoms per unit 
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P. Michael, ibid. 138, A692 (1965). 
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volume in the scatterer, M is the mass of an atom, 
T is the absolute temperature, and So is the nuclear 
spin. For 11»1, the identical particles obey quantum 
statistics. Thus, values of Tf of order unity characterize 
the transition region in which the statistics of the 
system go from classical (Maxwell-Boltzmann) to 
quantum. 

While 11 is a quantitative measure of "how classical" 
a system of noninteracting identical particles i~, it d?es 
not offer a direct measure of the effect of the InclUSIOn 
of the correct statistics on the neutron cross section. 
In this paper we examine the question of the need for 
proper symmetrization of the wavefunctions by care­
fully treating the ideal-gas scattering system, thus iso­
lating the effect of statistics from the complications of 
interactions. An expression in "closed form" for the 
cross section for the scattering of thermal neutrons 
from an ideal quantum gas (an ideal gas of bosons or 
fermions) is obtained. It is shown how to modify the 
expression to describe the scattering of polarized neu­
trons. These results extend the work of Placzek4 and 
Van Hove.6 The most useful results obtained by Van 
Hove for the quantum gas are in the form of expansions 
for the time-dependent pair distribution function. These 
expansions suffer from convergence problems as the 
region in which quantum statistics dominate is ap­
proached. Furthermore, Van Hove assumes an un­
polarized incident beam. 

From our result, we obtain a criterion for ignoring 
the effect of statistics on the cross section. This criterion 
should apply, at least semiquantitatively, to weakly 
interacting systems as well. As an example of the im­
portance of statistics, we consider a system of gaseous 
4He atoms. 

n. THE NEUTRON CROSS SECTION 

Assuming only the Fermi approximation, and nothing 
about the statistics of the scattering system, the neutron 

'G. Placzek, Proc. Symp. Math. Statistics Probability 2nd 
Berkeley, Calif., 69 (1951). 

6 L. Van Hove, Phys. Rev. 95, 249 (1954). 
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cross section is6 

where hkl and hk i are the final and initial momenta of 
the neutron, respectively, 

and 

are the momentum and energy losses of the neutron, 
respectively; m is the neutron mass; rj(O) and rl(t) 
are Heisenberg position operators for the jth and lth 
scattering nuclei, respectively; and aj and al are bound­
atom scattering lengths (the matrix elements of which 
have already been taken between neutron spin states), 
assumed to be of the following spin-dependent form: 

(3) 

where XI and Xi are the final and initial neutron spin 
states, respectively; Sj is the spin operator for the jth 
nucleus; d= (Xi I s I Xi), where s is the neutron spin 
operator; and.the coefficients bl and b2 are the,.same 
constants for all the nuclei. The thermal average over 
initial states \ i) of the scattering system is defined 
by 

( )T=L[exp(-;3Ei)ILexp(-;3Ej)J(illi), 
i i 

where Ei is the energy of the state I i) and;3= (kT)-I. 
If the thermal average is evaluated in the "second 

quantization" representation,7 the task of restricting 
the states I i) to totally symmetric or totally anti­
symmetric states is greatly simplified. The details of 
this calculation, leading to Eqs. (4) and (7), are pre­
sented in the Appendix in somewhat sketchy fashion, 
since nothing new is involved. (For a more complete 
presentation, see Ref. 8.) The result, for noninteracting 
bosons (upper signs) not in the condensed phase and 

for all noninteracting fermions (lower signs) ,9 is 

cf2u±/dndf 

= (kllk i ) [I b1 121(xl 1 xi)12+1 b2 121 d 12150(50+1)J 

XL o(EK+Q - EK-f)jK 'f[1± (250+ 1)-IjK+Q 'fJ 
K 

where 
EK=fI,2K2/2M, 

(2) 

where hK is an allowed value of nuclear momentum 
and !K'f is the usual Bose-Einstein (BE) or Fermi­
Dirac (FD) discrete space distribution function 

jK l' = (2So+ 1) I[B exp(;3EK) T 1]. (5) 

We have assumed there is no external magnetic field 
in the scattering system. The constant B is determined 
by the condition 

(6) 

where N is the total number of scattering atoms. B is 
completely fixed by the choice of statistics (BE or FD) 
and the selection of 1/. This can be seen from the fact 
that Eq. (6) can be put in the form 

2 lcc U
1
/
2du 

"'-- --./ - Vir 0 BeuT l' ( 6') 

which yields B (1]), of course, only by application of 
numerical methods. 

The result for the BE gas in the condensed phase 
(a BE gas is not in the condensed phase if No/N«1, 
where No is the number of bosons in the zero energy 
states; in terms of 1], condensation exists for 1]~2.612)3 
is given by a different expression. This is because 
certain relations for averages of products of occupation 
numbers for two cells in phase space are altered when 
No becomes a nonnegligible fraction of N. The result 
for the condensed-phase BE ideal gas is 

cf2u/dndE= (k,/k i ) [I bl 12 1 (xII xi)l2+1 b2 12 1 d j2!So(50+ 1) JL o (EK+Q- EK-t)!K[1+ (2So+ 1)-IjK+QJ 

where 

K 

+o(Q)o(e) {[N0
2/(250+2)J[! b1 12 I (Xi I xi)12+1 b2 1

2
1 d 12tso(So+1)J 

+[N2_N02(250+2)-lJI b1 121<XJ I xi)12}, (7) 

!K= (2So+ 1) /[exp(;3EK) -1J 

6 See, for example, R. J. Glauber, in Lectures in TheoreticaJ7Physics (Interscience Publishers, Inc., New York, 1962), Vol. 4. 
7 See D. Falkoff, "The N-Body Problem," in The Many Body Problem, Christian Fronsdal, Ed. CW. A. Benjamin, Inc., New 

York,1962). 
8 (a) See J. P. Plu=er, thesis, The University of Michigan, 1964; (b) J. P. Plu=er, Idaho Nuclear Corp. Rept. (unpublished). 
8 This sign convention is observed throughout this paper. 



SLOW NEUTRON SCATTERING BY GASES 4925 

and 
L!K=N-No. 
Kr'O 

To obtain the results for the case in which the incident 
neutron beam is unpolarized and the final neutron 
polarization is not measured, it is necessary to sum 
Expressions (4) and (7) over neutron final spin states 
and average (with the probabilities for spin "up" and 
for spin "down" each !) them over neutron initial 
spin states. One can quickly see that this results in 

and 
\(x.r \ xi)\2=1 

\ d \2=t. 
It is then possible to express all factors in Eqs. (4) 

and (7) stemming from the spin-dependent scattering 
length in terms of the averages over spin states of the 
scattering length and of the square of the scattering 
length. For unpolarized neutrons and zero magnetic 
field, these are10 

(a)=\b1 \ 

and 
(a2)=\ b1 \2+t[So(So+1)]\ b2\2. 

The resulting cross section for the scattering of un­
polarized slow neutrons from an ideal gas of fermions 
(lower signs) or bosons not in the condensed phase 
(upper signs) is 

(flu±/drldE= (kJ/ki) (a2 ) L o (EK+Q- EK-E) 
K 

and for bosons in the condensed phase, 

(flu/drldE= (k,/ki) (a2) 

XL O(EK+Q-EK -E)!K[1+(2So+1)-'jK+Q] 
K 

+O(Q)O(E) I [N02/ (2So+2)]( (a2)- (a)2) +N2(a)2J. 

(9) 

Previous work5 on ideal quantum gases consisted of 
calculating the Van Hove spin-dependent pair corre­
lation function for the quantum gas. This correlation 
function is 

r( r, t) = (27r)-W-1 f exp[i(wt-Q· r)] 

XS(Q, w)d3Qdw, (10) 

where 1iw=E and the "scattering law" SeQ, w) is related 
to the cross section by 

(flujdrldE= (m2kJ/47r2h5k;)S(Q, w). (11) 

10 See, for example, S. Yip, R. K. Osborn, and C. Kikuchi, 
"Neutron Acoustodynamics," University of Michigan Rept. No. 
IP-524, Chap. 8 (1961). 

Substitution of the scattering laws implied by Eqs. 
(8) and (9) into Expression (10) yield exactlyll Van 
Hove's results for r( r, t). The terms in Eqs. (8) and 
(9) involving o(Q)o(E)-the first a Kronecker delta 
function, the second a Dirac delta function-represent 
forward scattering and are therefore unobservable. They 
are included in the expressions for the cross section 
because they give rise to the constant terms in the 
correlation functions. The function r( r, t) is a function 
of l' for a quantum gas, of course, in contrast to the 
ideal Boltzmann gas which has no interparticle corre­
lations. The symmetrization of the ideal-gas wave­
functions introduces correlations among the scattering 
nuclei and hence interference effects in the neutron 
cross section. 

The correlation function r( r, t) cannot be com­
pletely expressed in terms of functions which are tabu­
lated. Van Hove obtains a series expansion in powers 
of B-1 for r (r, t). Since the quantum limit is B = 1 for 
bosons and B = 0 for fermions, such an expansion is not 
very suitable for investigating the effects of statistics 
on neutron scattering. However, we point out at this 
time that the cross section can be expressed in "closed 
form." Ignoring forward scattering, Expression (8) for 
the cross section per atom12 can be shown to be (except 
for bosons in the condensed phase) 

Xln {1=FB-1 exp[ - (a+.8E)]} 
1=FB-1e-a ,(12) 

where 

Despite the seeming menace of the minus sign in front 
of the entire expression for BE statistics, the cross 
section can be shown to be a positive definite expression. 
The cross section (per atom) for thermal neutron 
scattering from an ideal Boltzmann gas has been de­
rived many times8a and is 

(fluc/ drldE=!<a2)[j3/7rEQ]1/2(ktJki)e-a • (13) 

It is easy to show that «(flfJ±/dME)--((fluc/drldE) in 
the limit of classical statistics. The most direct way of 
verifying this is to note first that in the classical limit, 

7]B--1 

(the proof of this is not difficult). Thus, one merely 
sets B=7]-1 in Eq. (12) and lets 7]--0 (or, alternatively, 
sets 7] = B-1 and lets B--oo) and Eq. (13) evolves. 

11 There is an apparent oversight in Ref. 5. In the definition 
of a quantity called n:l:(r, t), and later n(r, t) for the condensed­
phase BE gas, a factor of (2So+1) is missing. Also Van Hove 
absorbs a factor of (27rfi/m) into his definition of the scattering 
length a. 

12 Equations (8) and (9) must be divided by N, the number of 
scatterers, to give the cross section per atom. 
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While Eq. (12) cannot be integrated over all n 
such that the result is expressible in terms of tabulated 
functions, it is possible to expand the integrand (the 
resulting series converges uniformly for B> 1 and thus 
may be integrated term by term) in powers of B-1 
and then relate the coefficient integrals to the classical 
cross section. The result is 

du±= (f/B)-1 [dcrc± (23/2B)-I[exp( -PE) + 1J(dcrc
) 

dE dE dE {J-2{J 

+ (3S/2W)-l[exp( -2pE)+exp( -PE)+1J 

x(~c)fJ-3{J±"-]. (14) 

where 

dcrc kl f1 -= (7rfJ)1/2(a2 ) - EQ-1/2e--adp,. 
dE ki -1 

(15) 

The notation fJ--+7JfJ implies the replacement of fJ by 
f/fJ in equation (15) in which p,=cosfJ and 8 is the scat­
tering angle. The p, dependence of the integrand in 
Eq. (15) comes through EQ. Both expressions (14) and 
(15) give the cross section per atom. Wigner and 
Wilkins13 showed that the integral in the classical cross 
section, dcr c/ dE, could be expressed in terms of error 
functions. Equation (14) obviously reduces to the clas­
sical cross section in the limit of classical statistics-
1)B----l>1 and B----l>oo. 

III. ELASTIC SCATTERING 

For E=O, the expression (12) for the cross section 
reduces to an indeterminate form and L'Hospital's rule 
must be used. In this case, the cross section is given by 
a simpler expression 

d2~:1) = (f/B) -1 r 1 =F B-1 exp ( -! (fJE.) :. (1- cosfJ) ) r1 

where 

d2crc(el) 1 ( fJM )1/2 
dfldE =2 27rmEi(1-cosfJ) 

Xexp-(HfJEi) :'(1-COsfJ») (17) 

and 

Again, the behavior of the quantum-statistical cross 
section in the classical limit is obviously correct. 

It is possible to obtain the following rather curious 
approximate expression for the integral of the cross 

18 E. P. Wigner and J. E. Wilkins, Jr., U.S. Atomic Energy 
Commission Rept. No. AECD-2275 (1944). 

section over solid angle: 

dcr±(e1)/d,e:::,::.(M/m) (4(3Ei)-I(B-l); [(m/M)fJE;»1J, 

where (B-1) denotes the reciprocal of the kinetic energy 
per scattering particle, averaged over the appropriate 
(BE or FD) distribution function. 

IV. HELIUM-4 AS AN IDEAL QUANTUM GAS 

A practical approximation to an ideal quantum gas 
would, of course, be one of the noble gases. A quick 
examination shows that only 4He (boson) and SHe 
(fermion) exist in the gaseous form at temperatures 
low enough to permit values of f/ large enough such 
that Eqs. (12) and (13) might give significantly differ­
ent results for the cross section. This possibility was 
investigated for 4He for two values of f/, f/l =0.1 and 
f/2= 1. The corresponding values of B, obtained from 
Ref. 3, are (for bosons) B1=1O.4 and B2=1.43. The 
temperature chosen was 6°K because it is just above 
the critical temperature for 4He, 5.2°K, and at this 
temperature the fluid 4He can be pressurized to > 200 
atm before solidifying. Since f/"'-'pT-S/2, this avenue 
provides the largest possible values of f/ for 4He still in 
the gaseous phase. The density corresponding to f/l 
and T=6°K is P1=2.24XIQ21 atoms/cm3 and for f/2, 
P2 = 22.4X 1021 cm-s. The latter value is slightly greater 
than the density of liquid 4He at the normal boiling 
point. The solid density at 6°K however is rv40X 1021 

cm-s. Thus both choices of parameters correspond to 
an 4He system in the gaseous phase, but there is con­
siderable doubt whether the gas could be considered 
ideal. To check this, a virial expansion of the form 

P=(A/V)+(ABv/P)+(ACv/V3) (18) 

was examined. The coefficients for 4He at 6°K are 

A=2.1964XI0--2 atm; 

Bv= - 2.19X 10--3; 

Cv =0.91XIO--s, 

where P is in atmospheres and V is expressed as the 
ratio of the volume of a certain mass of gas to the 
volume of the same mass of gas at 1 atm and O°C.14 
The first term on the right-hand side of Eq. (18) is 
the ideal-gas law. Thus the magnitude of the second 
term provides an estimate of the extent of departure 
of the gas from an ideal gas. For f/l =0.1, Eq. (18) 
yields a pressure of 1.5 atm with the second term being 
an 18% correction. For the second value of f/, f/2= 1, 
Eq. (18) gives a negative value for the pressure, indi­
cating that the pressure is beyond the region for which 
the expansion coefficients hold. Hence, for f/l=0.1, 
T=6°K, 4He approximates an ideal gas, but for f/2= 1, 
T=6°K, it is obviously far from being an ideal gas 
even though it still is in the gaseous phase. 

14 Argon, Helium, and the Rare Gases G. A. Cook, Ed. (Inter­
science Publishers, Inc., New York, 1961), Vol. 1. 
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The cross section was calculated from both Expres­
sions (12) and (13) for both sets of parameters, each 
for several values of e and o. The incident neutron 
energy was taken as 0.005 eV. The result was that 
for 7]=0.1, Eqs. (12) and (13) never differed by more 
than ",5%, and that was for cos8=0.9. For right-angle 
scattering, the differences were on the order of 1 %. 
For 7] = 1, however, differences ranged from "'40% for 
cosO=0.9 to ",15% and less for cos8=O. 

V. CRITERION FOR IGNORING STATISTICS 

The condition obtained by insisting that tPuz/dnde 
[as given by Eq. (12) ] be equal to tPuc/dnde [as given 
by Eq. (13) ] is (with the restriction, for bosons, that 
7]<2.612). 

7]=1=[ea/(e-Il<-1) ] 

Xln{11=B-l exp[ - (a+~E)J/(11=B-le-a)}. (19) 

For elastic scattering, the criterion is obtained from 

Eq. (16), 

neutron cross section for scattering from an ideal 
quantum gas can be expressed in terms of well-known 
functions. It is true that, so far as the noble gases are 
concerned at least, one must conclude that all ideal 
gases obey Boltzmann statistics. However, it is quite 
apparent that this is far from true for all interacting 
gases. 

The criterion of Eq. (19) is the same for polarized 
neutrons. This is because the effects of polarizing the 
neutron beam on the cross section are confined to the 
multiplicative constant which appears as a factor in 
both tPu:Z!dfJde and, naturally, after going to the classi­
cal limit, in tPu c/ dfJde. Thus the effect cancels when the 
ratio is taken. What might accentuate the difference 
between tPu z/ dfJde and tJ2u./ dfJde, if the ideal quantum 
gas in question had a nuclear magnetic moment, is to 
subject the scattering system to a magnetic field. 
Helium-3, with its spin of in and its critical temperature 
lower even than that of 4He, would be a likely candidate 
for such a calculation, were it not for the matter of its 
huge absorption cross section for thermal neutrons. 

7]={B1=exp[-i~Ei(m/M)(l-cos8)J}-l. (19') APPENDIX: DERIVATION OF EQS. (4) AND (7) 

The fractional amount by which the right-hand side 
of Eq. (19) differs from the value of 7] for the ideal 
quantum gas scattering system in question is thus a 
direct measure of the correction to the neutron cross 
section due to symmetrization of the wave£unctions, for 
the scattering event characterized by the particular 
choice of momentum and energy transfer. 

In deriving Eq. (19), the scatterer was assumed to 
be an ideal monatomic gas. However, this criterion for 
ignoring the statistics of the scatterer should give a 
rapid approximate estimate of the effect of statistics for 
weakly interacting systems as well. 

VI. DISCUSSION 

In view of the nonintegrability of the boson and 
fermion distribution functions, it is interesting that the 

The object of this Appendix is to enable the reader 
who wishes to fill in the omitted steps between Eq. (2) 
and the equations (4) and (7) to do so with reasonable 
dispatch. However, because of the involved nature of 
the calculation, much detail still must be omitted. We 
outline the method and provide some essential formulas 
along with a few clarifying comments. 

Let us consider separately the contributions to the 
right-hand side of Eq. (2) due to those terms with 
j~l (the "distinct" terms) as opposed to those terms 
for which j = l (the "self" terms) . 

j~l: 

For j~l, the operator whose thermal average we seek 
is a two-particle operator which, when expressed in its 
second-quantized form,? causes Eq. (2) to be written 

XL~exp(iKao r/) exp(iKllo rj) y(ma) y(mll) I a/al exp( -iQ· rj) 

xexP [iQ .(;pz+rz)]!y(m'Y)Y(m3) exp(~X'Y·rj) exp(~~orz» >T. (Al) 

A t(Km) is the creation operator which gives rise to 
a particle with momentum nK and spin projection mj 
A (Km) is the corresponding annihilation operator. D 
is the volume of the scattering sample. The y(m) 
are actually (2So+1)Xl column matrices specifying 

the spin state of the nucleus in question. The sums on 
K a , etc., and ma, etc., run over all cells in momentum 
and spin space. We have also used the fact that for an 
ideal gas 
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One uses the operator identity 

eAeB=eA+B exp(![A, B]), (A2) 

which is valid if [A, BJ commutes with both A and B, 
then works out the part of the matrix element between 
spatial states with the result that the matrix element 
within the thermal average in CAl) becomes 

exp[(it/h) (EKa - EK.,-Q-E)] 

X8(K&-Ka+Q)8(K'Y- Kp-Q) 

X (mampl a/al I m'Ym~). (A3) 

The factor of L-6 exp[ -i(E/h)tJ in (AI) has been 
absorbed in (A3). 

Next we calculate 

(i I A",tAptA'YAa Ii>, 

where we have compressed the notation by writing 
At (K",ma) as Aa t, etc. Because of the properties of the 
creation and destruction operators and the orthogonality 
of the number density states I i>, the nonvanishing 
contributions occur only for two cases: 

Cl) O:='Y, 

(2) 0:=8, 

{3=8, 

We note further the following commutation rules which 
the creation and destruction operators must obey: 

(The commutation relations obtain for BE statistics 
whereas the anticommutation laws hold for FD sta­
tistics.) One can thus write 

(AS) 

The nat;) is the occupation number of the ath cell in the momentum-spin space of the scattering particles when 
the scattering system is in the state I i), i.e., n",(i) is an eigenvalue of the number operator AatAa which is diagonal 
in the number density representation. As usual, our sign convention is that upper signs refer to BE statistics, 
lower signs to FD statistics. Equation (AS) is actually in error due to the omission of a term which would correct 
for double counting the contribution from a={3='Y=oj however, since one would find that such a contribution 
ultimately turns out to be small at least by a factor of N, the number of scattering nuclei, we leave it out of (AS). 
For precisely the same reason, the contribution included in (AS) proportional to 8ap8a'Y8pa is ignored also (as one 
might guess since this will reduce the sum La.p.'Y.a to La compared with other terms which go as La.p). Thus 
the expression for the distinct contribution to the cross section can be written 

iFa/tKldE Idietinot=±(k,/ki ) L 8(EK .. -EKa_Q-E)8(K&-Ka+Q)8(K'Y- Kp-Q)Z-1 
a.p.'Y.a 

XL exp( -(3E.)n",(')np(') {8a'Y8pa±8aa8p'Y} (ma I b1(Xt I Xi)+b2d'S I ma><mpl b1*<Xt I xi)*+b2*d*'S I m'Y)' (A6) 
i 

where 

and 

E.= L n",(i) (h2Ka,2/2M) = L n",(i)EKa 
a '" 

Z= L exp( -(3Ej). 
j 

Because of the identical nature of the scatterers, the 
indices j and 1 no longer indicate a meaningful dis­
tinction and have been dropped. The summation no­
tation has been compressed with L", actually meaning 
LKa Lma, etc. Finally, the integral representation of 
the Dirac energy conservation delta function 

has been recognized as such. Equation (A6) is correct 
even for the BE gas in the condensed phase, in which 
case the terms we have neglected either are still negli­
gible or ultimately cancel. 

In order to calculate the matrix elements between 
spin states, one writes the x and y components of S 
in terms of the familiar raising and lowering operators 
S+ and S_: 

S=HS++S_)~+[(S+-S_)/2iJJ+szfc, 

where t,}, and k are the unit vectors in the x, y, and z 
directions, respectively, and 

S± I So, m)=[SoCSo+l) -m(m±1)JI/21 So, m±l). 

(Here the ± signs have no connection with statisticsl) 
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One finds that 

L (ma I b1(Xt I :d+b2o-S I m&)(mp I b1*(Xt I Xi)*+b2*o*-S I m'Y) 

xj(;mam"((;mIP"3=j(2S0+1)[1 b1 12 1 (XI 1 xi)12+1 b2 121 (f NSo(So+1)] 

(;mam,(;mlP""f (2So+1)21 bl 121(Xt I xi)12. (A7) 

Finally one has to do the averages over the density 
matrix: 

Z-l L exp( -,BEi ) ( ) = « ». 
i 

These averages can be shown to be, for an ideal gas 
(with zero external magnetic field) of either fermions 
or bosons, except for bosons in the condensed phase 
(until this point, our results have applied to all bosons 
and fermions), 

except for 

(nKm) = (nK)/ (2So+ 1) 

(nKmnK'm') = (nK) (nK' )/(2So+ 1)2 

K=K', m=m' 

in which case 

(nKm2) = (nK)/ (2So+ 1). 

(AB) 

In Eq. (AB), (nK) is simply JK'f' as given by Eq. (5). 
Perhaps the simplest way to derive (AB) is to perform 
the averages over the density matrix in the grand 
canonical ensemble by the familiar device of taking the 
appropriate derivatives of the grand partition function. 
The treatment differs from those conventionally given 
in statistical mechanics books which do not treat the 
spin-dependent case. 

For an ideal gas of bosons characterized by a value 
of 17~2.612, the gas can be treated as a mixture of two 
different noninteracting phases. For the phase in the 
ground (K=O) state, the averages of (AB) are not 
valid and must be replaced by 

(nom)=No/(2So+1), 

(nOm2 ) = 2No2/(2So+ 1) (2So+2), 

(nomnom,)=NN(2So+1) (2So+2); m¢m'. (A9) 

boxes. The results assume zero external magnetic field, 
and that No~>No. 

The other phase consists of those bosons with nonzero 
energy and for this phase, the averages of (AB) are 
valid. 

Using (AB) one is able to complete the calculation 
of the distinct contribution to the cross section as it 
appears in Eq. (4). For the condensed-phase BE gas, 
one must work a bit harder because of the need to 
calculate "mixed" averages like (nomnKm')' which how­
ever can be expressed in terms of (AB) and (A9)_ 
Also, the argument which one must make (and is easy 
to justify for No«N) allowing one to ignore LK+o(nK)2 
compared with N02 requires a bit more justifying. 

Much of the difficulty of the calculation can be 
eliminated if one chooses to ignore forward scattering. 
The decision not to do so arises from a desire to obtain 
the constant term in r( f, t). In working toward Eq. 
(7), one must be concerned with the fact that (nomnom') 
does not reduce to (nom2) for m=m' (although this is 
also true for K¢O, a correction term for this failing 
will turn out to be down by a factor of N and hence 
utterly negligible) and, therefore, one has to tack on 
the correct contribution including a factor of (;(Q) 
since such a term contributes only to the forward 
scattering. One should not subtract out the incorrect 
contribution in a like manner because it does not survive 
the four-dimensional Fourier transformation to r( f, t) 
anyway since tFQ=Q2dQdQ vanishes for Q=O and 
hence washes out any Q=O contribution from a term 
not containing an explicit factor of (; (Q) _ 

j=l: 

The "self"-contribution to the cross section is more 
tractable, partly because it develops that the condensed­
phase BE gas does not need to be treated as a separate 
case. One simply observes that the second-quantized 
form of the operator [which must be thermal averaged 
in Eq. (2) withj=l] 

The problem represented by the bosons in the ground 
state is no more than the occupancy problem in prob­
ability theory of No identical particles and 2So+ 1 is 

f a/aj exp (i ~ Q-Pj) 
j-l m 
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and proceeds from there as he did in the previous case of j¢l. When the self-contribution to the cross section 
is added to the appropriate distinct contribution, one then obtains both Eqs. (4) and (7). 


