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The attenuation correction factor is developed for scattering from a cylinder. The
result applies for the case in which the attenuation coefficients X differ for
incident and scattered radiation and for that in which radiation is incident or
scattered obliquely from the cylinder axis. The result is related to one generated
earlier for the case of scattering perpendicular to the axis and uses an improved
approximation useful for slant thicknesses ZR/cosf 2.0 z.

In a previous paper' (referred to below as I) a calculation
employing Chebycheff polynomials is given for the deter-
mination of the attenuation correction factor A for cylin-
drical geometry, for the situation in which the attenuation
coefficients differ for the incident and scattered radiation.
(In I, the quantity A was denoted 1/F.) By using those
same results, an alternate method is derived to calculate A4
as the product of an approximate attenuation correction
factor that contains the gross variation and a series expan-
sion that corrects the approximate factor. It is shown that
values computed in this way are a good approximation for
several mean free paths, whereas the correction factor
computed directly is accurate only for considerably less than
one mean free path.

To examine the usefulness of this calculation, let Pr be
the idealized single scattering probability in the absence of
attenuation or multiple scattering, and let P, and Py be,
respectively, the actual probabilities for single and multiple
(more than single) scattering. Then P,/ Py is the single scat-
tering attenuation correction factor, and (P1+Pu)/Pr is
the over-all correction for both attenuation and multiple
scattering. In writing

P+-Py Py Py
————='<1+—>, (1)
Pr Pr Py

the over-all correction factor appears as the product of the
single scattering attenuation correction factor and the factor
(14 P/ Py), which accounts for multiple scattering.

This separation allows the analytical calculation of the
attenuation effects in scattering measurements to be of use

Fic. 1. General case of target attenuation in a radiation scattering
experiment.
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in several instances. When the absorption coefhcient is much
greater than the scattering coefficient (as for x rays, for
example), the effects of multiple scattering are relatively un-
important compared to absorption, and a calculation of the
effect of attenuation on single scattering may suffice. When
a detailed calculation of multiple scattering and absorption
is computed by numerical transport or Monte Carlo
methods, the attenuation of incident and singly scattered
radiation can be examined explicitly. Then the analytic
calculation can be used either to check the accuracy of the
numerical calculation or to improve the accuracy of the
entire correction.

The original calculation applies for cylindrical targets in
which the scattering plane is perpendicular to the cylinder
axis. It was not pointed out in I that the power series
expansion is appropriate also to the case in which the
incident and scattered radiations are not perpendicular to
the cylinder axis. This is useful for the frequent situation in
which the scattering of radiation through a particular angle
is monitored by a number of detectors, each with its own
azimuthal angle.

Figure 1 illustrates the general problem in which the
incident radiation is attenuated as it travels a distance /;(r)
in the incident direction Q; to the point of scatter defined by
the vector r, and the emergent radiation is similarly attenu-
ated traveling a distance /,(r) in the scattered direction €,
out of the target towards a detector. In the absence of
multiple scattering, the probability per scattering unit per
unit solid angle for a particle to scatter once and reach the
detector is

1 do
P1= w'/‘ d3re—2ili(f)e—xala(f) -, (2)
Vi/v a2

where the integration is taken over all points in the volume
of the target which is exposed to the assumed uniform
incident radiation. =; and X, are the attenuation coefficients
of the incident and scattered radiations, and 8o/ is simply
the ideal probability Pr of scatter per scattering unit per
unit solid angle in the absence of both attenuation and
multiple scattering—that is, lims, s,.0 P1. If one assumes
that the target is viewed uniformly by the detector, the
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target attenuation correction factor is given by

A= PI/PI= V—-l/ dire—Zili(Dg—Zsls (1) (3)

v

Effectively, the integral provides a correction that is to
be applied to the ideal probability of scatter, giving the
observed (attenuated) intensity. We introduce an approxi-
mate attenuation correction factor, using I; and I,, suitably
chosen average incident and scattered distances within the
target; then the integral may be used to compute a correc-
tion to this approximation. (In general, these distances can
be approximated for any target geometry since the average
length of the target traversed by the beam is equal to the
ratio of volume to area of the target exposed to the beam.)
Extracting these approximate values from the integral leaves
the attenuation correction in the form

A= ETiAZin -1 [ d¥re B EGO-Tg T le(—To;  (4)
v

that is, a product of a factor that is a crude estimate of 4
and a correction to that estimate in the form of an integral.
In practice, this integral can be solved easily for only a few
geometric shapes and scattering planes. Let us suppose that
this general problem is solvable for some particular reference
plane other than that defined by Q; and Q. If the incident
and scattered directions Q; and Q, make angles 8; and 3,
with that plane, whose normal direction is 2, then the
projections of the distances /; and J, upon the reference
plane are
I(r) =1;(r) cosB:
and (5)
I'(r) =1,(r) cosB,,
as in Fig. 2.
Here, of course,
B =sin‘1(ﬂ,~ . i)
and (6)
B:=sin"Y(Q,-%).

X is the angle between the projections of the incident and

emergent directions on the reference plane, which is perpen-
dicular to the 2 direction; that is,

cosX = (Q:X %) (Q:X2)/1(Q:X )| [ (@, X2)]
=[(Qi-Q.)— (Q:-2) (R, £) ]/cosB; cosB,

= (cos# —sinp; sinG,)/cosB; cosps, (N

where 6 is the angle of scatter in the scattering plane, given

by
cosf=Q; Q.. (8)

Using these results, the integral can be expanded as a
power series in terms of integrals independent of Z,, ,, 8;,
and 8,:

D27 A N
R )]
cosB: cosP,

S A A )m( 20 )"y,,.,.oo, ©)

m=0 n=0 m!n! \cosﬂ,- oS3,
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F16. 2. General case of scatter-
ing for a circular cylinder
oriented arbitrarily with respect
to the scattering plane.

where

e [ o

and where b is a characteristic length introduced to provide
dimensionless quantities. Of course

I=1; cosB;
and (11)
I'=1, cosg,.

Using the binomial expansions, the integrals ¥ ,,, become

m n Z m—p 4]\ n—q
Ymn(x)= Z Z (_1)p+qumBq"<') (i—>
p=0 g=0 b b

LAY

Here the B, are the binomial coefficients:

k!
Bf=— <j<k.
f] j!(k—j)!, 07 (13)

Now the integrals are in a form dependent only on the
dimensionless distances //b and !'/b, which are measured in
the reference plane. Numerical integrals representing a
series expansion of the integral were given in I for the special
case of scattering from a right circular cylinder. At the stage
represented by Egs. (9) and (12), the treatment is applicable
for cylinders generated on any cross section.

The general case for the circular cylinder oriented arbi-
trarily with respect to the scattering plane is shown in Fig. 2,
but the problem has now been reduced to that in which the
scattering plane is perpendicular to the cylinder axis. For a
cylinder of radius R, the integrals may be expressed in terms
of the functions Z;; introduced in I, in which the radius R
has been used as the nondimensionalizing length,

1 ot or INIZIN *
) 1 R R
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Fic. 3. Attenuation correction factors as a function of mean free
path ZR for various scattering angles x for the case of the scattering
plane perpendicular to the cylinder axis. 4 is the value calculated with
the present method; A(1) is the value calculated by the results of
Ref. 1; A} is the value found in the International Tables (Ref. 2).

where in the present case

I/ R=p cost+(1—p* sin’)?,
U/R=—p cos(§+X)+[1—p*sin?(§+X) ],

and
p=r/R. (15)

The angle argument of the functions Z in this more general
case is X rather than 6 (though X is equal to § when both
B: and g, are equal to zero). Thus Eq. (9) becomes

b3 A N
amenf (o)
cosfB; cosfs

o & (=" ZR\T TR
s ) ( ) Vo) (16)
m=0 n=0 m!n! \cosﬂ,- cosg;s
and .
y '""(1>+BB(Z ZY 200
ma(X)= —1)PB," 84" — — a(X),
w-% % coneno(y) (7)) 2

17)

where Z;;(X) may be expanded in terms of the Chebycheff
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F1c. 4. Ratio of the attenuation correction factor 4 to that from the

International Tables, Ay, as a function of the average distance ! for

cylindrical geometry with radius R for various scattering angles x and
for ZR=2.
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TasLE 1. Chebycheff expansion coefficients for calculation of Z,.(x).
The following are values of Znn(X) that are constant: Zyy=1; Zy; =8/
(37!’), Z(]2= 1, Zoa=64/(151r), Zu4=2, Zo5= 1024/(]05#), Zoe= 5.

i o@D D = gan PRI IPNERY

0 0.730284 0.848859 1.133129

1 —0.249987 —0.452690 —0.749962

2 0.019448 0.056557 0.118245

3 —0.000006 —0.000009 —0.000018

4 0.000249 0.000000 —0.001345

5 —0.000004 —0.000006 —0.000012

= gD PR ) =8

1.641112 1.000006 1.358113

—1.241639 —0.821100 —1.358076

0.226247 0.166645 0.349199

—0.000045 —0.012096 —0.038817

—0.004821 0.000008 0.000022

—0.000030 —0.000126 —0.000021

polynomials:

Za(X) =3 ci® cos(iX). (18)

=0

The coefficients ¢;“+® for (j4-k) <5 are those tabulated in T
and are repeated above in Table I.

The power of this alternate method is shown in Fig. 3,
where the attenuation correction factor A is shown as a
function of ZR for various angles X, for the special case of
cylindrical geometry with 8,=8,=0 and Z;=Z,, in which
case the result can be compared with the attenuation
correction factor found in the Inmternational Tables.> The
result from I gives a good approximation only in the range
0<2ZRX0.6, beyond which the computation becomes use-
less. The present method with average distances equal to
the cylinder radius (i.e., I/R=I"/R=1) gives values of 4 in
good agreement with Ay for all X, for 0SZR<S2.0. Also, at
higher ZR, values of 4 are not too bad. As before, the
difference between 4 and A; increases with angle X.

For this method to be most useful, it is necessary to make
good choices of the average distances. Obviously the best
choices of I/R and I’/R depend upon angle X. For simplicity
we have assumed that [ and I’ are equal and both vary as a
function of X. Figure 4 shows values of 4/4 as a function
of I/R for various angles X. The maximum, 4*/A4;, yields a
value I*/R that is the best value of the average distance to
be used for this approximation of A4;. Values of I*/R vary
with angle X, as is shown in Fig. 5.

L L 1 . 1
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SCATTERING ANGLE, X

Fic. 5. Average distance I*, which gives the best approximation, 4%,
to A for cylindrical geometry of radius R for various scattering angles x
and for ZR=2. The half mean chord is 7R/4.
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F1c. 6. Ratio of the attenuation correction factor A*, with the best
average distance ¥, to that from the Inmfernational Tables, Ar, as a
function of scattering angle x for cylindrical geometry with the scatter-
ing plane perpendicular to the cylindrical axis (ZR=2, as before).

If values of A*/Ar are plotted as a function of angle X
(Fig. 6), it can be seen that this approximation is best for
small scattering angles, as might be expected for the assump-
tion [=0’". The difference between the computed value of 4
for a given I[/R and the best value A* is shown in Fig. 7 as
a function of angle X. For forward angles (0<X<x/2), it
can be seen that the best value for (’*/R) is very close to 7/4,
which is half the mean chord.

It is observed that this method provides a good approxi-
mation to the attenuation correction factor for any scatter-
ing angle and for slant thickness up to two mean free paths.
Provided that the attenuation is not too high, truncation
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F1e. 7. Difference between the computed value of the attenuation

correction factor A and the best value A* as a function of scattering

angle x for ZR=2, The curves are for different values of I/R, as is
indicated.

at m=4n=>5 is probably sufficient in most cases, since the
uncertainties introduced by the attenuation coefficients
themselves are probably dominant. Although we have not
done so, it would be desirable to provide a close analytic
upper bound on the error due to truncation of the present
series expansion for the attenuation correction factor.
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