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Fluid motion in a long straight channel induced by longitudinally varying surface tension has been
discussed by Levich. This problem is re-examined and a different solution is given. In addition, the
stability of laminar flows involving surface-tension variation is briefly discussed, and a correction of a
previous result [C.-S. Yih, J. Fluid Mech. 28, 493 (1967)] is made.

I. INTRODUCTION

It is now common knowledge that at the free
surface of a liquid, the pressure at the liquid side
of the surface depends on the local surface tension
and the local curvature of the surface, and the shear
stress depends on the local gradient of surface
tension. If the surface tension is nonuniform, motion
will be induced in the liquid.

Levich has written an impressive book with the
title Physicochemical Hydrodynamics, in which fluid
motion induced by surface tension has been dis-
cussed in some detail. A solution was given by
Levich' for the motion of a thin and wide fluid film
induced by surface-tension variation. Upon close
examination of Levich’s solution many inconsis-
tencies are found. The correct solution of Levich’s
problem is presented here as a development resulting
from the stimulation of his admirable work.

II. SOLUTION OF LEVICH’S PROBLEM

Levich’s problem concerns the flow of a liquid
layer induced by longitudinal variation of surface
tension. The channel joining two reservoirs (Fig. 1)
is supposed to be very much wider than the depth
of the liquid supported by a horizontal bottom at
z = 0. The reservoirs are supposed to be even wider,
and the channel is supposed to be much longer than
it is wide. Thus nonuniformities at the ends (x = 0
and x = L) of the channel can be neglected, and the
flow can be assumed independent of the coordinate
y measured in a direction across the channel. The
flow is then two-dimensional. Since the depth is small
compared with L, the flow is nearly, though not
strictly, unidirectional. That is to say, it is nearly
parallel to the z axis, but not quite, since the depth
of the fluid, as will be seen, changes from one value
of z to another.

The variation of surface tension is accomplished
by the presence of surface-active material in the

1V, G. Levich, Physicochemical Hydrodynamaics (Prentice-

Hall, Inc., Englewocod Cliffs, New Jersey, 1962), 2nd ed.
pp. 384-388.
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F1a. 1. Definition sketch. (a) Plan. (b) Vertical cross
section along the longitudinal centerline. The vertical scale
is exaggerated.

reservoir to the left of the position z = 0. If the
surface concentration of that material is v, the
surface tension ¢ is a funetion of y. For simplicity
we shall assume do/dy to be constant. For steady
flows the diffusion equation for the surface material
can then be written as

in which % is the velocity component in the z direc-
tion at the surface, and D is the diffusivity. Strictly
speaking = should be replaced by a curvilinear
distance in a direction along the curved free surface,
and u should be the velocity in the same direction.
We state without delay that the theory to be pre-
sented here is a shallow-water theory, that even
though the depth changes, the vertical component
of the velocity is much smaller than the horizontal
component, and that all effects of the curvature of
the free surface are neglected.
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Following Levich, we shall only treat cases in
which the inertial effects are negligible. That is to
say, we assume the Reynolds number VH/» to be
very small, in which H is the maximum depth of the
liquid film, V is a representative velocity, and v is the
kinematic viscosity. [Note that the Péclét number
VL/D, in which L is a representative horizontal
scale, may not be small. In fact it may be so large
that the diffusive term in Eq. (1) may be neglected.]
The equations of steady motion are then

p_ 0w p_
9 © FYER) 3z P9, (2a, b)

in which p is the pressure, p the viscosity, p the
density, and ¢ the gravitational acceleration. Both
u and p are assumed constant, and of the term V?u
only the dominant term 8°4/92* is retained in (2a).
Furthermore w (velocity component in the 2z direc-
tion) is small, so that the term p¥?w is entirely
neglected in (2b). The equation of continuity is

d [ .
T j; ude = 0. (3)
The boundary condition at the bottom is simply
w=0 at = 0. @)
The boundary conditions at the free surface are
W= g = b (59)

and

p=0 at 2z = h(z), (5b)

h(z) being the depth of the liquid film. Note that in
(5) again the effect of curvature has been neglected.
Suppose that we also specify the values of ¢ and
of h at the two ends as follows:

and h=h at z =0, (6)
and h = hy at z=L (7)

Equations (1), (2), and (3), and the boundary con-
ditions (4)—(7) constitute the differential system
to be solved.

At this time it is appropriate to mention the
chief features of Levich’s solution. He assumed

g = 02

(a) that ¢ is linear with =z,

(b) that h is constant,

(c) that there is a pressure gradient dp/dz, and

(d) that the net discharge across any section is
Zero.

Assumption (a) is made in Eq. (68.2) on p. 385 of
his book', (b) on the first two lines on the same

CHIA-SHUN YIH

page (note the two uses of the word plane), (c)
on pp. 385-387, and (d) in (68.7) on p. 386. We
note that the diffusion equation (1) may not allow
(a), that (b) and (c¢) are inconsistent, and (d) is
a special case only. Levich never mentioned how
his dp/dx is to be evaluated. This may well be con-
nected with his equation

9 _
oz 0,
which seems to indicate that the role of gravity was
not recognized by him.
We shall satisfy (2a), (4), and (5a) by assuming
_1 da' 1 ap

u i

= L dz? % o2 2(2h — 2). (8)

This was obtained by Levich. On the surface

_h (du h ap)
w= w\dx 2 ox ©)
Equations (2b) and (5b) allow us to write
= og(h — ). (o)
Thus
op _ dh
oz~ P dx (1)

Now we can use Eqs. (9) and (11), together with
Egs. (1) and (3), and forget about the boundary
conditions (4) and (5) which have been satisfied.
First, Egs. (3), (8), and (11) yield

do dh
6u <3dx_2 ph ) Q,

in which @, a constant, is the discharge per unit
width. With Eqs. (11) and (12), we can write Eq.
(9) as

(12)

h 6#Q> _
U 4” <dx + [ at z = h. (13)
Equation (1) can be integrated to give
uo = D —}— q, (14)

in which ¢ is the (constant) discharge of o per unit
width. (Perhaps it is better to say that ¢ dy/de
is the discharge of the surface material per unit
width.) We can, if we so choose, eliminate % and o
between Egs. (12), (13), and (14), and obtain a
differential equation in A alone. But this will only
produce a highly nonlinear equation that in general
cannot be solved analytically. For the general case,
we prefer to resort to numerical integration in the
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following way. Substituting (13) into (14), we have

ho_ p\do, 307 _
<4u D)dm on = 1 (15)

Given h, and ¢,, we can assume @ and ¢ and compute
do/dx at x = 0. Then compute dh/dx at x = 0 by
(12). We then know o and h at z = Az, and can
proceed further, until we come to x = L, where ¢
should be equal to ¢» and h equal to h,. These con-
ditions are to be satisfied by the proper choice of
Q and ¢. This is obviously a tedious caleulation, and
it may happen that the end values ¢y, o2, by, and
h, cannot be satisfied by a steady flow. To proceed
further and to bring out the possible lack of steady-
state solutions, we shall consider the following spe-
cial cases.

A. The Case of Zero Discharge

In case Q = 0, Eq. (12) can be immediately

integrated to give

%"h? +

and (15) can be integrated to produce

(16)

o =

5 3
o (%’5‘— + %%) _ 1 Dpgh® = gz + Co. (17)

The constants are determined by Eqgs. (6) and (7).
Thus,

Ci=a -—p?ghf.

Due to the requirement that @ be zero, there is no
freedom in choosing h, if ¢, is given, since

(18)

oy = %ghﬁ + C,. (19)
We can now determine g and C, such that
h="h at 2z =0 and h = h, at =z = L,

and the problem is solved.

But it is important to note the singular nature of
the differential equation (15). Let us consider cases
in which ¢p > a5, by > hy. If

A
D > MR
¢ is negative according to Eq. (15), and by choosing
a proper q¢ we can satisfy the condition ¢ = o, at
= L on integrating Eq. (15) with the aid of Egs.
(16) and (18). Similarly, if
hioy

D<Ty—’
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a positive ¢ can satisfy the condition for ¢ at x = L.
But if
h,o, hyas

=< D<=,

» » (20)

for some intermediate value of z (15) is singular,
and there will be a cusp there if the end conditions
(6) and (7) are to be satisfied. Since cusps must be
ruled out as physically inadmissible, for end values
satisfying (20) steady-state solutions are impossible,
and the flow will be transient until the liquid levels
or the o values at the ends have reached values
for which steady flow is possible. When steady flow
is possible, the profile is given by (17), and the
surface-material discharge by ¢ dy/do.

B. The Case of Zero Surface Velocity

In this case the u in (9) is zero, so that

dr 20z dzx 2 dx
integration of which gives
- = iﬂhz + C,. (1)

Since the % in (1) is zero, integration of (1) produces

O — O,

g =90 + I z. (22)
Thus
P 0y — 0
K =a+27"e~ 0 23)
The condition = h, at £ = 0 gives
Cy =0, — %g 5 24)
But &, is no longer arbitrary. It is given by
%@=%-@. (25)

The discharge of surface material per unit width is

q:D—_"z_"l‘_ll.

I do (26)

One especially simple case of zero surface velocity
and constant depth requires the bottom to be in-
clined. If the angle of inclination is 8, and if we
measure x along the inclined bottom and 2z in a
direction normal to it, Eq. (1) remains valid but
Eq. (2a) is replaced by

du

gosing = u3 @7
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and Eq. (2b) by

% = —pg cos S.

0z (28)

Equation (28) gives the pressure p, and is not needed
if the depth is constant. The solution of (27) satis-
fying (4) and 4 = 0 at z = const h is
u = 2 (sin Baz — h). (29)
2y
Since # = 0 at z = h, the solution of (1) is simply
(22), and (5a) is satisfied if

(30)

which determines h for a given 3, or 3 for a given h.
Of course, if Eq. (30) is not satisfied the constant-
depth solution does not exist, and a steady-state
solution may not even exist.

III. STABILITY OF LAMINAR FLOWS DRIVEN
BY SURFACE TENSION

As shown in Yih,” laminar flows driven by or
affected by surface-tension variation can be un-
stable, especially with respect to long waves. It
must be kept in mind that if instability with respect
to long waves is considered, the longitudinal varia-
tion of the velocity must not be ignored. In the
paper of Yih, the flow is strictly unidirectional.

I should like to avail myself of the opportunity
to correct an omission kindly pointed out to me
by A. Craik. Since the surface-diffusion equation
must be applied on the free surface, the quantity
o' should be replaced by «' + 5 in Eq. (28) of
Ref. 2. When this correction is made, and the anal-

2 C.-8. Yih, J. Fluid Mech. 28, 493 (1967).
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ysis is followed through, the correct criterion re-
placing the final formula in that paper is

.9 2
<‘—"—°+2‘i’—) Aa =“"R{~90_ 12"2—3@)
w s 60 ) w

+ (2 —%—>F—2}—i2 2(.'_7_‘_"_0__L9‘_g>
w @ v.d w Pé o/’

31

in which

"f =1 =+ v3, (32)
the symbols being defined in Yih®. The interesting
feature is that there are two modes, one traveling
upstream and one traveling downstream. The former
corresponds to the negative sign in (39), and for
that mode instability corresponds to positive values
of «;(Aa = 1ia;). The latter corresponds to the
positive sign in (39), and for it instability corre-
sponds to negative values of a;, because of the form
of the assumed exponential factor (for all perturba-
tion quantities)

expi(fadx —w1>-

It turns out that both modes can be unstable! Note
that the coefficient of Aa in (31) is simply +2v3.
A numerical verification can be given to show the
actual possibility of instability, as was done in
Yih®. The conclusion that there are realistic cases
of instability remain valid.
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