THE UNIVERSITY OF MICHIGAN
SYSTEMS ENGINEERING LABORA TORY

Department of Electrical Engineering
College of Engineering

SEL Technical Report No, 18

ON THE CONSTRUCTION OF THE LATTICE OF SP PARTITIONS

by

Thomas F. Piatkowski

July 1967

This research was supported by United States Air
Force Contract AF 30(602)-35486.



In this communication I present a method for constructing the lattice
of SP partitions for any given finite-state machine via a state-pair graph
constructed directly from the machine's transition function and a homomor-
phism which reduces a set of subgraphs to the full SP partition lattice for
the machine. The method is a graphical extension of the two-state gener-
ator procedure ot Hartmanis and Stearns.

The initial steps in developing this approach were made at a time
when I was trying to innovate alternative methods for programming the SP
partition lattice calculations on a computer. The elegant graphical struc-
ture of some of the examples I tried immediately attracted my attention
and moved me to develop the theory to the point presented in this paper;

I include one such example in this report,

As it turned out I elected to use another method in the actual com-
puter program—a method I felt would be more thrifty regarding memory
requirements; details on the program and its method are to appear in

another report—Piatkowski, Thomas F., Computer Programs Dealing

with Finite-State Machines: Part II—soon to be published by the Depart-

ment of Electrical Engineering, Systems Engineering Laboratory, The
University of Michigan,
In the presentation that follows I will assume that the reader is

familiar with the theory and notation of Hartmanis and Stearns.



3)

In the manner of Hartmanis and Stearns let M =< S, I, 6 > bea

finite-state machine,

Construct directed graph G = <V, E > from M such that

a)

V, the set of vertices = {{siy sj} ] spS; €8, 5 . sj}
i, e. V is the set of unordered pairs of distinct states in S;

and

v, €V,

Uk Yy
E, the set of edges = ((‘uk9 %) U # v

dxel .2, v, = b (‘Uk,x)
where v = {Si’ sj} =6 (v, %) = {5 (s;,%), 6 (sj, x)}
i.e. E is the set of state pair transitions induced by M on V
with no distinction made by input and with state-pair-merging

transitions and self-loops ignored.,

Define 7:% as the following set of subsets of V:

M={H|HCV, RG(H):H}

where RG(H) ={6(v,x)|ve H, xe I*, 6 (v,x) ¢ V},

i, e. RG(H)J is the set of all vertices in G reachable from H.

Note in particular that ¢, Ve 2f.



A partial ordering is induced on M by set inclusion; i. e.
Hm < H n iff Hm C an Furthermore, two binary operations
+and - can be defined on # corresponding to set union and inter-

section; i. e.

H +H
m n m n

B
o
c
=

and

H -H =H nH.
m n m n

These operations are closed in ‘N ; this can be shown as follows:
First we show that + is closed in #. ForallG =< V, E> and

any Hm’ Hn C V it is always true that
RG(Hm U Hn) = RG(Hm) U RG(Hn).

In addition, Hy e N = RG(Hk) = Hy
and thus

VH H ¢ N, Ro(H, UH)=Ry(H )URS(H)=H UH.

In other words, VH_,H ¢ H, H UH e K.

To show that - is closed in # we note that for all G =<V, E > and

any Hm’Hn C Vit is always true that RG(Hm n Hn) > H N Hn

m

via the definition of RG“ In addition

VH H e i, Ry(H_ 0 H) C R ), Ry(H) = H ,H
which implies that

) CH_nH.

m n

VH ,H ¢ H, RGMH N H

Thus VH ,H ¢ A, RyH NH)=H 0H

or in other words, H N H_¢ .
m n



Claim: < ¥, +, ° > is a lattice,
Proof: < M, +, . > satisfies one of the several equivalent defini-
tions for a lattice, namely H is non-empty, and + and - are binary

operations satisfying the following postulates for any Hm’ Hn’ Hp e M

i) H -H =H s H +H_ =H
m m m m m m
(i) H -H =H -H cH +H =H +H
m n n m m’  “n n “m
(iii) (H Hp) (Hm Hn)° Hp; Hm+(Hn +Hp) = (Hm+Hn)+Hp
(iv) H (H +H ) = H ; Hm+(Hm' Hm) = Hm

Q. E.D.
Let < P, +, + > be the lattice of partitions on S with substitution

property relative to M.

Claim: < P, + > is a homomorphic image of <% , + >,
[Note: It is not the claim that < P, +, * > is a homomorphic

image of <M, +, + >].

Proof: For each He i, define

7(H) = T
{s;, sj} ¢ H

where Z denotes the usual partition summation and where Tij denotes the



(n-1)-block partition on S in which each block is a singleton except

for one doubleton block that identifies si and sja We must show

(a) that 7 X

onto> P and (b) that 7 preserves the structure of the

+ operator,
a) VHe N , T(H) has SP; this can be shown as follows:
s; = sj(w(H)) =

d a string; of elements in H which can be arranged in

the following pattern

{ }{s ’Sa}{sa’sa}”“{sa’s'}
2 2

but

Vxe T, Blopx), 0, 0ol X, O, X))o {6(s, %), O(sy, X))
) Kk

(with any identical pairs removed) is also a string of elements

in H (since RG(H) = H) with the above pattern; thus

5(Si, X) = é(sj,x)(n(H)) for V x ¢ I*. In other words,
7(H) has SP.

Thus VHe¢ %, n(H) ¢ P which means that 7 at least maps
K into P.

Furthermore for Vpe P 3 He & .>. w(H) = p; namely,
H = {{Si,Sj} l Si?lsjs S. = SJ(p)}ﬂ

1



That H ¢ 4 follows from the fact that H C V and

Ry(H) = <

(

{o(s;, ), 6(s;, %)}

since {s,, Sj} e H =>s; = 5,(p)

=> Vxel¥ 6(s;,x) = é(sj,X)(p)

{Si’ S]} e H;

xeI*¥,;

{o(s;,%), 8(s;, )} € V

—_— {G(Si, X), O(Sj,x)} e H if 8(s;,x) 7 é(sj,x).

Thus every p ¢ P has a pre-image under 7 in # ; i.e.

WZH/%—O—%PD

Y



8)

9)

bV H_H e K

W(Hm+Hn): Z T = z T ot Z 7

{s;, Sj} eH UH {s;, s.teH

= m(H )+ 7(H )

thus 7 preserves the structure of the + operator.

Q. E. D.

Observation: The 7 mapping will not, in general, yield a homomor-
phism from <,’2)L, +, » > to <P, +, - > since the structure of the

. operator is not preserved. (See section 12 for such an example. )

Claim: V H_,H e A, H >H =>7H )>(H)
Prooff H >H —=H D H —H =H UMH_-H)
m n m n m n m n
ﬁw(Hm):

T..
1]
{si, sj} ¢eH U(H _-H )

.Y e S
3 1

{Si’ sj} ¢ H {si, Sj} ¢ (H  -H)

= ﬂ(Hn) + Z Tij
{s,, Sj} e -H)

———>71(Hm) > W(Hm)

Q. E. D.



10)

11)

Observation: < P, +, © > can be constructed directly from

< M, +, © > using the 7 mapping, First of all 7(2 ) = P and
the structure of < P, +, - > can certainly be deduced from P
itself; however the fact that 7 also preserves the structure of the
+ operator and some aspects of the > relation can be used to
good effect in determining the structure of < P, +, - >. For
example: 7(¢) =0, 7(V) =1 and every lattice atom in P must
have a pre-image under 7 in the lattice atoms of &/, ete. . The
last mentioned observation follows from the fact that for every atom p¢ P
3 He M., r(H) = p; every atom H < H must be mapped by 7
into p or some lesser point; but zero is the only point less than p
and 7(H') # zero via the definition of 7; therefore 7(H') = p; i.e.

atom p has a pre-image under 7 which is a lattice atom in #.

Observation: the strong components (the maximal strongly con-
nected subgraphs) of G can be collapsed to single nodes with mul-
tiple associated state pairs and all of the results given in this

paper will still obtain.
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Example: Machine C from Hartmanis and Stearns, p. 107
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13) Bibliography: Hartmanis, J. and Stearns, R. E., Algebraic
Structure Theory of Sequential Machines (Prentice-
Hall, Englewood Cliffs, New Jersey, 1966).







