THE UNIVERSITY OF MICHIGAN SYSTEMS ENGINEERING LABORATORY

Department of Electrical Engineering College of Engineering

SEL Technical Report No. 18

ON THE CONSTRUCTION OF THE LATTICE OF SP PARTITIONS

by

Thomas F. Piatkowski

July 1967

This research was supported by United States Air Force Contract AF 30(602)-3546.

In this communication I present a method for constructing the lattice of SP partitions for any given finite-state machine via a state-pair graph constructed directly from the machine's transition function and a homomorphism which reduces a set of subgraphs to the full SP partition lattice for the machine. The method is a graphical extension of the two-state generator procedure of Hartmanis and Stearns.

The initial steps in developing this approach were made at a time when I was trying to innovate alternative methods for programming the SP partition lattice calculations on a computer. The elegant graphical structure of some of the examples I tried immediately attracted my attention and moved me to develop the theory to the point presented in this paper; I include one such example in this report.

As it turned out I elected to use another method in the actual computer program—a method I felt would be more thrifty regarding memory requirements; details on the program and its method are to appear in another report—Piatkowski, Thomas F., Computer Programs Dealing with Finite-State Machines: Part II—soon to be published by the Department of Electrical Engineering, Systems Engineering Laboratory, The University of Michigan.

In the presentation that follows I will assume that the reader is familiar with the theory and notation of Hartmanis and Stearns.

- 1) In the manner of Hartmanis and Stearns let $M=\leqslant S,\ I,\,\delta>$ be a finite-state machine.
- 2) Construct directed graph $G = \langle V, E \rangle$ from M such that
 - a) V, the set of vertices = $\{\{s_i, s_j\} \mid s_i, s_j \in S, s_i \neq s_j\}$ i. e. V is the set of unordered pairs of distinct states in S;
 - b) E, the set of edges = $\left\{ (\upsilon_{\mathbf{k}}, \ \upsilon_{\ell}) \middle| \begin{array}{l} \upsilon_{\mathbf{k}}, \ \upsilon_{\ell} \in V, \\ \upsilon_{\mathbf{k}} \neq \upsilon_{\ell} \\ \exists \ x \in I, \ . \ni. \ \upsilon_{\ell} = \delta \left(\upsilon_{\mathbf{k}}, x\right) \end{array} \right\}$ where $\upsilon_{\mathbf{k}} = \left\{ \mathbf{s}_{\mathbf{i}}, \mathbf{s}_{\mathbf{j}} \right\} \implies \delta \left(\upsilon_{\mathbf{k}}, x\right) = \left\{ \delta \left(\mathbf{s}_{\mathbf{i}}, x\right), \ \delta \left(\mathbf{s}_{\mathbf{j}}, x\right) \right\}$
 - i. e. E is the set of state pair transitions induced by M on V with no distinction made by input and with state-pair-merging transitions and self-loops ignored.
- 3) Define \mathcal{A} as the following set of subsets of V:

$$\not = \{H \mid H \subseteq V, R_G(H) = H\}$$

where $R_{G}(H) = \{\delta(\upsilon, x) \mid \upsilon \in H, x \in I^*, \delta(\upsilon, x) \in V\},$

i. e. $R_{G}(H)$ is the set of all vertices in G reachable from H.

Note in particular that ϕ , $V \in \mathcal{V}$.

4) A partial ordering is induced on \mathcal{A} by set inclusion; i. e.

 $H_m < H_n$ iff $H_m \subset H_n$. Furthermore, two binary operations + and \cdot can be defined on $\not\not\vdash$ corresponding to set union and intersection; i. e.

$$H_m + H_n = H_m \cup H_n$$

and

$$H_m \cdot H_n = H_m \cap H_n$$
.

$$R_{G}(H_{m} \cup H_{n}) = R_{G}(H_{m}) \cup R_{G}(H_{n}).$$

In addition, $H_k \in \mathcal{H} \implies R_G(H_k) = H_k$ and thus

 $\forall H_m, H_n \in \mathcal{A}, R_G(H_m \cup H_n) = R_G(H_m) \cup R_G(H_n) = H_m \cup H_n.$ In other words, $\forall H_m, H_n \in \mathcal{A}, H_m \cup H_n \in \mathcal{A}.$

To show that \cdot is closed in $\not \exists$ we note that for all $G=\langle V, E\rangle$ and any $H_m, H_n\subseteq V$ it is always true that $R_G(H_m\cap H_n)\supseteq H_m\cap H_n$ via the definition of R_G . In addition

 $\forall H_m, H_n \in \mathcal{N}, R_G(H_m \cap H_n) \subseteq R_G(H_m), R_G(H_n) = H_m, H_n$ which implies that

5) Claim: $\langle \ \not \mid , +, \cdot \rangle$ is a lattice.

Proof: $<\mathcal{W},+,\cdot>$ satisfies one of the several equivalent definitions for a lattice, namely \mathcal{H} is non-empty, and + and \cdot are binary operations satisfying the following postulates for any H_m , H_n , $H_p \in \mathcal{H}$:

(i)
$$H_m \cdot H_m = H_m$$
 ; $H_m + H_m = H_m$

(ii)
$$H_m \cdot H_n = H_n \cdot H_m$$
 ; $H_m + H_n = H_n + H_m$

(iii)
$$H_m \cdot (H_n \cdot H_p) = (H_m \cdot H_n) \cdot H_p; H_m + (H_n + H_p) = (H_m + H_n) + H_p$$

(iv)
$$H_m \cdot (H_m + H_n) = H_m$$
 ; $H_m + (H_m \cdot H_n) = H_m$

Q. E. D.

- 6) Let $< P, +, \cdot >$ be the lattice of partitions on S with substitution property relative to M.
- 7) Claim: $\langle P, + \rangle$ is a homomorphic image of $\langle \mathcal{V}, + \rangle$.

 [Note: It is not the claim that $\langle P, +, \cdot \rangle$ is a homomorphic image of $\langle \mathcal{V}, +, \cdot \rangle$].

Proof: For each $H \in \mathcal{U}$, define

$$\pi(\mathbf{H}) = \sum_{\{\mathbf{s_i}, \mathbf{s_j}\} \in \mathbf{H}} \tau_{ij}$$

where \sum denotes the usual partition summation and where au_{ij} denotes the

(n-1)-block partition on S in which each block is a singleton except for one doubleton block that identifies s_i and s_j . We must show (a) that $\pi: \not \vdash \frac{\text{onto}}{} > P$ and (b) that π preserves the structure of the + operator.

a) $\forall H \in \mathcal{P}$, $\pi(H)$ has SP; this can be shown as follows: $s_i \equiv s_i(\pi(H)) \iff$

 \exists a string; of elements in H which can be arranged in the following pattern

$$\{s_i, s_{a_1}\} \{s_{a_1}, s_{a_2}\} \{s_{a_2}, s_{a_3}\} \dots \{s_{a_k}, s_j\}$$

but

$$\forall \ x \in I^*, \ \{\delta(s_i, x), \ \delta(s_{a_1}, x)\} \{\delta(s_{a_1}, x), \ \delta(s_{a_2}, x)\}, \ \{\delta(s_{a_k}, x), \ \delta(s_j, x)\}$$

(with any identical pairs removed) is also a string of elements in H (since $R_G(H) = H$) with the above pattern; thus

 $\delta(s_i, x) \equiv \delta(s_j, x)(\pi(H))$ for $\forall x \in I^*$. In other words, $\pi(H)$ has SP.

Thus $\forall H \in \mathcal{H}$, $\pi(H) \in P$ which means that π at least maps \mathcal{H} into P.

That H ϵ \not follows from the fact that H \subseteq V and

$$R_{\mathbf{G}}(\mathbf{H}) = \left\{ \begin{cases} \delta(\mathbf{s_i}, \mathbf{x}), \ \delta(\mathbf{s_j}, \mathbf{x}) \end{cases} \middle| \begin{cases} \mathbf{s_i}, \mathbf{s_j} \end{cases} \in \mathbf{H}; \\ \mathbf{x} \in \mathbf{I}^*; \\ \left\{ \delta(\mathbf{s_i}, \mathbf{x}), \ \delta(\mathbf{s_j}, \mathbf{x}) \right\} \in \mathbf{V} \end{cases} \right\} = \mathbf{H}$$

since
$$\{s_i, s_j\} \in H \implies s_i = s_j(p)$$

$$\implies$$
 \forall $x \in I^*, \delta(s_i, x) \equiv \delta(s_i, x)(p)$

$$\implies \{\delta(s_i^{},x),\ \delta(s_j^{},x)\}\ \varepsilon\ H\ \ \mathrm{if}\ \ \delta(s_i^{},x)\neq \delta(s_j^{},x).$$

Thus every $p \in P$ has a pre-image under π in $\not H$; i. e. $\pi \colon \not H \xrightarrow{onto} P$.

b)
$$\forall H_m, H_n \in \mathcal{A},$$

$$\begin{split} \pi(\mathbf{H}_{\mathbf{m}} + \mathbf{H}_{\mathbf{n}}) &= \sum_{\left\{\mathbf{s}_{\mathbf{i}}, \mathbf{s}_{\mathbf{j}}\right\}} \tau_{\mathbf{ij}} = \sum_{\left\{\mathbf{s}_{\mathbf{i}}, \mathbf{s}_{\mathbf{j}}\right\}} \tau_{\mathbf{ij}} + \sum_{\left\{\mathbf{s}_{\mathbf{i}}, \mathbf{s}_{\mathbf{j}}\right\} \in \mathbf{H}_{\mathbf{m}}} \tau_{\mathbf{ij}} \\ &= \pi(\mathbf{H}_{\mathbf{m}}) + \pi(\mathbf{H}_{\mathbf{n}}); \end{split}$$

thus π preserves the structure of the \div operator.

Q. E. D.

- 8) Observation: The π mapping will not, in general, yield a homomorphism from $\langle \not > \rangle$, +, $\cdot >$ to $\langle P, +, \cdot \rangle$ since the structure of the \cdot operator is not preserved. (See section 12 for such an example.)
- 9) Claim: $\forall H_m, H_n \in \not > H_m > H_n \implies \pi(H_m) \ge \pi(H_n).$ Proof: $H_m > H_n \implies H_m \supset H_n \implies H_m = H_n \cup (H_m H_n).$

$$\Rightarrow \pi(\mathbf{H}_{\mathbf{m}}) = \sum_{\{\mathbf{s}_{i}, \mathbf{s}_{j}\}} \tau_{ij} \\ \{\mathbf{s}_{i}, \mathbf{s}_{j}\} \in \mathbf{H}_{\mathbf{n}} \cup (\mathbf{H}_{\mathbf{m}} - \mathbf{H}_{\mathbf{m}})$$

$$= \sum_{\{\mathbf{s}_{i}, \mathbf{s}_{j}\}} \tau_{ij} \\ \{\mathbf{s}_{i}, \mathbf{s}_{j}\} \in \mathbf{H}_{\mathbf{n}} \quad \{\mathbf{s}_{i}, \mathbf{s}_{j}\} \in (\mathbf{H}_{\mathbf{m}} - \mathbf{H}_{\mathbf{n}})$$

$$= \pi(\mathbf{H}_{\mathbf{n}}) + \sum_{\{\mathbf{s}_{i}, \mathbf{s}_{j}\}} \tau_{ij} \\ \{\mathbf{s}_{i}, \mathbf{s}_{j}\} \in (\mathbf{H}_{\mathbf{m}} - \mathbf{H}_{\mathbf{n}})$$

$$\Rightarrow \pi(\mathbf{H}_{\mathbf{m}}) \geq \pi(\mathbf{H}_{\mathbf{n}})$$

- Observation: $\langle P, +, \cdot \rangle$ can be constructed directly from $\langle \mathcal{H}, +, \cdot \rangle$ using the π mapping. First of all $\pi(\mathcal{H}) = P$ and the structure of $\langle P, +, \cdot \rangle$ can certainly be deduced from P itself; however the fact that π also preserves the structure of the + operator and some aspects of the \rangle relation can be used to good effect in determining the structure of $\langle P, +, \cdot \rangle$. For example: $\pi(\phi) = 0$, $\pi(V) = I$, and every lattice atom in P must have a pre-image under π in the lattice atoms of \mathcal{H} , etc. The last mentioned observation follows from the fact that for every atom $p \in P$ $\exists H \in \mathcal{H}$ \ni \exists $\pi(H) = p$; every atom $H' \subseteq H$ must be mapped by π into p or some lesser point; but zero is the only point less than p and $\pi(H') \neq z$ zero via the definition of π ; therefore $\pi(H') = p$; i. e. atom p has a pre-image under π which is a lattice atom in \mathcal{H} .
- 11) Observation: the strong components (the maximal strongly connected subgraphs) of G can be collapsed to single nodes with multiple associated state pairs and all of the results given in this paper will still obtain.

12) Example: Machine C from Hartmanis and Stearns, p. 107

13) Bibliography: Hartmanis, J. and Stearns, R. E., <u>Algebraic</u>
Structure Theory of Sequential Machines (Prentice-Hall, Englewood Cliffs, New Jersey, 1966).