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The Monte Carlo approach is used to study the quasibound electron and hole ground-state levels
in a quantum well in the presence of a transverse electric field. A criteria is developed to ensure
that the ground state is a true quasibound state. These techniques are applied to an Al, ; Gay; As/
GaAs quantum well subjected to a high electric field perpendicular to the interfaces. Results on
the electron and hole tunneling rates and their dependence on band-edge discontinuities are
presented. The variation of the ground-state emission energy with the electric field is also

presented.

The advances in epitaxial crystal growth techniques
such as molecular-beam epitaxy (MBE) and metalorganic
chemical vapor deposition have led to a number of novel
proposals for device structures.'™ An important nove} op-
toelectronic device structure recently proposed is the light
modulator based on the quantum well in the presence of an
electric field.>” A number of experimental groups are cur-
rently exploring optical properties of AlGaAs/GaAs quan-
tum wells in the presence of an electric field.*® The interest
in this structure arises due to the possibility of shifting the
energy of the radiation emitted from the structure as well as
strong quenching of photoluminescence (PL) at high elec-
tric fields.

Although a number of experimental results have been
reported on PL under electric field in quantum wells, the
theoretical understanding of this phenomenon is far from
clear. A theoretical work based upon the variational princi-
ple has been reported in literature, but it appears to have
difficulty in understanding the PL quenching at high fields.®
In this letter we use an approach based on Monte Carlo tech-
niques to calculate the electron and hole quasibound levels in
a quantum well. This approach does not depend upon a judi-
cious choice for the form of the wave function (as the con-
ventional variation approach does) since the Monte Carlo
method scans all possible wave functions and selects the one
with the lowest energy. At low fields we find good agreement
between the results obtained by this approach and the one
reported in literature by using the conventional variational
approach,’ but at high fields there are significant differences.
In particular, a much higher PL quenching is predicted by
our calculations due to the high tunneling rates for the carri-
ers. We also find that quasibound levels become unbound at
a much lower electric field. We attribute these differences to
the fact that in conventional variational approach an im-
proper choice of the form of the wave function can lead to
unreliabie results. Recently calculations based on numerical
integration of Schridinger equation have been presented for
the same problem,'® and we find that the Monte Carlo re-
sults agree well with these results.

According to the variational principle, the ground state
energy E, corresponding to a Hamiltonian H is determined
from the condition
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E0=minj1/1*H¢vdr, (1)
where
Hy= (—‘—"’i v+ V() () = Bb) 2)
2m
and
f{:ﬁ{’dr:l. (3)

In principle, the approach requires one to consider all
possible waveforms and select the one which gives the mini-
mum energy. However, in practice one considers a well-de-
fined waveform (based usually on physical intuition) with
some parameters which are then varied to obtain the mini-
mum energy for that waveform.

In this paper we will describe a method based on Monte
Carlo techniques which finds a solution to the set of Eq. (1)-
(3), but is not limited to any special choice of the wave func-
tion. We will apply this technique to bound and quasibound
electron-hole levels in a quantum well in presence of an elec-
tric field.

THE MONTE CARLO METHOD

The Monte Carlo method has been widely used in the
areas of charge transport,'' crystal growth,'? solution of
quantum mechanical problems,'? etc. To solve the set of Eqs.
(1)-(3) the following steps are performed:

(i) An arbitrary normalized wave function is chosen
inside a fixed volume (see discussion on quasibound states).

(ii) The energy associated with this wave function is
calculated using Eq. (1). The kinetic energy and potential
energy of the particle are calculated for any given mass
(which may vary with position) and potential F(x).

(iii) Using a random number of small change is made in
the wave function at a random point x;.

(iv) The new wave function is normalized and its energy
is recalculated.

(v) The new wave function is retained if (a) the energy
of the new wave function is iower than that of the initial one
or (b) a random number R [called from a uniform 0 to 1
distribution is less than where § is a small number
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(~107%)]. The case b is allowed to ensure that the wave
function is able to reach a true energy minimum.

The steps (iii)—(v) are repeated until convergence is ob-
tained. It is important to realize that the final solution is
independent of the starting wave function although a judi-
cious starting wave function can lower the number of itera-
tions required to reach a stable solution. The above method
is obviously not unique and other procedures can also be
used, but the final results are quite independent of the meth-
ods.

QUASIBOUND STATES

The practical computer aspects of going through the
steps (i)—(v) above require that the physical space over
which the wave function extends is finite. A square quantum
well may be defined by

V(x) =0if xo<x<xy + W

= Vyif x<xo0r x>X5+ W. (4

The space over which the bound state extends is typical-
ly ~ W so that in the calculations one keeps information of
distances a few times W. In case an electric field E is applied
to the quantum well, one has an additional potential given by

V(x) =eEx. (&)

In this case, the subband levels in the quantum well given by
Eq. (4) can only be quasibound since for large enough x
away from the well the free electron (hole) states are lower
(higher) in energy than the subband levels. Since the Monte
Carlo method described earlier will always find the wave
function with the lowest energy, it is clear that the wave
function will depend on the size of the system considered. To
find the true quasibound state we exploit the fact that a qua-
sibound state is confined near the well with very small prob-
ability away from the well. The following technique is used.
An arbitrary potential is superimposed on the potentials de-
fined by Eqgs. (4) and (5). This arbitrary potential is defined

by
Ve=V, x<xo—L or xpxq+W+1L,
=0 (6)

where we choose V> V,,. The distance L is gradually in-
creased from O to higher values and the Monte Carlo ap-
proach described earlier is utilized to solve for the lowest-
energy wave function. As the distance L is increased one
expects that the ground-state wave function will show one of
the two schematic behaviors shown in Fig. . En case of a true
quasibound state, the energy associated with the wave func-
tion (as well as other properties such as shapes, etc.) stabi-
lizes at a value of L = Lc, and remains essentially invariant
tifl L = Lc, after which the energy rapidly changes. In case
there is no quasibound state, the energy (and other proper-
ties) associated with the lowest-energy wave function
changes uniformly as L is changed. The physical argument
behind this criteria is straightforward. If the ground stateis a
true quasibound state, it will be confined primarily near the
quantum well region. Lc, represents the distance up to
which the wave function extends (of course an extremely

otherwise
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FIG. 1. Signatures of a quasibound (solid line) and unbound (dashed line)
state as the parameter L of the artificial barrier discussed in the text is in-
creased. E(L) is the lowest energy associated with the wave functions.

small fraction extends further into the barrier). Thus in-
creasein L does not significantly change the solution. How-
ever, beyond Lc,, the lowest energy states are the free band
states. On the other hand, if the electric field is too high, one
cannot talk about quasibound states [e.g., see Eq. (14) of
Ref. 9]. This criteria is found to work extremely well for
calculating the quasibound states as will be clear from the
results presented below.

The method described in brief here is found to work very
efficiently in determining quasibound levels, and does not
suffer from the pitfalls of the choice of inaccurate waveform
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FIG. 2. Electron and hole wave functions in a 100-A Aly; Ga,, As/GaAs
quantum well in the presence of an electric field of (al) 40kV/cm and (a2)
120 kV/cm with a band-edge discontinuity of 60:40 and (b1) 10kV/cmand
(b2) 40kV/cm with a discontinuity of 85:15. The well is centered at 250 A.

Jasprit Singh 2054



in the conventional approach to the variational principle.

The above technique has been applied by us to deter-
mine the subband levels for the electron and hole in an
Al ;Ga,; As-GaAS-Al, ; Ga,y ; As quantum well. We have
assumed a total band-gap discontinuity of 360 meV across
the interface which is distributed across the conduction and
valence band in the ratio of 60:40 or 85:15. These two values
have been chosen to display the effects of the discontinuity
on the results. It is worth mentioning that the 85:15 discon-
tinuity was suggested earlier by classic experiments of Din-
gle et al.,'* but recently a much larger valence band discon-
tinuity is being suggested.!® The effective masses of the
electron and hole are taken to be 0.067 m, and 0.45 m,,
respectively, where m is the free electron mass.

It is well known that if the quantum well is exposed to
light, electron hole pairs are produced which form excitons
and eventually recombine to emit photons with energy given
by

E,=E +E,+E,—E, N

P
where E, and E, are the electron and hole subband levels,
E, is the band gap of the well material, and E, the exciton
binding energy.

In the presence of an electric field, there is negligible
change in E_, but E, and E, change substantially. There is
also comparatively small change in E, which is controlied
by electron-hole overlap in the presence of the electric field
(e.g., for a 100-A well a change of approximately 30% at an
electric field of 80 kV/cm leading to a binding energy change
of approximately 2 meV).

We have calculated the subband levels and the associat-
ed energies and wave functions which then allow us to calcu-
late the tunneling probabilities for the electrons and holes.
We note that the solutions presented here are based on a
variational approach. In variational approaches, the eigen-
energies are more reliable than the eigenfunctions. We have
therefore used the WKB method to calculate the tunnel-
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FIG. 3. Monte Carlo results for the electron and hole wave functions in
presence of an electric field of 160kV cm™'. At this high field, the hole state
is not a quasibound state, since the hole wave function does not reach a
stable state as the artificial barrier described in the text is removed from 60
t0 120 A in steps of 20 A.
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FIG. 4. Electron and hole wave functions in a 30-A Al,,Ga,,As/GaAs
quantum well in the presence of an electric field of (al) 40kV/cm and (a2)
80 kY/cm with a band-edge discontinuity of 60:40. The well is centered at
150 A.

ing rates for the electrons and the holes. Athough in princi-
ple the WKB method is an approximation, it has proven to
be quite accurate in many tunneling related calculations. Of
course, any fine structure in the tunneling rates is lost when
the WKB approach is used.

The tunneling probability of a particle in a quasibound
state with energy E is given by the WKB expression'®

x2
E,, =exp— %j BmVex) —E ldx, (8)
x1
with an attempt frequency given by
v=V/2L, (9

where V is the particle velocity calculated from the kinetic
energy and L is the spread of the wave function.

The results from our calculations are shown in Figs. 2~
6. In Fig. 2, we show the electron and hole wave functions in
a 100-A quantum well for discontinuities of 60:40 (case @)
and 85:15 (case b). The electric fields are (al) E =40kV/
cm, (a2) 120kV/cm (for case a) and (bl) 10kV/cm, (b2)
40 kV/cm (for case b).

In Fig. 3 we show the case when the applied electric field
is 160 kV cm ™! and discontinuity is 60:40. In this case we
show the wave functions calculated with ¥, in Eq. (6) cho-
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FIG. 5. Variation of the electron-hole subband level difference in the pres-
ence of an electric field for a 30- and 100-A quantum well. The band-edge
discontinuities used are 60:40 (solid line) and 85:15 (dashed line).

sen to be 1000 meV for the electrons and for holes (the re-
sults are independent of the choice of ¥, aslong as V, > ¥);
Vo = 216 meV for electrons and 144 meV for holes). The L
defined by Eq. (6) changes from 60 to 120 A in steps of 20 A
for the four cases shown. It is clear that for this electric field,
the hole wave function is not a quasibound state, but an un-
bound state. This is consistent with the following physical
observation. The hole wave function penetrates ~ 50 A be-
yond the barrier at x = x, + W,. At E=160kV cm ™! the
shift in the band position over 50 A is 80 meV. Since the
difference between the hole subband and the barrier at
x = wy is also ~ 80 meV, at such high fields, the wave func-
tion becomes unbound. Similarly for an 85:15 discontinuity,
the hole level becomes unbound at 50 kV cm™'. Note that
this is in marked contrast with the variational calculation of
Bastard ef al.’ which suggests that the quasibound state con-
tinues to exist even at twice the electric fields mentioned
above. We believe this difference arises because the latter
authors force the variational wave function to have an expo-
nential decay even at very high fields.

We have also obtained results for the electron and hole
levels for the 30-A quantum well as shown in Fig. 4. The
results are for a 60:40 discontinuity and an electric field of
(al) 40kV/cm and (a2) 80 kV/cm. It is important to note
that due to the much larger spread of the electron wave func-
tion, the electron state becomes unbound for the 60:40 dis-
continuity at 90 kV/cm. However, for the 85:15 discontin-
uity, the hole state becomes unbound at 50 kV/cm due to the
small barrier seen by the hole.

In Fig. 5, we show the variation of the subband energy
difference as a function of electric field for the 100- and 30-A
quantum wells for the two cases of the discontinuity: (a)
60:40 (solid line) and (b) 85:15 (dashed line). We find that
for the 100-A well, it is possible to change the subband ener-
gy difference considerably before the system becomes un-
bound. For the 30-A well, there is a very small shift with the
electric field. Figure 3 also shows an insignificant depen-
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FIG. 6. Tunneling rates for electrons (solid line) and holes (dashed line)
from 100- and 30-A Al 3 Ga, ; As/GaAs quantum wells. The various cases
are (al) discontinuity = 60:40, well size = 100 ;3;; (a2) discontin-
uity = 85:15, well size = 100 A; (bl) discontinuity = 60:40, well size = 30
A; (b2) discontinuity = 85:15, well size = 30 A.

dence of the subband energy difference on the discontinuity
assumed.

Finally in Fig. 6, we show the tunneling rates for the
electrons and holes for the cases discussed earlier. A study of
the effect of these tunneling rates on optical quenching will
be discussed elsewhere, but we point out here that these rates
must be compared to ~ 10° s~! for exciton collapse. When
the tunneling times (7,,, = 1/T v) become comparable to
the exciton collapse time, the intensity of the emission light
from the structure will decrease rapidly. We point out that if
the electron and holes are created above the quantum well
effective band gap, the tunneling rate will be even higher due
to the higher electron or hole kinetic energies. It is important
to note the tremendous sensitivity of the tunneling rates to be
discontinuities at the conduction and valence bands. We
have only reported the rates up to fields where both the elec-
tron and hole states are quasibound.

The results presented here agree rather well with the
trends reported in the literature.>~® For example, the shift in
emission energy with increased applied bias and the PL
quenching appear to be consistent with our calculations.
However, at this stage a detailed comparison is not advisable

due to the rather sketchy information available on electric
field versus emission energy and intensity.

In summary, we have presented a new formalism for
tackling the problem of quasibound wells in an electric field
which is quite different from the existing results based on the
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variation principle. We believe that the Monte Carlo ap-
proach presented here will have useful application in under-
standing electro-optical devices, since it can be applied to
arbitrary-shaped quantum wells,
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